
Under review as a conference paper at ICLR 2020

RIDE: REWARDING IMPACT-DRIVEN EXPLORATION
FOR PROCEDURALLY-GENERATED ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Exploration in sparse reward environments remains one of the key challenges of
model-free reinforcement learning (RL). Instead of solely relying on extrinsic re-
wards provided by the environment, many state-of-the-art methods use intrinsic
rewards to encourage the agent to explore the environment. However, we show
that existing methods fall short in procedurally-generated environments where
an agent is unlikely to ever visit the same state more than once. We propose a
novel type of intrinsic exploration bonus which rewards the agent for actions that
change the agent's learned state representation. We evaluate our method on multi-
ple challenging procedurally-generated tasks in MiniGrid, as well as on tasks used
in prior curiosity-driven exploration work. Our experiments demonstrate that our
approach is more sample efficient than existing exploration methods, particularly
for procedurally-generated MiniGrid environments. Furthermore, we analyze the
learned behavior as well as the intrinsic reward received by our agent. In contrast
to previous approaches, our intrinsic reward does not diminish during the course
of training and it rewards the agent substantially more for interacting with objects
that it can control.

1 INTRODUCTION

Deep reinforcement learning (RL) is one of the most popular frameworks for developing agents that
can solve a wide range of complex tasks (Mnih et al., 2016; Silver et al., 2016; 2017). RL agents
learn to act in new environments through trial and error, in an attempt to maximize their cumulative
reward. However, many environments of interest, particularly those closer to real-world problems,
do not provide a steady stream of rewards for agents to learn from. In such settings, agents require
many episodes to come across any reward, often rendering standard RL methods inapplicable.

Inspired by human learning, the use of intrinsic motivation has been proposed to encourage agents
to learn about their environments even when extrinsic feedback is rarely provided (Schmidhuber,
1991b; 2010; Oudeyer et al., 2007; Oudeyer & Kaplan, 2009). This type of exploration bonus
emboldens the agent to visit new states (Bellemare et al., 2016; Burda et al., 2019b; Ecoffet et al.,
2019) or to improve its knowledge and forward prediction of the world dynamics (Pathak et al.,
2017; Burda et al., 2019a), and can be highly effective for learning in hard exploration games such
as Montezuma's Revenge (Mnih et al., 2016). However, most hard exploration environments used
in previous work have either a limited state space or an easy way to measure similarity between
states (Ecoffet et al., 2019) and generally use the same “singleton” environment for training and
evaluation (Mnih et al., 2016; Burda et al., 2019a). Deep RL agents trained in this way are prone
to overfitting to a specific environment and often struggle to generalize to even slightly different
environments (Rajeswaran et al., 2017; Zhang et al., 2018a;b). As a first step towards addressing
this problem, a number of procedurally-generated environments have been recently released, for
example DeepMind Lab (Beattie et al., 2016), Sokoban (Racanière et al., 2017), Malmö (Johnson
et al., 2016), CraftAssist (Jernite et al., 2019), Sonic (Nichol et al., 2018), CoinRun (Cobbe et al.,
2019), Obstacle Tower (Juliani et al., 2019), or Capture the Flag (Jaderberg et al., 2019).

In this paper, we investigate exploration in procedurally-generated sparse-reward environments.
Throughout the paper, we will refer to the general problem that needs to be solved as a task (e.g.
find a goal inside a maze) and to the particular instantiation of this task as environment (e.g. maze
layout, colors, textures, locations of the objects, environment dynamics etc.). The environment can

1



Under review as a conference paper at ICLR 2020

st

at

ât

st+1

φt

φt+1

embed

embed

forward

inverse

φ̂t+1

RIDE

Lfw

Linv

Rcur

ψtembed atπ

Figure 1: RIDE rewards the agent for actions that have an impact on the state representation (RIDE),
which is learned using both a forward (Lfw) and an inverse dynamics (Linv) model.

be singleton or procedurally-generated. Singleton environments are those in which the agent has to
solve the same task in the same environment in every episode, i.e.., the environment does not change
between episodes. A popular example of a hard exploration environment that falls into that cate-
gory is Montezuma's Revenge. In procedurally-generated environments, the agent needs to solve the
same task, but in every episode the environment is initialized differently, making it unlikely to ever
visit the same state twice. Thus, agents in such environments have to learn policies that generalize
well across a very large state space. We demonstrate that current exploration methods fall short
in such environments as they (i) make strong assumptions about the environment (deterministic or
resettable to previous states) (Ecoffet et al., 2019; Aytar et al., 2018), (ii) make strong assumptions
about the state space (small number of different states or easy to determine if two states are similar)
(Ecoffet et al., 2019; Burda et al., 2019b; Bellemare et al., 2016; Ostrovski et al., 2017; Machado
et al., 2018a), or (iii) provide intrinsic rewards that can diminish quickly during training (Pathak
et al., 2017; Burda et al., 2019a)..

To overcome these limitations, we propose Rewarding Impact-Driven Exploration (RIDE), a
novel intrinsic reward for exploration in RL that encourges the agent to take actions which result
in impactful changes to its representation of the environment state (see Figure 1 for an illustration).
We compare against state-of-the-art intrinsic reward methods on singleton environments with vi-
sual inputs, as well as on hard-exploration tasks in procedurally-generated grid-world environments.
Our experiments show that RIDE outperforms state-of-the-art exploration methods particularly in
procedurally-generated environments. Furthermore, we present a qualitative analysis demonstrating
that RIDE, in contrast to prior work, does not suffer from diminishing intrinsic rewards during train-
ing and encourages the agent substantially more to interact with objects that it can control (relative
to other state-action pairs).

2 RELATED WORK

The problem of exploration in reinforcement learning has been extensively studied. Exploration
methods encourage RL agents to visit novel states in various ways, for example by rewarding sur-
prise (Schmidhuber, 1991b;a; 2010; 2006; Achiam & Sastry, 2017), information gain (Little & Som-
mer, 2013; Still & Precup, 2012; Houthooft et al., 2016), curiosity (Pathak et al., 2017; Burda et al.,
2019b), empowerment (Klyubin et al., 2005; Rezende & Mohamed, 2015; Gregor et al., 2017), di-
versity (Eysenbach et al., 2019), feature control (Jaderberg et al., 2017; Dilokthanakul et al., 2019),
or decision states (Goyal et al., 2019; Modhe et al., 2019). Another class of exploration methods
apply the Thompson sampling heurisitc (Osband et al., 2016; Ostrovski et al., 2017; O’Donoghue
et al., 2018; Tang et al., 2017). Osband et al. (2016) use a family of randomized Q-functions trained
on bootstrapped data to select actions, while Fortunato et al. (2018) add noise in parameter space
to encourage exploration. Here, we focus on intrinsic motivation methods, which are widely-used
and have proven effective for various hard-exploration tasks (Mnih et al., 2016; Pathak et al., 2017;
Bellemare et al., 2016; Burda et al., 2019b).

Intrinsic motivation can be useful in guiding the exploration of RL agents, particularly in environ-
ments where the extrinsic feedback is sparse or missing altogether (Oudeyer et al., 2007; 2008;

2



Under review as a conference paper at ICLR 2020

Oudeyer & Kaplan, 2009; Schmidhuber, 1991b; 2010). The most popular and effective kinds of
intrinsic motivation can be split into two broad classes: count-based methods that encourage the
agent to visit new states and curiosity-based methods that encourage the agent to learn about the
environment dynamics.

Count-Based Exploration. Strehl & Littman (2008) proposed the use of state visitation counts
as an exploration bonus in tabular settings. More recently, such methods were extended to high-
dimensional state spaces (Bellemare et al., 2016; Ostrovski et al., 2017; Martin et al., 2017; Tang
et al., 2017; Machado et al., 2018a). Bellemare et al. (2016) use a Context-Tree Switching (CTS)
density model to derive a state pseudo-count, while Ostrovski et al. (2017) use PixelCNN as a state
density estimator. Burda et al. (2019b) employ the prediction error of a random network as explo-
ration bonus with the aim of rewarding novel states more than previously seen ones. However, one
can expect count-based exploration methods to be less effective in procedurally-generated environ-
ments with sparse reward. In these settings, the agent is likely to characterize two states as being
different even when they only differ by features that are irrelevant for the task (e.g. the texture of the
walls). If the agent considers most states to be “novel”, the feedback signal will not be distinctive or
varied enough to guide the agent.

Curiosity-Driven Exploration. Curiosity-based bonuses encourage the agent to explore the en-
vironment to learn about its dynamics. Curiosity can be formulated as the error or uncertainty in
predicting the consequences of the agent's actions (Stadie et al., 2015; Pathak et al., 2017; Burda
et al., 2019b). For example, Pathak et al. (2017) learn a latent representation of the state and design
an intrinsic reward based on the error of predicting the next state in the learned latent space. While
we use a similar mechanism for learning state embeddings, our exploration bonus is very different
and builds upon the difference between the latent representations of two consecutive states. As we
will see in the following sections, one problem with their approach is that the sintrinsic reward can
vanish during training, leaving the agent with no incentive to further explore the environment and
reducing its feedback to extrinsic reward only.

Generalization in Deep RL. Most of the existing exploration methods that have achieved impres-
sive results on difficult tasks (Ecoffet et al., 2019; Pathak et al., 2017; Burda et al., 2019b; Bellemare
et al., 2016; Choi et al., 2019; Aytar et al., 2018), have been trained and tested on the same environ-
ment and thus do not generalize to new instances. Several recent papers (Rajeswaran et al., 2017;
Zhang et al., 2018a;b; Machado et al., 2018b; Foley et al., 2018) demonstrate that deep RL is sus-
ceptible to severe overfitting. As a result, a number of benchmarks have been recently released for
testing generalization in RL (Beattie et al., 2016; Cobbe et al., 2019; Packer et al., 2018; Justesen
et al., 2018; Leike et al., 2017; Nichol et al., 2018; Juliani et al., 2019). Here, we make another
step towards developing exploration methods that can generalize to unseen scenarios by evaluating
them on procedurally-generated environments. We opted for MiniGrid (Chevalier-Boisvert et al.,
2018) because it is fast to run, provides a standard set of tasks with varied difficulty levels, focuses
on single-agent, and does not use visual inputs, which allows us to better isolate the exploration
problem.

More closely related to our work are the papers of Marino et al. (2019) and Zhang et al. (2019).
Marino et al. (2019) use a reward that encourages changing the values of the non-proprioceptive
features for training low-level policies on locomotion tasks. Their work assumes that the agent has
access to a decomposition of the observation state into internal and external parts, an assumption
which may not hold in many cases and may not be trivial to obtain even if it exists. Zhang et al.
(2019) use the difference between the successor features of consecutive states as intrinsic reward. In
this framework, a state is characterized through the features of all its successor states. While both
of these papers use fixed (i.e. not learned) state representations to define the intrinsic reward, we
use forward and inverse dynamics models to learn a state representation constrained to only capture
elements in the environment that can be influenced by the agent. Lesort et al. (2018) emphasize
the benefits of using a learned state representation for control as opposed to a fixed one, which may
not contain information relevant for acting in the environment. In the case of Zhang et al. (2019),
constructing a temporally extended state representation for aiding exploration is not trivial. Such
a feature space may add extra noise to the intrinsic reward due to the uncertainty in the states that
might be visited in the future. This is particularly problematic when the agent often encounters states
that have never been visited before (as it is the case in procedurally-generated environments) or the
environment is highly stochastic.

3



Under review as a conference paper at ICLR 2020

3 BACKGROUND: CURIOSITY-DRIVEN EXPLORATION

We use the standard formalism of a single agent Markov Decision Process (MDP) defined by a set
of states S, a set of actions A, and a transition function T : S × A → P(S) which gives the
probability distribution of the next state given a current state and action. The agent chooses actions
by sampling from a stochastic policy π : S → P(A), and receives reward r : S × A → R at
every time step. The agent's goal is to learn a policy which minimizes its discounted expected return
Rt = E

[∑T
k=0 γ

krt+k+1

]
where rt is the total reward received by the agent at time t, γ ∈ [0, 1] is

the discount factor, and the expectation is taken with respect to both the policy and the environment.
Here, we consider the case of episodic RL in which the agent maximizes the reward received within
a finite time horizon.

In this paper we consider that, along with the extrinsic reward ret , the agent also receives some
intrinsic reward rit, which can be computed for any (st−1, at−1, st) tuple. Consequently, the agent
tries to maximize the weighted sum of the intrinsic and extrinsic reward: rt = ret +ωirr

i
t where ωir

is a hyper-parameter to weight the importance of both rewards.

We built upon the work of Pathak et al. (2017) who note that some parts of the observation may
have no influence on the agent's state. Thus, Pathak et al. propose learning a state representation
that disregards those parts of the observation and instead only models (i) the elements that the agent
can control, as well as (ii) those that can affect the agent, even if the agent cannot have an effect on
them. Concretely, Pathak et al. learn a state representations φ(s) = femb(s; θemb) of a state s using
an inverse and a forward dynamics model (see Figure 1). The forward dynamics model is a neural
network parametrized by θfw that takes as inputs φ(st) and at, predicts the next state representation:
φ̂(st+1) = ffw(φt, at; θfw), and is trained to minimize Lfw(θfw, θemb) = ‖φ̂(st+1)−φ(st+1)‖22.
The inverse dynamics model is also a neural network parametrized by θinv that takes as inputs
φ(st) and φ(st+1), predicts the agent's action: ât = finv(φt, φt+1; θinv), and is trained to mini-
mize Linv(θinv, θemb) = CrossEntropy(ât, at) when the action space is discrete. Pathak et al.'s
curiosity-based intrinsic reward is then defined as the Euclidean distance between the embedding of
the current state φ(st) and the next state φ̂(st+1) as predicted by the forward model.

4 IMPACT-DRIVEN EXPLORATION

Our main contribution is a novel intrinsic reward based on the change in the state representation pro-
duced by the agent's action. The proposed method encourages the agent to try out actions that have a
significant impact on the environment and we demonstrate that it can promote effective exploration
strategies when the feedback from the environment is sparse.

We train a forward and an inverse dynamics model to learn a latent state representation φ(s) as
proposed by Pathak et al. (2017). However, instead of using the Euclidean distance between the
predicted next state representation and the actual next state representation as intrinsic reward (Rcur
in Figure 1), we define impact-driven reward as the change between consecutive state representations
(RIDE in Figure 1). Compared to curiosity-driven exploration, impact-driven exploration rewards
the agent for very different state-actions, leading to distinct agent behaviors which we analyze in
Section 6.1.1.

Stanton & Clune (2018) categorize exploration into: across-training and intra-life and argue they are
complementary. Popular methods such as count-based exploration (Bellemare et al., 2016) encour-
age agents to visit new states in relation to all prior training episodes (i.e. across-training novelty),
but they do not consider whether an agent visits new states within some episode (i.e. intra-life
novelty). As we will see, RIDE combines both types of exploration.

Formally, RIDE is computed as the L2-norm ‖φ(st+1) − φ(st)‖2 of the difference in the learned
state representation between consecutive states. However, to ensure that the agent does not go back
and forth between a sequence of states (with a large difference in their embeddings) in order to gain
intrinsic reward, we discount RIDE by episodic state visitation counts. Concretely, we divide the
impact-driven reward by

√
Nep(st+1), where Nep(st+1) is the number of times that state has been

visited during the current episode, which is initialized to 1 in the beginning of the episode. In high-
dimensional regimes, one can use episodic pseudo-counts instead (Bellemare et al., 2016; Ostrovski

4



Under review as a conference paper at ICLR 2020

et al., 2017). Thus, the overall intrinsic reward provided by RIDE is calculated as:

RIDE(st, at) ≡ rit(st, at) =
‖φ(st+1)− φ(st)‖2√

Nep(st+1)

where φ(st+1) and φ(st) are the learned representations of consecutive states, resulted from the
agent transitioning to state st+1 after taking action at in state st. The state is projected into a latent
space using a neural network with parameters θemb.

The overall optimization problem that is solved for training the agent is

min
θπ,θinv,θfw,θemb

[ωπLIMPALA(θπ) + ωfwLfw(θfw, θemb) + ωinvLinv(θinv, θemb)]

where θπ are the parameters of the policy and value network (at ∼ π(st; θπ)), and ωπ , ωinv and
ωfw are scalars that weigh the relative importance of the IMPALA loss to that of the inverse and
forward dynamics losses which are used for learning the intrinsic reward signal. Note that we never
update the parameters of the inverse (θinv), forward (θfw), or embedding networks (θemb) using the
signal from the intrinsic or extrinsic reward (i.e. the IMPALA loss); we only use these learned state
embeddings for constructing the exploration bonus and never as part of the agent's policy (Figure 1
highlights that the policy learns its own internal representation of the state ψt, which is only used for
control and never for computing the intrinsic reward). Otherwise, the agent can artificially maximize
its intrinsic reward by constructing state representations with large distances among themselves,
without grounding them in observations of the environment.

Note that there is no incentive for the learned state representations to encode features of the environ-
ment that cannot be influenced by the agent's actions. Thus, our agent will not receive rewards for
reaching states that are inherently unpredictable, making exploration robust with respect to distrac-
tor objects or other inconsequential sources of variation in the environment. As we will later show,
RIDE is robust to the well-known noisy-TV problem in which an agent rewarded for errors in the
prediction of its forward model (such as the one proposed in Pathak et al. (2017)) gets attracted to
local sources of entropy in the environment. Furthermore, the difference of consecutive state repre-
sentations is unlikely to go to zero during learning as they are representations of actual states visited
by the agent and constrained by the forward and inverse model. This is in contrast to Pathak et al.
(2017) and Burda et al. (2019b) where the intrinsic reward goes to zero as soon as the forward model
becomes sufficiently accurate or the agent's policy only explores well known parts of the state space.

5 EXPERIMENTS

Figure 2: Rendering of a
procedurally-generated envi-
ronment from MiniGrid's Multi-
RoomN12S10 task.

We evaluate RIDE on procedurally-generated environments
from MiniGrid, as well as two existing singleton environ-
ments used in prior work, and compare it against both stan-
dard RL and three commonly used intrinsic reward methods
for exploration. For all our experiments, we show the mean
and standard deviation of the average return across 5 different
seeds for each model. The average return is computed as the
rolling mean over the past 100 episodes.

5.1 ENVIRONMENTS

The first set of environments are procedurally-generated grid-
worlds in MiniGrid (Chevalier-Boisvert et al., 2018). We con-
sider three types of hard exploration tasks: MultiRoomNXSY,
KeyCorridorS3R3, and ObstructedMaze2Dlh.

In MiniGrid, the world is a partially observable grid of size
NxN. Each tile in the grid contains at most one of the follow-
ing objects: wall, door, key, ball, box and goal. The agent can
take one of seven actions: turn left or right, move forward,
pick up or drop an object, toggle or done. More details about
the MiniGrid environment and tasks can be found in A.3.

5



Under review as a conference paper at ICLR 2020

Figure 3: Performance of RIDE, Count, RND, ICM and IMPALA on a variety of hard exploration
problems in MiniGrid. Note RIDE is the only one that can solve the hardest tasks.

For the sole purpose to compare in a fair way to the curiosity-driven exploration work by Pathak
et al. (2017), we ran a one-off experiment on their Mario (singleton) environment. We train our
model with and without extrinsic reward on the first level of the game.

The last (singleton) environment we evaluate on is VizDoom (Kempka et al., 2016). Details about
the environment can be found in A.4.

5.2 BASELINES

For all our experiments, we use IMPALA (Espeholt et al., 2018) as the base RL algorithm, and RM-
SProp (Tieleman & Hinton, 2012) for optimization. All models use the same basic RL algorithm
and network architecture for the policy and value functions (see Appendix A.2 and Appendix A.1
for details regarding the hyperparameters and network architectures), differing only in how intrinsic
rewards are defined. In our experiments we compare with the following baselines: Count: Count-
Based Exploration by Bellemare et al. (2016) which uses state visitation counts to give higher re-
wards for new or rarely seen states. RND: Random Network Distillation Exploration by Burda et al.
(2019b) which uses the prediction error of a random network as exploration bonus with the aim of
rewarding novel states more than previously encountered ones. ICM: Intrinsic Curiosity Module by
Pathak et al. (2017) (see Section 3). IMPALA: Standard RL approach by Espeholt et al. (2018) that
uses only extrinsic reward and encourages random exploration by adding the entropy of the policy
to the objective function.

6 RESULTS AND DISCUSSION

We present results of RIDE in comparison to popular exploration methods, as well as an analysis of
the learned policies and properties of the intrinsic reward generated by different methods.

6.1 MINIGRID

Figure 3 summarizes our results on various hard MiniGrid tasks. Note that the standard RL approach
IMPALA (purple) is not able to learn in any of the environments since extrinsic reward is too sparse.
Furthermore, our results reveal that RIDE is more sample efficient compared to all the other explo-
ration methods across all MiniGrid tasks considered here. While other exploration bonuses seem
effective on easier tasks and are able to learn optimal policies where IMPALA fails, the gap between
our approach and the others is increasing with the difficulty of the task. Furthermore, RIDE man-
ages to solve some very challenging tasks on which the other methods fail to get any reward even
after training on over 100M frames (Figure 3).

6



Under review as a conference paper at ICLR 2020

Figure 4: Intrinsic reward heatmaps for RND, ICM, and RIDE (from left to right) for opening doors
(green), moving forward (blue), or turning left or right (red) on a random environment from the
MultiRoomN7S4 task. A is the agent's starting position, G is the goal position and D are doors that
have to be opened on the way.

Open Door Turn Left / Right Move Forward

Model Mean Std Mean Std Mean Std
RIDE 0.0490 0.0019 0.0071 0.0034 0.0181 0.0116
RND 0.0032 0.0018 0.0031 0.0028 0.0026 0.0017
ICM 0.0055 0.0003 0.0052 0.0003 0.0056 0.0003

Table 1: Mean intrinsic reward per action over 100 episodes on a random maze in MultiRoomN7S4.

In addition to existing MiniGrid tasks, we also tested the ability of the models to deal with stochas-
ticity in the environment by adding a “noisy TV” in the MiniGridN7S4 task, resulting in the new
MiniGirdN7S4NoisyTV task (left-center plot in the top row of Figure 3). The noisy TV is imple-
mented as a ball that changes its color to a randomly picked one whenever the agent takes a particular
action. As expected, the performance of ICM drops as the agent becomes attracted to the ball as it
gets rewarded for not being able to predict the next color. The Count model also needs more time to
train, likely caused by the increasing number of rare and novel states (due to the changing color of
the ball).

We include results for ablations to our model in Appendix A.5, highlighting the importance of
combining impact-driven exploration with episodic state visitation discounting.

6.1.1 ANALYSIS OF THE INTRINSIC REWARD

To better understand the effectiveness of different exploration methods, we investigate the intrinsic
reward an agent receives for certain trajectories in the environment.

Figure 4 shows a heatmap of the intrinsic reward received by RND, ICM, and RIDE on a sam-
pled environment after having been trained on procedurally-generated environments from the Mul-
tiRoomN7S4 task. While all three methods can solve this task, the intrinsic rewards received are
different. Specifically, the RIDE agent is rewarded in a much more structured manner for opening
doors, entering new rooms and turning at decision points. Table 1 provides quantitative numbers for
this phenomenon. We record the intrinsic rewards received for each type of action, averaged over
100 episodes. We found that the RIDE is putting more emphasis on actions interacting with the
door than for moving forward or turning left or right, while the other methods reward actions more
uniformly.

Figure 12 and Table 3 in A.6.2 show a similar pattern in the intrinsic rewards for agents trained on
the MultiRoomN12S10 task, while Figure 13 and Table 4 in A.6.3 contain the equivalent analysis

7



Under review as a conference paper at ICLR 2020

Figure 6: State visitation heatmaps for Count, RND, ICM, Random, and RIDE models (from left
to right) trained for 50m frames without any extrinsic reward on a singleton maze (top row) and on
procedurally-generated mazes (bottom row) in MultiRoomN10S6.

for agents trained on ObstructedMaze2Dlh. As emphasized there, RIDE is rewarded more for inter-
actions with objects relative to actions for moving around in the maze, a characteristic which is not
as prevalent in the other models.

Figure 5: Mean intrinsic re-
ward for models trained on Mul-
tiRoomN12S10.

Figure 5 shows the mean intrinsic reward of all models while
training on the MultiRoomN12S10 task. While the ICM, RND,
and Count intrinsic reward converges to very low values quite
early in the training process, the RIDE bonus keeps chang-
ing and has a higher value even after training on 100m frames.
Hence, RIDE constantly encourages the agent to take actions
that change the local environment. In contrast, Count, RND, and
Curiosity may not consider certain states to be “novel” or “sur-
prising” after longer periods of training as they have seen similar
states in the past or learned to almost perfectly predict the next
state in a subset of the environment states. Consequently, their
intrinsic rewards diminish during training, so the agent will have
a difficult time distinguishing between actions that lead to novel
or surprising states and those that do not and it may get trapped
in some parts of the state space (see Figure 12).

6.1.2 SINGLETON VERSUS PROCEDURALLY-GENERATED ENVIRONMENTS

It is important to understand and quantify how much harder it is to train existing deep RL exploration
methods on tasks in procedurally-generated environments compared to a singleton environment.

To investigate this dependency, we trained the models on a singleton environment of the the Ob-
structedMaze2Dlh task so that at the beginning of every episode, the agent is spawned in exactly the
same maze with all objects located in the same positions. In this setting, we see that Count, RND,
and IMPALA are also able to solve the task (see Figure 7 and compare with the center-right plot in
the bottom row of Figure 3 for procedurally-generated environments of the same task). As expected,
this emphasizes that training an agent in procedurally-generated environments creates significant
challenges over training on a singleton environment for the same task. Moreover, it highlights the
importance of training on a variety of environments to avoid overfitting to the idiosyncrasies of a
particular environment.

8



Under review as a conference paper at ICLR 2020

Figure 8: Performance on Mario with intrinsic reward only (a), with intrinsic and extrinsic reward
(b), and VizDoom (c). Note that IMPALA is trained with extrinsic reward only in all cases.

6.1.3 NO EXTRINSIC REWARD

Figure 7: Training on a singleton in-
stance of ObstructedMaze2Dlh.

To analyze the way different methods explore environments
without depending on the chance of running into extrinsic re-
ward (which can dramatically change the agent's policy), we
analyze agents that are trained without any extrinsic reward
on both singleton and procedurally-generated environments.

The top row of Figure 6 shows state visitation heatmaps
for all the models in a singleton environment on the Multi-
RoomN10S6 task, after training all of them for 50m frames
with intrinsic reward only. The agents are allowed to take 200
steps in every episode. The figure indicates that all models
have effective exploration strategies when trained on a single-
ton maze, the 10th, 9th and 6th rooms are reached by RIDE,
Count/RND, and ICM, respectively. The Random policy fully
explores the first room but does not get to the second room
within the time limit.

When trained on procedurally-generated mazes, existing
models are exploring much less efficiently as can be seen in
the bottom row of Figure 6. Here, Count, RND, and ICM
only make it to the 4th, 3rd and 2nd rooms respectively within an episode, while RIDE is able to
explore all rooms. This further supports that RIDE learns a state representation that allows general-
ization across different mazes and is not as distracted by less important details that change from one
procedurally-generated environment to another.

6.2 MARIO AND VIZDOOM

Our results on the first level of the Mario environment in order to compare to Pathak et al. (2017)
(see Figure 8a and b) suggest that this environment may not be as challenging as previously be-
lieved, given that all the methods evaluated here, including vanilla IMPALA, can learn similarly
good policies after training on only 1m frames even without any intrinsic reward (left figure). Note
that we are able to reproduce the results mentioned in the original ICM paper (Pathak et al., 2017).
However, when training with both intrinsic and extrinsic reward (center figure), the curiosity-based
exploration bonus (ICM) hurts learning, converging later and to a lower value than the other methods
evaluated here.

For VizDoom (see Figure 8c) we observe that RIDE performs as well as ICM, while all the other
baselines fail to learn an effective policy given the same amount of training. Note that our ICM
implementation can reproduce the results in the original paper on this task, achieving a 100% success
rate after training on approximately 60m frames (Pathak et al., 2017).

9



Under review as a conference paper at ICLR 2020

7 CONCLUSION AND FUTURE WORK

In this work, we propose rewarding impact-driven exploration (RIDE), an intrinsic reward bonus
that encourages the agent to explore actions that substantially change the state of the environment,
as measured in a learned latent space. RIDE has a number of desirable properties: attracts the agent
to states where it can affect the environment, provides a signal to the agent even after training for a
long time, and is conceptually simple as well as compatible with other intrinsic or extrinsic rewards
and any deep RL algorithm.

Our approach is particularly effective in procedurally-generated sparse-reward environments where
it significantly outperforms IMPALA (Espeholt et al., 2018), as well as some of the most popular
exploration methods: Count (Bellemare et al., 2016), RND (Burda et al., 2019b), ICM (Pathak et al.,
2017). Furthermore, RIDE explores procedurally-generated environments more efficiently than the
other exploration methods.

However, there are still many ways to improve upon RIDE. For example, one can make use of sym-
bolic information to measure or characterize the agent's impact, consider longer-term effects of the
agent's actions, or promote diversity among the kinds of changes the agent makes to the environ-
ment. Another interesting avenue for future research is to develop algorithms that can distinguish
between desirable and undesirable types of impact the agent can have in the environment, thus con-
straining the agent to act safely and avoid distractions (i.e. actions that lead to large changes in the
environment but that are not useful for a given task). Such different kinds of impact might corre-
spond to distinctive skills or low-level policies that a hierarchical controller can use to learn more
complex policies or better exploration strategies.

REFERENCES

Joshua Achiam and Shankar Sastry. Surprise-based intrinsic motivation for deep reinforcement
learning. CoRR, abs/1703.01732, 2017. URL http://arxiv.org/abs/1703.01732.

Yusuf Aytar, Tobias Pfaff, David Budden, Thomas Paine, Ziyu Wang, and Nando de Freitas. Playing
hard exploration games by watching youtube. In Advances in Neural Information Processing
Systems, pp. 2930–2941, 2018.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Ander-
son, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis
Hassabis, Shane Legg, and Stig Petersen. Deepmind lab. CoRR, abs/1612.03801, 2016. URL
http://arxiv.org/abs/1612.03801.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pp. 1471–1479, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Yuri Burda, Harrison Edwards, Deepak Pathak, Amos J. Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learning. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019a. URL https:
//openreview.net/forum?id=rJNwDjAqYX.

Yuri Burda, Harrison Edwards, Amos J. Storkey, and Oleg Klimov. Exploration by random net-
work distillation. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019b. URL https://openreview.net/forum?id=
H1lJJnR5Ym.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and
Honglak Lee. Contingency-aware exploration in reinforcement learning. In 7th International

10

http://arxiv.org/abs/1703.01732
http://arxiv.org/abs/1612.03801
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=rJNwDjAqYX
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://github.com/maximecb/gym-minigrid


Under review as a conference paper at ICLR 2020

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019. URL https://openreview.net/forum?id=HyxGB2AcY7.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. URL http://arxiv.org/abs/1511.07289.

Karl Cobbe, Oleg Klimov, Christopher Hesse, Taehoon Kim, and John Schulman. Quantifying
generalization in reinforcement learning. In Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 1282–1289,
2019. URL http://proceedings.mlr.press/v97/cobbe19a.html.

Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, and Murray Shanahan. Feature control as
intrinsic motivation for hierarchical reinforcement learning. IEEE transactions on neural net-
works and learning systems, 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 1406–1415, 2018. URL http:
//proceedings.mlr.press/v80/espeholt18a.html.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https:
//openreview.net/forum?id=SJx63jRqFm.

John Foley, Emma Tosch, Kaleigh Clary, and David Jensen. Toybox: Better atari environments for
testing reinforcement learning agents. CoRR, abs/1812.02850, 2018. URL http://arxiv.
org/abs/1812.02850.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Os-
band, Alex Graves, Volodymyr Mnih, Rémi Munos, Demis Hassabis, Olivier Pietquin, Charles
Blundell, and Shane Legg. Noisy networks for exploration. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3,
2018, Conference Track Proceedings, 2018. URL https://openreview.net/forum?
id=rywHCPkAW.

Anirudh Goyal, Riashat Islam, Daniel Strouse, Zafarali Ahmed, Hugo Larochelle, Matthew
Botvinick, Yoshua Bengio, and Sergey Levine. Infobot: Transfer and exploration via the in-
formation bottleneck. In 7th International Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/forum?
id=rJg8yhAqKm.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Workshop Track Proceedings, 2017. URL https://openreview.net/forum?id=
Skc-Fo4Yg.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In Advances in Neural Information Processing
Systems, pp. 1109–1117, 2016.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings, 2017. URL https://openreview.net/forum?
id=SJ6yPD5xg.

11

https://openreview.net/forum?id=HyxGB2AcY7
http://arxiv.org/abs/1511.07289
http://proceedings.mlr.press/v97/cobbe19a.html
http://proceedings.mlr.press/v80/espeholt18a.html
http://proceedings.mlr.press/v80/espeholt18a.html
https://openreview.net/forum?id=SJx63jRqFm
https://openreview.net/forum?id=SJx63jRqFm
http://arxiv.org/abs/1812.02850
http://arxiv.org/abs/1812.02850
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rywHCPkAW
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=rJg8yhAqKm
https://openreview.net/forum?id=Skc-Fo4Yg
https://openreview.net/forum?id=Skc-Fo4Yg
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg


Under review as a conference paper at ICLR 2020

Max Jaderberg, Wojciech M Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castaneda, Charles Beattie, Neil C Rabinowitz, Ari S Morcos, Avraham Ruderman, et al. Human-
level performance in 3d multiplayer games with population-based reinforcement learning. Sci-
ence, 364(6443):859–865, 2019.

Yacine Jernite, Kavya Srinet, Jonathan Gray, and Arthur Szlam. Craftassist instruction pars-
ing: Semantic parsing for a minecraft assistant. CoRR, abs/1905.01978, 2019. URL http:
//arxiv.org/abs/1905.01978.

Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. The malmo platform for artifi-
cial intelligence experimentation. In Proceedings of the Twenty-Fifth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 4246–4247,
2016. URL http://www.ijcai.org/Abstract/16/643.

Arthur Juliani, Ahmed Khalifa, Vincent-Pierre Berges, Jonathan Harper, Ervin Teng, Hunter Henry,
Adam Crespi, Julian Togelius, and Danny Lange. Obstacle tower: A generalization challenge in
vision, control, and planning. In Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pp. 2684–2691, 2019.
doi: 10.24963/ijcai.2019/373. URL https://doi.org/10.24963/ijcai.2019/373.

Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa, Julian Togelius, and
Sebastian Risi. Illuminating generalization in deep reinforcement learning through procedural
level generation. arXiv preprint arXiv:1806.10729, 2018.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Viz-
doom: A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE
Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, 2016.

Alexander S Klyubin, Daniel Polani, and Chrystopher L Nehaniv. All else being equal be empow-
ered. In European Conference on Artificial Life, pp. 744–753. Springer, 2005.

Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A Ortega, Tom Everitt, Andrew Lefrancq, Lau-
rent Orseau, and Shane Legg. Ai safety gridworlds. arXiv preprint arXiv:1711.09883, 2017.

Timothée Lesort, Natalia Dı́az Rodrı́guez, Jean-François Goudou, and David Filliat. State represen-
tation learning for control: An overview. Neural Networks, 108:379–392, 2018. doi: 10.1016/j.
neunet.2018.07.006. URL https://doi.org/10.1016/j.neunet.2018.07.006.

Daniel Ying-Jeh Little and Friedrich Tobias Sommer. Learning and exploration in action-perception
loops. Frontiers in neural circuits, 7:37, 2013.

Marlos C Machado, Marc G Bellemare, and Michael Bowling. Count-based exploration with the
successor representation. arXiv preprint arXiv:1807.11622, 2018a.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018b.

Kenneth Marino, Abhinav Gupta, Rob Fergus, and Arthur Szlam. Hierarchical RL using an
ensemble of proprioceptive periodic policies. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019, 2019. URL https:
//openreview.net/forum?id=SJz1x20cFQ.

Jarryd Martin, Suraj Narayanan Sasikumar, Tom Everitt, and Marcus Hutter. Count-based explo-
ration in feature space for reinforcement learning. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August
19-25, 2017, pp. 2471–2478, 2017. doi: 10.24963/ijcai.2017/344. URL https://doi.org/
10.24963/ijcai.2017/344.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

12

http://arxiv.org/abs/1905.01978
http://arxiv.org/abs/1905.01978
http://www.ijcai.org/Abstract/16/643
https://doi.org/10.24963/ijcai.2019/373
https://doi.org/10.1016/j.neunet.2018.07.006
https://openreview.net/forum?id=SJz1x20cFQ
https://openreview.net/forum?id=SJz1x20cFQ
https://doi.org/10.24963/ijcai.2017/344
https://doi.org/10.24963/ijcai.2017/344


Under review as a conference paper at ICLR 2020

Nirbhay Modhe, Prithvijit Chattopadhyay, Mohit Sharma, Abhishek Das, Devi Parikh, Dhruv Ba-
tra, and Ramakrishna Vedantam. Unsupervised discovery of decision states for transfer in rein-
forcement learning. CoRR, abs/1907.10580, 2019. URL http://arxiv.org/abs/1907.
10580.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Brendan O’Donoghue, Ian Osband, Rémi Munos, and Volodymyr Mnih. The uncertainty bellman
equation and exploration. In Proceedings of the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 3836–3845, 2018.
URL http://proceedings.mlr.press/v80/o-donoghue18a.html.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. In Advances in neural information processing systems, pp. 4026–4034, 2016.

Georg Ostrovski, Marc G Bellemare, Aäron van den Oord, and Rémi Munos. Count-based ex-
ploration with neural density models. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pp. 2721–2730. JMLR. org, 2017.

Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in neurorobotics, 1:6, 2009.

Pierre-Yves Oudeyer, Frdric Kaplan, and Verena V Hafner. Intrinsic motivation systems for au-
tonomous mental development. IEEE transactions on evolutionary computation, 11(2):265–286,
2007.

Pierre-Yves Oudeyer, Frederic Kaplan, et al. How can we define intrinsic motivation. In Proc. of
the 8th Conf. on Epigenetic Robotics, volume 5, pp. 29–31, 2008.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 16–17, 2017.

Sébastien Racanière, Theophane Weber, David P. Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nico-
las Heess, Yujia Li, Razvan Pascanu, Peter W. Battaglia, Demis Hassabis, David
Silver, and Daan Wierstra. Imagination-augmented agents for deep reinforcement
learning. In Advances in Neural Information Processing Systems 30: Annual Con-
ference on Neural Information Processing Systems 2017, 4-9 December 2017, Long
Beach, CA, USA, pp. 5690–5701, 2017. URL http://papers.nips.cc/paper/
7152-imagination-augmented-agents-for-deep-reinforcement-learning.

Aravind Rajeswaran, Kendall Lowrey, Emanuel V Todorov, and Sham M Kakade. Towards gen-
eralization and simplicity in continuous control. In Advances in Neural Information Processing
Systems, pp. 6550–6561, 2017.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows.
In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, pp. 1530–1538, 2015. URL http://proceedings.mlr.press/
v37/rezende15.html.

Jürgen Schmidhuber. Curious model-building control systems. In Proc. international joint confer-
ence on neural networks, pp. 1458–1463, 1991a.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neu-
ral controllers. In Proc. of the international conference on simulation of adaptive behavior: From
animals to animats, pp. 222–227, 1991b.

Jürgen Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the
fine arts. Connection Science, 18(2):173–187, 2006.

13

http://arxiv.org/abs/1907.10580
http://arxiv.org/abs/1907.10580
http://proceedings.mlr.press/v80/o-donoghue18a.html
http://papers.nips.cc/paper/7152-imagination-augmented-agents-for-deep-reinforcement-learning
http://papers.nips.cc/paper/7152-imagination-augmented-agents-for-deep-reinforcement-learning
http://proceedings.mlr.press/v37/rezende15.html
http://proceedings.mlr.press/v37/rezende15.html


Under review as a conference paper at ICLR 2020

Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE
Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Christopher Stanton and Jeff Clune. Deep curiosity search: Intra-life exploration can improve perfor-
mance on challenging deep reinforcement learning problems. arXiv preprint arXiv:1806.00553,
2018.

Susanne Still and Doina Precup. An information-theoretic approach to curiosity-driven reinforce-
ment learning. Theory in Biosciences, 131(3):139–148, 2012.

Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. In Advances in neural information processing systems, pp. 2753–
2762, 2017.

T Tieleman and G Hinton. Rmsprop: Divide the gradient by a running average of its recent mag-
nitude. coursera: Neural networks for machine learning. Tech. Rep., Technical report, pp. 31,
2012.

Amy Zhang, Nicolas Ballas, and Joelle Pineau. A dissection of overfitting and generalization in
continuous reinforcement learning. arXiv preprint arXiv:1806.07937, 2018a.

Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting in deep
reinforcement learning. arXiv preprint arXiv:1804.06893, 2018b.

Jingwei Zhang, Niklas Wetzel, Nicolai Dorka, Joschka Boedecker, and Wolfram Burgard. Sched-
uled intrinsic drive: A hierarchical take on intrinsically motivated exploration. arXiv preprint
arXiv:1903.07400, 2019.

14



Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 NETWORK ARCHITECTURES

All our models use the same network architecture for the policy and value networks. The input
is passed through a sequence of three (for MiniGrid) or four (environments used by Pathak et al.
(2017)) convolutional layers with 32 filters each, kernel size of 3x3, stride of 2 and padding of 1.
An exponential linear unit (ELU; (Clevert et al. (2016))) is used after each convolution layer. The
output of the last convolution layer is fed into a LSTM with 256 units. Two separate fully connected
layers are used to predict the value function and the action from the LSTM feature representation.

For the singleton environments used in prior work, the agents are trained using visual inputs that are
pre-processed similarly to Mnih et al. (2016). The RGB images are converted into gray-scale and
re-sized to 42 42. The input given to both the policy and the state representation networks consists
of the current frame concatenated with the previous three frames. In order to reduce overfitting,
during training, we use action repeat of four. At inference time, we sample the policy without any
action repeats.

A.2 HYPERPARAMETERS

We ran grid searches over the learning rate ∈ [0.0001, 0.0005, 0.001], batch size ∈ [8, 32] and unroll
length ∈ [20, 40, 100, 200]. The best values for all models can be found in Table 2.

Parameter Value

Learning Rate 0.0001
Batch Size 32
Unroll Length 100
Discount 0.99
RMSProp Momentum 0.0
RMSProp ε 0.01
Clip Gradient Norm ε 40.0

Table 2: Hyperparameters common to all experiments.
The learning rate is linearly annealed to 0 in all experiments.

We also ran grid searches over the intrinsic reward coefficient ∈
[1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001] for all the models and found that the best values were
0.1 for IDE, ICM and RND, and 0.05 for Count. We also ran grid searches over the entropy
coefficient ∈ [0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005] for all the models and found that the best
values were 0.0005 for IDE and 0.0001 for Count, RND, and ICM. In all experiments presented
here, we use the best values found for each model.

A.3 MINIGRID ENVIRONMENT

In MiniGrid, the world is a partially observable grid of size NxN. Each tile in the grid contains
exactly zero or one object. The possible object types are wall, door, key, ball, box and goal.

Each object in MiniGrid has an associated discrete color, which can be one of red, green, blue,
purple, yellow and grey. By default, walls are always grey and goal squares are always green.
Rewards are sparse for all MiniGrid environments.

There are seven actions in MiniGrid: turn left, turn right, move forward, pick up an object, drop an
object, toggle and done. The agent can use the turn left and turn right action to rotate and face one
of 4 possible directions (north, south, east, west). The move forward action makes the agent move
from its current tile onto the tile in the direction it is currently facing, provided there is nothing on
that tile, or that the tile contains an open door. The agent can open doors if they are right in front of
it by using the toggle action.

Observations in MiniGrid are partial and egocentric. By default, the agent sees a square of 7x7 tiles
in the direction it is facing. These include the tile the agent is standing on. The agent cannot see

15



Under review as a conference paper at ICLR 2020

through walls or closed doors. The observations are provided as a tensor of shape 7x7x3. However,
note that these are not RGB images. Each tile is encoded using 3 integer values: one describing the
type of object contained in the cell, one describing its color, and a flag indicating whether doors are
open or closed. This compact encoding was chosen for space efficiency and to enable faster training.
For all tasks, , the agent gets an egocentric view of its surroundings, consisting of 33 pixels. A neural
network parameterized as a CNN is used to process the visual observation.

The MultiRoomNXSY environment consists of X rooms, with size at most Y , connected in random
orientations. The agent is placed in the first room and must navigate to a green goal square in
the most distant room from the agent. The agent receives an egocentric view of its surrounding,
consisting of 33 pixels. The task increases in difficulty with X and Y. Episodes finish with a positive
reward when the agent reaches the green goal square. Otherwise, episodes are terminated with zero
reward after a maximum of 20xN steps.

In the KeyCorridorS3R3 environment, the agent has to pick up an object which is behind a locked
door. The key is hidden in another room, and the agent has to explore the environment to find it.
Episodes finish with a positive reward when the agent picks up the ball behind the locked door or
after a maximum of 270 steps.

In the ObstructedMaze2Dlh environment, the agent has to pick up a box which is placed in a corner
of a 3x3 maze. The doors are locked, the keys are hidden in boxes and doors are obstructed by balls.
Episodes finish with a positive reward when the agent picks up the ball behind the locked door or
after a maximum of 576 steps.

A.4 VIZDOOM ENVIRONMENT

We consider the Doom 3-D navigation task where the action space of the agent consists of four
discrete actions: move forward, move left, move right and no-action. Our testing setup in all the
experiments is the DoomMyWayHome-v0 environments which is available as part of OpenAI Gym
(Brockman et al., 2016). Episodes are terminated either when the agent finds the vest or if the
agent exceeds a maximum of 2100 time steps. The map consists of 9 rooms connected by corridors
and the agent is tasked to reach some fixed goal location from its spawning location. The agent is
always spawned in Room-13 which is 270 steps away from the goal under an optimal policy. A
long sequence of action sis required to reach the goals from these rooms, making this setting a hard-
exploration problem. The agent is only provided a sparse terminal reward of +1 if it finds the vest
and 0 otherwise. While this environment has sparse reward, it is not procedurally generated, so the
agent finds itself in exactly the same environment in each episode and does not need to generalize
to different environment instantiations. This environment is identical to the ”sparse” setting used in
Pathak et al. (2017).

A.5 ABLATIONS

Figure 9 compares the performance of our model on different MiniGrid tasks with that of two ab-
lations. The first one only uses the impact-driven exploration bonus without multiplying it by the
episodic state count term (NoEpisodicCounts), while the second one only uses episodic state counts
as exploration bonus without multiplying it by the impact-driven intrinsic reward (OnlyEpisodic-
Counts). We can see that IDE is more sample efficient than both ablations on all four tasks, with
the OnlyEpisodicCounts ablation not being able to gain positive reward on any of them, and the
NoEpisodicCounts completely failing to learn on the hardest task.

Figure 10 shows the average number of state visiting during an episode measured at different training
stages for our full IDE model and the NoEpisodicCounts ablation. Our model visits significantly
more states than the ablation, especially later in training. In contrast with the NoEpisodicCounts
ablation, IDE does not get stuck going back and forth between only a few different states in order to
gain intrinsic reward. Consistent with our intuition, discounting the intrinsic reward by the episodic
state-count term does help to avoid this failure mode.

16



Under review as a conference paper at ICLR 2020

Figure 9: Comparison between the performance of our full IDE model (blue), an ablation that uses
only the impact-driven exploration bonus without episodic discounting (orange) and an ablation that
only uses episodic state counts as exploration bonus without the impact-driven reward (green).

Figure 10: Average number of states visited during an episode, measured at different training stages
for our full IDE model (blue) and an ablation that does not use episodic discounting of the intrinsic
reward (orange).

17



Under review as a conference paper at ICLR 2020

Figure 11: State visitation heatmaps for Count, RND, ICM, and RIDE (from left to right) trained
for 100m frames on MultiRoomN12S10.

Figure 12: Intrinsic reward heatmaps for RND, ICM, and RIDE (from left to right) on Multi-
RoomN12S10.

Open Door Turn Left / Right Move Forward

Model Mean Std Mean Std Mean Std
RIDE 0.0116 0.0011 0.0042 0.0020 0.0032 0.0016
RND 0.0041 0.0016 0.0035 0.0013 0.0034 0.0012
ICM 0.0082 0.0003 0.0074 0.0005 0.0086 0.0002

Table 3: Mean intrinsic reward per action computed over 100 episodes on a random map from
MultiRoomN12S10.

A.6 ANALYSIS

A.6.1 STATE VISITATION IN MULTIROOMN12S10

In this section, we analyze the behavior learned by the agents. Figure 11 shows the state visitation
heatmaps for all models trained on 100m frames of MultiRoomN12S10, which has a very sparse
reward. Note that while our model has already reached the goal in the farthest room of the maze,
Count has explored about half of the maze, while RND and ICM are still in the first two rooms.

A.6.2 INTRINSIC REWARD IN MULTIROOMN12S20

Figure 12 shows a heatmap of the intrinsic reward received by IDE, RND, and ICM agents trained
on the procedurally-generated MultiRoomN12S10 environment. Table 3 shows the corresponding
intrinsic rewards received for each type of action, averaged over 100 episodes, for the trained models.
This environment is very challenging since the chance of randomly stumbling upon extrinsic reward
is extremely low. Thus, we see that while the intrinsic reward provided by IDE is still effective at
exploring the maze and finding extrinsic reward, the exploration bonuses used by RND and ICM are
less useful, leading to agents that do not go beyond the second room, even after training on 100m
frames.

18



Under review as a conference paper at ICLR 2020

Figure 13: Intrinsic reward heatmaps for RND, and RIDE (from left to right) for interacting with
objects (i.e. open doors, pick up / drop keys or balls) (green), moving forward (blue), or turning
left or right (red) on a random map from ObstructedMaze2Dlh. A is the agent's starting position, K
are the keys hidden inside boxes (that need to be opened in order to see their colors), D are colored
doors that can only be opened by keys with the same color, and B is the ball that the agent needs to
pick up in order to win the game. After passing through the door the agent also needs to drop the
key in order to be able to pick up the ball since it can only hold one object at a time.

Open Door Pick Ball Pick Key Drop Key Other

Model Mean Std Mean Std Mean Std Mean Std Mean Std
RIDE 0.0005 0.0002 0.0004 0.0001 0.0004 0.00001 0.0004 0.00007 0.0003 0.00001
RND 0.0034 0.0015 0.0027 0.0006 0.0026 0.0060 0.0030 0.0010 0.0025 0.0006

Table 4: Mean intrinsic reward per action computed over 100 episodes on a random map from
ObstructedMaze2Dlh.

A.6.3 INTRINSIC REWARD IN OBSTRUCTEDMAZE2DLH

In order to understand how various interactions with objects are rewarded by the different exploration
methods, we also looked at the intrinsic reward in the ObstructedMaze2Dlh environment which
contains multiple objects . However, the rooms are connected by locked doors and the keys for
unlocking the doors are hidden inside boxes. The agent does not know in which room the ball is
located and it needs the color of the key to match that of the door in order to open it. Moreover, the
agent cannot hold more than one object so it needs to drop one in order to pick up another.

Figure 13 and Table 4 indicate that IDE rewards the agent significantly for interacting with various
objects (e.g. opening the box, picking up the key, opening the door, dropping the key, picking up
the ball) relative to other actions such as moving forward or turning left and right. In contrast, RND
again rewards all actions much more uniformly and often times, within an episode, it rewards the
interactions with objects less than the ones for moving around inside the maze.

19


	Introduction
	Related Work
	Background: Curiosity-Driven Exploration
	Impact-Driven Exploration
	Experiments
	Environments
	Baselines

	Results and Discussion
	MiniGrid
	Analysis of the Intrinsic Reward
	Singleton versus Procedurally-Generated Environments
	No Extrinsic Reward

	Mario and Vizdoom

	Conclusion and Future Work
	Appendix
	Network Architectures
	Hyperparameters
	MiniGrid Environment
	VizDoom Environment
	Ablations
	Analysis
	State Visitation in MultiRoomN12S10
	Intrinsic Reward in MultiRoomN12S20
	Intrinsic Reward in ObstructedMaze2Dlh



