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ABSTRACT

Recently mean field theory has been successfully used to analyze properties of
wide, random neural networks. It gave rise to a prescriptive theory for initializing
feed-forward neural networks with orthogonal weights, which ensures that both the
forward propagated activations and the backpropagated gradients are near `2 isome-
tries and as a consequence training is orders of magnitude faster. Despite strong
empirical performance, the mechanisms by which critical initializations confer an
advantage in the optimization of deep neural networks are poorly understood. Here
we show a novel connection between the maximum curvature of the optimization
landscape (gradient smoothness) as measured by the Fisher information matrix
(FIM) and the spectral radius of the input-output Jacobian, which partially explains
why more isometric networks can train much faster. Furthermore, given that or-
thogonal weights are necessary to ensure that gradient norms are approximately
preserved at initialization, we experimentally investigate the benefits of maintaining
orthogonality throughout training, and we conclude that manifold optimization of
weights performs well regardless of the smoothness of the gradients. Moreover,
we observe a surprising yet robust behavior of highly isometric initializations —
even though such networks have a lower FIM condition number at initialization,
and therefore by analogy to convex functions should be easier to optimize, exper-
imentally they prove to be much harder to train with stochastic gradient descent.
We propose an explanation for this phenomenon by exploting connections between
Fisher geometry and the recently introduced Neural Tangent Kernel.

1 INTRODUCTION

Deep neural networks (DNN) have shown tremendous success in computer vision problems, speech
recognition, amortized probabilistic inference, and the modelling of neural data. Despite their
performance, DNNs face obstacles in their practical application, which stem from both the excessive
computational cost of running gradient descent for a large number of epochs, as well as the inherent
brittleness of gradient descent applied to very deep models. A number of heuristic approaches such as
batch normalization, weight normalization and residual connections (He et al., 2015; Ioffe & Szegedy,
2015; Salimans & Kingma, 2016) have emerged in an attempt to address these trainability issues.

Recently mean field theory has been successful in developing a more principled analysis of gradients
of neural networks, and has become the basis for a new random initialization principle. The mean
field approach postulates that in the limit of infinitely wide random weight matrices, the distribution
of pre-activations converges weakly to a Gaussian. Using this approach, a series of works proposed to
initialize the networks in such a way that for each layer the input-output Jacobian has mean singular
values of 1 (Schoenholz et al., 2016). This requirement was further strengthened to suggest that the
spectrum of singular values of the input-output Jacobian should concentrate on 1, and it was shown
that this can only be achieved with random weight matrices.

Under these conditions the backpropagated gradients are bounded in `2 norm (Pennington et al.,
2017) irrespective of depth, i.e., they neither vanish nor explode. It was shown experimentally in
(Pennington et al., 2017; Xiao et al., 2018b; Chen et al., 2018) that networks with these critical initial
conditions train orders of magnitude faster than networks with arbitrary initializations. The empirical
success invites questions from an optimization perspective on how the spectrum of the hidden layer
input-output Jacobian relates to notions of curvature of the parameters space, and subsequently to
convergence rate. The largest effective (initial) step size η0 for stochastic gradient descent is inversely
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proportional to the local gradient smoothness M (Bottou et al., 2016; Boyd & Vandenberghe, 2004).
Intuitively, the gradient step can be at most as large as the fastest change in the parameter landscape.
Recent attempts have been made to analyze the mean field geometry of the optimization using
the Fisher information matrix (FIM) (Amari et al., 2018; Karakida et al., 2018). The theoretical
and practical appeal of measuring curvature with the FIM is due to among other reasons the fact
that the FIM is necessarily positive semidefinite even for non-convex objectives, and due to it its
intimate relationship with the Hessian matrix. (Karakida et al., 2018) derived an upper bound on
the maximum eigenvalue, however this bound is not satisfactory since it is agnostic of the entire
spectrum of singular values and therefore cannot differentiate between Gaussian and orthogonal
weight initalizations.

In this paper, we develop a new bound on the parameter curvature M given the maximum eigenvalue
of the Fisher information λmax(Ḡ) which holds both Gaussian and orthogonal. We show that this
quantity under certain conditions is proportional to the maximum singular value of the input-output
Jacobian. We use this result to probe different orthogonal initializations, and observe that, broadly
speaking, networks with a smaller initial curvature train faster and generalize better, as expected.
However, consistently with a previous report (Pennington et al., 2018), we also observe highly
isometric networks perform worse despite having a slowly varying loss landscape ( i.e. small initial
λmax(Ḡ)). We propose a theoretical explanation for this phenomenon using the connections between
the FIM and the recently introduced Neural Tangent Kernel (Jacot et al., 2018; Lee et al., 2019).
Given that the smallest and largest eigenvalues have an approximately inverse relationship (Karakida
et al., 2018), we propose an explanation that the long term optimization behavior is mostly controlled
by the smallest eigenvalue m and therefore surprisingly there is a sweetspot with the condition
number being m

M > 1.

We then investigate whether constraining the spectrum of the Jacobian matrix of each layer affects
optimization rate. We do so by training networks using Riemannian optimization to constrain their
weights to be orthogonal, or nearly orthogonal and we find that manifold constrained networks are
insensitive to the maximal curvature at the beginning of training unlike the unconstrained gradient
descent (hereafter “Euclidean”). In particular, we observe that the advantage conferred by optimizing
over manifolds cannot be explained by the improvement of the gradient smoothness as measured by
λmax(Ḡ).

Importantly, we observe that contary to (Bansal et al., 2018)’s results Euclidean networks with a
carefully designed initialization reduce the test misclassification error at approximately the same rate
as their manifold constrained counterparts, and overall attain a higher accuracy.

2 BACKGROUND

2.1 FORMAL DESCRIPTION OF THE NETWORK

Following (Pennington et al., 2017; 2018; Schoenholz et al., 2016), we consider a feed-forward, fully
connected neural network with L hidden layers. Each layer l ∈ {1, . . . , L} is given as a recursion of
the form

xl = φ(hl), hl = Wlxl−1 + bl (1)

where xl are the activations, hl are the pre-activations, Wl ∈ RN l×N l−1

are the weight matrices, bl
are the bias vectors, and φ(·) is the activation function. The input is denoted as x0. The output layer
of the network computes ŷ = g−1(hg) where g is the link function and hg = WgxL + bg .
The hidden layer input-output Jacobian matrix JxL

x0 is,

JxL

x0 ,
∂xL

∂x0
=

L∏
l=1

DlWl (2)

where Dl is a diagonal matrix with entries Dl
i,i = φ′(hli). As pointed out in (Pennington et al.,

2017; Schoenholz et al., 2016), the conditioning of the Jacobian matrix affects the conditioning of the
back-propagated gradients for all layers.
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2.2 CRITICAL INITIALIZATIONS

Extending the classic result on the Gaussian process limit for wide layer width obtained by (Neal,
1996), recent work (Matthews et al., 2018; Lee et al., 2017) has shown that for deep untrained
networks with elements of their weight matrices Wi,j drawn from a Gaussian distribution N (0,

σ2
W

N l
)

the empirical distribution of the pre-activations hl converges weakly to a Gaussian distribution
N (0, qlI) for each layer l in the limit of the width N → ∞. Similarly, it has been postulated
that random orthogonal matrices scaled by σW give rise to the same limit. Under this mean-field
condition, the variance of the pre-activation distribution ql is recursively given by,

ql = σ2
W

∫
φ
(√

ql−1h
)

dµ(h) + σ2
b (3)

where µ(h) denotes the standard Gaussian measure
∫

dh√
2π

exp (−h
2

2 ) and σ2
b denotes the variance

of the Gaussian distributed biases (Schoenholz et al., 2016). The variance of the first layer pre-
activations q1 depends on `2 norm squared of inputs q1 =

σ2
W

N1

∥∥p (x0
)∥∥2

2
+ σ2

b. The recursion
defined in equation 3 has a fixed point

q∗ = σ2
W

∫
φ
(√
q∗h
)

dµ(h) + σ2
b (4)

which can be satisfied for all layers by appropriately choosing σW, σb and scaling the input x0.
To permit the mean field analysis of backpropagated signals, the authors (Schoenholz et al., 2016;
Pennington et al., 2017; 2018; Karakida et al., 2018) further assume the propagated activations and
back propagated gradients to be independent. Specifically,
Assumption 1. [Mean field assumptions]
(i) limN→∞ h

d−→ N (0, q∗)
(ii) limN→∞ Cov

[
Jgxi+1h

i,Jgxj+1h
j
]

= 0 for all i 6= j

Under this assumption, the authors (Schoenholz et al., 2016; Pennington et al., 2017) analyze
distributions of singular values of Jacobian matrices between different layers in terms of a small
number of parameters, with the calculations of the backpropagated signals proceeding in a selfsame
fashion as calculations for the forward propagation of activations. The corollaries of Assumption 1
and condition in equation 4 is that φ′(hl) for 1 ≤ l ≤ L are i.i.d. In order to ensure that JxL

x0 is well
conditioned, (Pennington et al., 2017) require that in addition to the variance of pre-activation being
constant for all layers, two additional constraints be met. Firstly, they require that the mean square
singular value of DW for each layer have a certain value in expectation.

χ =
1

N
E
[

Tr
[
(DW)>DW

]]
= σ2

W

∫ [
φ′(
√
q∗h)

]2
dµ(h) (5)

Given that the mean squared singular value of the Jacobian matrix JxL

x0 is (χ)L, setting χ = 1
corresponds to a critical initialization where the gradients are asymptotically stable as L → ∞.
Secondly, they require that the maximal squared singular value s2

max of the Jacobian JxL

x0 be bounded.
(Pennington et al., 2017) showed that for weights with Gaussian distributed elements, the maximal
singular value increases linearly in depth even if the network is initialized with χ = 1. Fortunately,
for orthogonal weights, the maximal singular value smax is bounded even as L→∞ (Pennington
et al., 2018).

3 THEORETICAL RESULTS: RELATING THE SPECTRA OF JACOBIAN AND
FISHER INFORMATION MATRICES

To better understand the geometry of the optimization landscape, we wish to put a Lipschitz bound on
the gradient, which in turn gives an upper bound on the largest step size of any first order optimization
algorithm. For a general objective function f , the condition is equivalent to

‖∇f(x)−∇f(x′)‖2 ≤M‖x− x′‖2 for all x, x′ ⊂ S ⊆ Rd

The Lipschitz constant ensures that the gradient doesn’t change arbitrarily fast with respect to x, x′,
and therefore∇f defines a descent direction for the objective over a distanceM . In general estimating
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the Lipschitz constant is NP-hard Kunstner et al. (2019), therefore we seek to find local measures
of curvature along the optimization trajectory. As we will show below the approximate gradient
smoothness is tractable for randomly initialized neural networks.

The analytical study of Hessians of random neural networks started with Pennington & Bahri (2017),
but was limited to shallow architectures. Subsequent work Amari et al. (2018); Karakida et al. (2018)
on second order geometry of random networks shares much of the spirit of the current work, in that it
proposes to replace the possibly indefinite Hessian with the related Fisher information matrix as a
measure of curvature. The Fisher information matrix plays a fundamental role in the geometry of
probabilistic models, under the Kullback-Leibler divergence loss. However,because of its relation
to the Hessian, it can also be seen as defining an approximate curvature matrix for second order
optimization. Recall that the FIM is defined as
Definition. Fisher Information Matrix

G , Epθ(y|x0)

[
Ep(x0)

[
∇θ log pθ(y|x0)∇θ log pθ(y|x0)>

]]
(6)

= Epθ(y|x0)

[
Ep(x0)

[
Jh

g>
θ ∇2

hgLJh
g

θ

]]
= Epθ(y|x0)

[
Ep(x0)

[
H−

∑
k

∇xgLk∇2
θh
g
k

]]
(7)

where L denotes the loss and hg is the output layer. The relation between the Hessian and Fisher
Information matrices is apparent from equation 7, showing that the Hessian H is a quadratic form
of the Jacobian matrices plus the possibly indefinite matrix of second derivatives with respect to
parameters. Our goal is to express the gradient smoothness using the results of the previous section.
Given equation 7 we can derive an analytical approximation to the Lipschitz bound using the results
from the previous section; i.e. we will express the expected maximum eigenvalue of the random
Fisher information matrix in terms of the expected maximum singular value of the Jacobian JhL

h1 .
To do so, let us consider the output of a multilayer perceptron as defining a conditional probability
distribution pθ(y|x0), where Θ = {vec(W1), . . . , vec(WL),b1, . . . ,bL} is the set of all hidden
layer parameters, and θ is the column vector containing the concatenation of all the parameters in Θ.
As observed by (Martens & Grosse, 2015) the Fisher of a multilayer network naturally has a block
structure, with each corresponding to the weights and biases of each layer. These blocks with respect
to parameter vectors a, b ∈ Θ can further be expressed as

Ḡa,b = Jhg

a
>HgJ

hg

b (8)

where the final layer Hessian Hg is defined as∇2
hg log pθ(y|x0). We can re-express the outer product

of the score function∇hg log pθ(y|x0) as the second derivative of the log-likelihood (see equation 6),
provided it satisfies certain technical conditions. What is important for us is that all canonical link
function for generalized linear models, like the softmax function and the identity function allow
this re-writing, and that this re-writing allows us drop the conditional expectation with respect to
pθ
(
y|x0

)
.

The Jacobians in equation 8 can be computed iteratively. Importantly the Jacobian from the output
layer to the a-th parameter block is just the product of diagonal activations and weight matrices
multiplied by the Jacobian from the α-th layer to the a-th parameter. We define these matrices
of partial derivatives of the α-th layer pre-activations with respect to the layer specific parameters
separately for Wα and bα as:

Jhα

a = xα−1> ⊗ I for a = vec(Wα) (9)

Jhα

a = I for a = bα (10)

Under the infinitesmally weak correlation assumption (see Assumption 1), we can further simplify
the expression for the blocks of the Fisher information matrix equation 8.
Lemma 1. The expected blocks with respect to weight matrices for all layers α, β 6= 1 are

Ḡvec(Wα),vec(Wβ) = E
[
xα−1xβ−1>

]
⊗ E

[
Jhg

hα
>
HgJ

h
hβ

]
(11)

Lemma 2. The expected blocks with respect to a weight matrix Wα and a bias vector bβ are

Ḡvec(Wα),bβ = E
[
xα−1> ⊗ I

]
E
[
Jhg

hα
>
HgJ

hg

hβ

]
(12)
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The crucial observation here is that in the mean-field limit the cross-covariance for the activations
xα−1, xβ−1 is either zero or rank 1 for activations in different layers. The case when both
activations are in the same layer is trivially taken care of by our mean-field assumptions — the
covariance is proportional to the identity the identity plus potentially a rank one matrix. These rank 1
terms come from the fact that the expectation of E

[
φ(h)2

]
under a Gaussian distribution need not be

zero.

Now, leveraging lemmas 1 and 2 we derive a block diagonal approximation which in turn allows
us to bound the maximum eigenvalue λmax(Ḡ). In doing so we will use a corollary of the block
Gershgorin theorem.
Proposition 1 ((informal) Block Gershgorin theorem). The maximum eigenvalue λmax(Ḡ) is con-
tained in a union of disks centered around the maximal eigenvalue of each diagonal block with radia
equal to the sum of the singular values of the off-diagonal terms.

For a rigorous statement of the theorem see Appendix A.2. It is noteworthy that block-diagonal
approximations have been crucial to the application of Fisher Information matrices as preconditioners
in stochastic second order methods (Botev et al., 2017; Martens & Grosse, 2015). These methods
were motivated by practical performance, in their choice of number of diagonal blocks used for
preconditioning. Under the mean-field assumptions we are able to show computable bounds on the
error in approximating the eigen spectrum of the Fisher Information matrix.

The proposition 1 suggest a simple, easily computable way to bound the expected maximal eigenvalue
of the Fisher information matrix—choose the block with the largest eigenvalue and calculate the
expected spectral radia for the corresponding off diagonal terms. We do so by making an auxiliary
assumption:
Assumption 2. The maximum singular value of Jhg

hα monotonically increases as α ↓ 1.

We motivate this assumption in a twofold fashion: firstly the work done by (Pennington et al., 2017;
2018) shows that the spectral edge, i.e. the maximal, non-negative singular value in the support of of
the spectral distribution increases with depth, secondly it has been commonly observed in numerical
experiments that very deep neural networks have ill conditioned gradients.

Under this assumption it is sufficient to study the maximal singular value of blocks of the Fisher
information matrix with respect to vec(W1), b1 and the spectral norms of its corresponding off-
diagonal blocks. We define functions Σmax of each block as upper bounds on the spectral bounds of
the respective block. The specific values are given in the following Lemma:
Lemma 3. The maximum expected singular values of the off-diagonal blocks ∀β 6= 1 are bounded
by Σmax:

E
[
σmax

(
Gvec(W1),vec(Wβ)

)]
≤ Σmax

(
Gvec(W1),vec(Wβ)

)
(13)

,
√
Nβ |E [φ(h)]|

∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(14)

E
[
σmax

(
Gvec(W1),bβ

)]
≤ Σmax

(
Gvec(W1),bβ

)
(15)

, |E [φ(h)]|E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(16)

E
[
σmax

(
Gb1,bβ

)]
≤ Σmax

(
Gb1,bβ

)
, E

[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(17)

For proof see Appendix A.3

Note that the expectations for layers > 1 is over random networks realizations and averaged over
data x0; i.e. they are taken with respect to the Gaussian measure, whereas the expectation for first
layer weights is taken with respect to the empirical distribution of x0 (see equation 4).
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Figure 1: Manifold constrained networks are insensitive to the choice of q∗: Train loss and test
accuracy for Euclidean, Stiefel and Oblique networks with two different values of q∗. The manifold
constrained networks minimize the training loss at approximately the same rate, being faster than
both Euclidean networks. Despite this, there is little difference between the test accuracy of the
Stiefel and Oblique networks and the Euclidean networks initialized with q∗ = 9× 10−4. Notably,
the latter attains a marginally higher test set accuracy towards the end of training.

Depending on the choice of q∗ and therefore implicitly both the rescaling of x0 and the values
of E[φ(h)] the singular values of the weight blocks might dominate those associated with biases
dominate — compare equation 14 and equation 17
Theorem (Bound on the Fisher Information Eigenvalues). If

∥∥E [x0
]∥∥

2
≤ 1 then eigenvalue associ-

ated with b1 will dominate, giving an upper bound on λmax( ¯̄G)

E
[
λmax(Ḡ)

]
≤ E

[
σmax

(
Ḡb1,b1

)]
+ Σmax

(
Gb1,vec(W1)

)
+
∑
β>1

Σmax
(
Ḡb1,bβ

)
+ Σmax

(
Ḡvec(b1),vec(Wβ)

)
otherwise the maximal eigenvalue of the FIM is bounded by

E
[
λmax(Ḡ)

]
≤ E

[
σmax

(
Ḡvec(W1),vec(W1)

)]
+ Σmax

(
Gb1,vec(W1)

)
+
∑
β>1

Σmax
(
Gvec(W1),bβ

)
+ Σmax

(
Gvec(W1),vec(Wβ)

)
Moreover, it is interesting to note two things. Firstly, E

[
σmax

(
Jhg

hα

)]
factor appear in

all the above summands. Secondly, we can bound σmax for the diagonal blocks with
E [λmax (Hg)]E

[
σmax

(
Jhg

hα

)]2
. These two fact reveal that the FIM maximum eigenvalue is up-

per upperbounded by a quadratic function of the spectral radius of the input-output Jacobian.

The functional form of the bound is essentially quadratic in E
[
σmax(Jhg

h1 )
]

since the term appears in
the summand as with powers at most two. This result shows that the strong smoothness, given by the
maximum eigenvalue of the FIM, is proportional to the squared maximum singular value of the input-
output Jacobian. Moreover, the bound essentially depends on q∗ via the expectation E[φ(h)], through
Jhg

h1 and implicitly through Hg . For regression problems this dependence is monotonically increasing
in q∗ (Pennington et al., 2018; 2017) since Hg is just the identity. However, this does not hold for all
generalized linear models since λmax(Hg) is not necessarily a monotonically increasing function of
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max(J

hg

x0 ) as a function of q∗

Networks used in experiments

Networks not used in experiments

Isometric linear networks

2

4

6

8

q∗

Figure 2: At initialization the maximum curvature of the loss landscape (measured by the λmax of
the Fisher correlates highly (ρ = 0.65) with the maximum squared singular value of the Jacobian
Jhg

x0 . The choice of choice of the preactivation variance, q∗ affects not only the conditioning of the
gradients but also the gradient Lipschitz constant.

the pre-activation variance at layer hg . We demonstrate this in the case of softmax regression in the
Appendix B.2. Finally, to obtain a specific bound on λmax(Ḡ) we might consider bounding each
E
[
σmax(Jhg

hα)
]

appearing in theorem 3 in terms of its Frobenius norm. The corresponding result is
the eigenvalue bound derived by (Karakida et al., 2018).

[t]

3.1 NUMERICAL EXPERIMENTS

To experimentally test the potential effect of maintaining orthogonality throughout training and
compare it to the unconstrained optimization (Pennington et al., 2017), we trained a 200 layer tanh
network on CIFAR-10 and SVHN 1. Following (Pennington et al., 2017) we set the width of each
layer to be N = 400 and chose the σW, σb in such a way to ensure that χ concentrates on 1 but
s2
max varies as a function of q∗ (see Fig. 2). We considered four different critical initializations

with q∗ =
[
10−4, 1

64 ,
1
2 , 8
]
, which differ both in spread of the singular values as well as in the

resulting training speed and final test accuracy as reported by (Pennington et al., 2017). In the main
text we focus on the smaller values since those networks should be closer to being isometric and
therefore, by our theory, ought to train better. The remaining two networks with q∗ =

[
1
2 , quad8

]
are presented in the Appendix A.1. To test how enforcing strict orthogonality or near orthogonality
affects convergence speed and the maximum eigenvalues of the Fisher information matrix, we trained
Stiefel and Oblique constrained networks and compared them to the unconstrained “Euclidean”
network described in (Pennington et al., 2017). We used a Riemannian version of ADAM (Kingma &
Ba, 2014). When performing gradient descent on non-Euclidean manifolds, we split the variables
into three groups: (1) Euclidean variables (e.g. the weights of the classifier layer, biases), (2) non-
negative scaling σW both optimized using the regular version of ADAM, and (3) manifold variables
optimized using Riemannian ADAM. The initial learning rates for all the groups, as well as the
non-orthogonality penalty (see ??) for Oblique networks were chosen via Bayesian optimization,
maximizing validation set accuracy after 50 epochs. All networks were trained with a minibatch size
of 1000. We trained 5 networks of each kind, and collected eigenvalue and singular value statistics
every 5 epochs, from the first to the fiftieth, and then after the hundredth and two hundredth epochs.

Based on the bound on the maximum eigenvalue of the Fisher information matrix derived in Section 3,
we predicted that at initialization λmax(Ḡ) should covary with σ2

max(Jhg

x0 ). We tested our prediction
using the empirical Fisher information matrix (Kunstner et al., 2019) and we find a significant
correlation between the two (Pearson coefficient ρ = 0.64). The numerical values are presented in

1https://github.com/iclr2020info-geom/info-geom
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Fig. 2. Additionally we see that both the maximum singular value and maximum eigenvalue increase
monotonically as a function of q∗. Motivated by the previous work by (Saxe et al., 2013) showing
depth independent learning dynamics in linear orthogonal networks, we included 5 instantiations
of this model in the comparison. The input to the linear network was normalized the same way
as the critical, non-linear networks with q∗ = 1/64. The deep linear networks had a substantially
larger λmax(Ḡ) than its non-linear counterparts initialized with identically scaled input (Fig. 2).
Having established a connection between q∗ the maximum singular value of the hidden layer input-
output Jacobian and the maximum eigenvalue of the Fisher information, we investigate the effects
of initialization on subsequent optimization. As reported by (Pennington et al., 2017), the learning
speed and generalization peak at intermediate values of q∗ ≈ 10−0.5. This result is counter intuitive
given that the maximum eigenvalue of the Fisher information matrix, much like that of the Hessian in
convex optimization, upper bounds the maximal learning rate (Boyd & Vandenberghe, 2004; Bottou
et al., 2016). To gain insight into the effects of the choice of q∗ on the convergence rate, we trained
the Euclidean networks and estimated the local values of λmax during optimization. At the same
time we asked whether we can effectively control the two aforesaid quantities by constraining the
weights of each layer to be orthogonal or near orthogonal. To this end we trained Stiefel and Oblique
networks and recorded the same statistics.

We present training results in Fig. 1, where it can be seen that Euclidean networks with q∗ ≈ 9×10−4

perform worse with respect to training loss and test accuracy than those initialized with q∗ = 1/64.
On the other hand, manifold constrained networks are insensitive to the choice of q∗. Moreover,
Stiefel and Oblique networks perform marginally worse on the test set compared to the Euclidean
network with q∗ = 1/64, despite attaining a lower training loss. This latter fact indicates that
manifold constrained networks the are perhaps prone to overfitting.

We observe that reduced performance of Euclidean networks initialized with q∗ ≈ 9 × 10−4 may
partially be explained by their rapid increase in λmax(Ḡ) within the initial 5 epochs of optimization
(see Fig. 3.1 in the Appendix). While all networks undergo this rapid increase, it is most pronounced
for Euclidean networks with q∗ ≈ 9× 10−4. The increase λmax(Ḡ) correlates with the inflection
point in the training loss curve that can be seen in the inset of Fig. 1. Interestingly, the manifold
constrained networks optimize efficiently despite differences in λmax(Ḡ) (Kohler et al., 2018).
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Notably, the Euclidean network with q∗ = 1/64 has almost an order of magnitude smaller λmax(Ḡ)
than the Stiefel and Oblique networks, but reduces training loss at a slower rate.

Notably, the Euclidean network with q∗ = 1/64 has almost an order of magnitude smaller λmax(Ḡ)
than the Stiefel and Oblique networks, but reduces training loss at a slower rate.

Figure 3: For manifold constrained networks, gradient smoothness is not predictive of optimization
rate. Euclidean networks with a low initial λmax(Ḡ) rapidly become less smooth, whereas Euclidean
networks with a larger λmax(Ḡ) remain relatively smoother.
Notably, the Euclidean network with q∗ = 1/64 has almost an order of magnitude smaller λmax(Ḡ)
than the Stiefel and Oblique networks, but reduces training loss at a slower rate.

4 DISCUSSION

Critical orthogonal initializations have proven tremendously successful in rapidly training very
deep neural networks (Pennington et al., 2017; Chen et al., 2018; Pennington et al., 2018; Xiao
et al., 2018a). Despite their elegant derivation drawing on methods from free probability and mean
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field theory, they did not offer a clear optimization perspective on the mechanisms driving their
success. With this work we complement the understanding of critical orthogonal initializations by
showing that the maximum eigenvalue of the Fisher information matrix, and consequentially the local
gradient smoothness is proportional to the maximum singular value of the input-output Jacobian.
This gives an information geometric account of why the step size and training speed depend on q∗

via its effect on E
[
smax(JhL

h1

)
]. We observed in numerical experiments that the paradoxical results

reported in (Pennington et al., 2017) whereby training speed and generalization attains a maximum
for q∗ = 10−0.5 can potentially be explained by a rapid increase of the maximum eigenvalue of
the FIM during training for the networks initialized with Jacobians closer to being isometric (i.e.,
smaller q∗). This increase effectively limits the learning rate during the early phase of optimization
and highlights the need to analyze the trajectories of training rather than just initializations. We relate
that to the recently proposed Neural Tangent Kernel (Jacot et al., 2018; Lee et al., 2019). The NTK
is defined as

Θ̂t,i,j , Jhg

x0Jhg>
x0 (18)

for i, j ∈ Ng|D| representing the block indices running over Ng outputs of the network and |D| data
samples. The NTK is the derivative of a kernel defined by a random neural network. It prescribes
the time evolution of the function and therefore offers a unique insight into the training dynamics.
Importantly, the spectrum of the NTK coincides with that of the Fisher information for regression
problems (see Appendix B.4). In other words,
It is therefore interesting to understand the predictiveness of the Neural Tangent Kernel at initial-
ization given its spectrum. Such a result has been recently presented by (Lee et al., 2019), who
show that the discrepancy between training with a NTK frozen at initialization (f lint (x0)) and a
continuously updated one (ft(,x0)) can be bounded. Importantly the authors showed that rate at
which discrepancy accrues depends exponentially on the smallest eigenvalue of the NTK. Given that
the spectra of the Neural Tangent Kernel and the Fisher Information matrix coincide we can reason
about this discrepancy over training time in terms of the smallest and largest eigenvalues of the Fisher
Information matrix.
Lemma 4 ((Lee et al., 2019)). The discrepancy between glin(t) = f lint (x0) − y and g(t) =
ft(x

0)− y

eλmin(Ḡ0)ηt
∥∥glin(t)− g(t)

∥∥
2
≤(

η

∫ t

0

eλmin(Ḡ)0ηs
∥∥(Ḡs − Ḡ0

)∥∥ ∥∥glin(s)
∥∥

2
ds

)
e
∫ t
0 (η‖(Ḡs−Ḡ0)‖)ds (19)

where η is the learning rate.

Given the approximately inverse relation between the maximum and minimum eigenvalues of the
Fisher information matrix (Karakida et al., 2018), decreasing q∗ increases λmin(Ḡ0) and the the
solutions rapidly diverge. This implies that a low condition number λmax(Ḡ0)

λmax(Ḡ0)
may be undesirable,

and a degree of anisotropy is necessary for the Fisher Information matrix to be predictive of training
performance.
Finally, we compared manifold constrained networks with the Euclidean network, each evaluated with
two initial values of q∗. From these experiments we draw the conclusion that manifold constrained
networks are less sensitive to the initial strong smoothness, unlike their Euclidean counterparts.
Furthermore, we observe that the rate at which Stiefel and Oblique networks decrease training loss is
not dependent on their gradient smoothness, a result which is consistent with the recent analysis of
(Kohler et al., 2018).
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A APPENDIX

A.1 ADDITIONAL FIGURES
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Figure 4: Training performance for networks with q∗ = 1
2 and q∗ = 8. The behavior of the training

loss as well as the validation accuracy is consistent with the observations that for a large range
of parameters q∗ the manifold constrained networks are insensitive to initialization and gradient
smoothness.
The manifold constrained networks deal more favorably given a less smooth loss landscape.

A.2 BLOCK GERSHGORIN THEOREM

In Section 3, we considered a block diagonal approximation to the Fisher information matrix and
derived an upper bound on the spectral norm for all the blocks. Using the properties of the off-diagonal
blocks, we can get a more accurate estimate of the maximal eigenvalue of the Fisher information
might be. First, let us consider an arbitrarily partitioned matrix A ∈ RN×N , with spectrum λ(A)
The partitioning is done with respect to the set

π = {pj}Lj=0 (20)

with the elements of the set satisfying 0 < p1 < p2 < . . . < pL = N . Then each block of the matrix
Ai,j is a potentially rectangular matrix in R(pi−pi−1)×(pj−pj−1). We assume that Ai,i is self-adjoint
for all i.
Let us define a disk as

C(c, r) ,
{
λ : ‖c− λ‖ ≤ r

}
. (21)

The theorem as presented in (Tretter, 2008) shows that the eigenvalues of λ(A) are contained in a
union of Gershgorin disks defined as follows

λ(A) ⊂
L⋃
i=1

{
pi−pi−1⋃
k=1

C

λk(Aii),

L∑
j=1,j 6=i

smax(Ai,j)

} (22)

where the inner union is over a set disks for each eigenvalue of the block diagonal Ai,i while the
outer union is over the L blocks in A. The radius of the disk is constant for every eigenvalue in the ith
diagonal block Ai,i and is given by the sum of singular values of the off diagonal blocks. Therefore,
the largest eigenvalue of A lies in

λmax(A) ⊂
L⋃
i=1

C

λmax(Aii),

L∑
j=1,j 6=i

smax(Ai,j)

 (23)

A.3 DERIVATION OF THE EXPECTED SINGULAR VALUES

σmax
(
Gvec(W1),vec(Wβ)

)
= E

[
σmax

(
φ(h)1x0>)]⊗ E

[
σmax

(
Jhg>
h1 HgJ

hg

hβ

)]
(24)

=
√
Nβ |E [φ(h)]|

∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg>
h1 HgJ

hg

hβ

)]
(25)

≤
√
Nβ |E [φ(h)]|

∥∥E [x0
]∥∥

2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

])
(26)
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σmax
(
Gvec(W1),bβ

)
≤ E

[
σmax

(
x0> ⊗ I

)]
E
[
σmax

(
Jhg

hα
>HgJ

hg

hβ

)]
(27)

=
∥∥E [x0

]∥∥
2

(E
[
σmax Jhg>

h1 HgJ
hg

hβ

)]
(28)

≤
∥∥E [x0

]∥∥
2
E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(29)

σmax
(
Gb1,vec(Wβ)

)
≤ E

[
σmax

(
xβ−1> ⊗ I

)]
(30)

=
√
Nβ |E [φ(h)]|E

[
σmax

(
Jhg>
h1 HgJ

hg

hβ

)]
(31)

≤ |E [φ(h)]|E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(32)

σmax
(
Gb1,bβ

)
= E

[
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(
Jhg>
h1 HgJ

hg

hβ

)]
(33)

≤ E
[
σmax

(
Jhg>
h1

)]
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]
(34)

B APPENDIX

You may include other additional sections here.

B.1 BOUND THE DIAGONAL ELEMENT

σmax
(
Gb1,b1

)
≤ Σmax

(
Gb1,b1

)
(35)

, E [σmax (Hg)]E
[
σmax

(
Jhg

hβ

)]2
(36)

σmax
(
Gvec(W1),vec(W1)

)
≤ Σmax

(
Gvec(W1),vec(W1)

)
(37)

, σmax
(
Cov[x0,x0]

)
E [σmax (Hg)]E

[
σmax

(
Jhg

hβ

)]2
(38)

B.2 MONTECARLO ESTIMATE OF SPECTRAL RADIUS OF Hg FOR 10 WAY SOFTMAX
CLASSIFICATION

B.3 MANIFOLD OPTIMIZATION

The potentially non-convex constraint set constitutes a Riemannian manifold, when it is locally
isomorphic to Rn, differentiable and endowed with a suitable (Riemannian) metric, which allows us
to measure distances in the tangent space and consequentially also define distances on the manifold.
There is considerable freedom in choosing a Riemannian metric; here we consider the metric inherited
from the Euclidean embedding space which is defined as 〈W,W′〉 , Tr(W′>W). To optimize a
cost function with respect to parameters lying in a non-Euclidean manifold we must define a descent
direction. This is done by defining a manifold equivalent of the directional derivative. An intuitive
approach replaces the movement along a vector t with movement along a geodesic curve γ(t), which
lies in the manifold and connects two points W,W′ ∈M such that γ(0) = W, γ(1) = W′. The
derivative of an arbitrary smooth function f(γ(t)) with respect to t then defines a tangent vector for
each t.

Tangent vector ξW is a tangent vector at W if ξW satisfies γ(0) = W and

ξW ,
df(γ(t))

dt

∣∣∣∣
t=0

, γ′(0)f (39)

The set of all tangents toM at W is referred to as the tangent space toM at W and is denoted
by TWM. The geodesic importantly is then specified by a constant velocity curve γ′′(t) = 0 with
initial velocity ξW. To perform a gradient step, we must then move along ξW while respecting the
manifold constraint. This is achieved by applying the exponential map defined as ExpW(ξW) ,
γ(1), which moves W to another point W′ along the geodesic. While certain manifolds, such
as the Oblique manifold, have efficient closed-form exponential maps, for general Riemannian
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Figure 5: Distribution of λmax(Hg) as a function of q∗: In general, increasing the variance of the
distribution of hg does not result in a monotonic increase in the spectral radius of the Hessian of the
GLM layer. We plot the distribution of the maximum eigenvalues as a function of the variance of the
softmax layer obtained from factorizing 10, 000 random matrices.

manifolds, the computation of the exponential map involves numerical solution to a non-linear
ordinary differential equation (Absil et al., 2007). An efficient alternative to numerical integration
is given by an orthogonal projection onto the manifold. This projection is formally referred to as a
retraction RtW : TWM→M.

Finally, gradient methods using Polyak (heavy ball) momentum (e.g. ADAM (Kingma & Ba, 2014))
require the iterative updating of terms which naturally lie in the tangent space. The parallel translation
Tζ(ξ) : TM⊕

TM → TM generalizes vector composition from Euclidean to non-Euclidean
manifolds, by moving the tangent ξ along the geodesic with initial velocity ζ ∈ T and endpoint W′,
and then projecting the resulting vector onto the tangent space TW′M. As with the exponential map,
parallel transport T may require the solution of non-linear ordinary differential equation. To alleviate
the computational burden, we consider vector transport as an effective, projection-like solution to
the parallel translation problem. We overload the notation and also denote it as T , highlighting
the similar role that the two mappings share. Technically, the geodesics and consequentially the
exponential map, retraction as well as transport T depend on the choice of the Riemannian metric.
Putting the equations together the updating scheme for Riemannian stochastic gradient descent on
the manifold is

Wt+1 = ΠWt
(−ηt gradf) (40)

where Π is either the exponential map Exp or the retraction Rt and gradf is the gradient of the
function f(W) lying in the tangent space TWM.

B.3.1 OPTIMIZING OVER THE OBLIQUE MANIFOLD

(Cho & Lee, 2017) proposed an updating scheme for optimizing neural networks where the weights
of each layer are constrained to lie in the oblique manifold Ob(p, n). Using the fact that the
manifold itself is a product of p unit-norm spherical manifolds, they derived an efficient, closed-
form Riemannian gradient descent updating scheme. In particular the optimization simplifies to the
optimization over Ob(1, n) for each column wi∈{1,...,p} of W.

Oblique gradient The gradient gradf of the cost function f with respect to the weights lying in
Ob(1, n) is given as a projection of the Euclidean gradient Gradfonto the tangent at w

gradf = Gradf − (w>Gradf)w (41)
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Oblique exponential map The exponential map Expw moving w to w′ along a geodesic with
initial velocity ξw

Expw = ξw cos(‖w‖) +
w

‖w‖ sin(‖w‖) (42)

Oblique parallel translation The parallel translation T moves the tangent vector ξw along the
geodesic with initial velocity ζw

Tζw(ξw) = ξw− (43)
ζw
‖ζw‖

((1− cos(‖ζw‖)) + w sin(‖ζw‖))
ζw
‖ζw‖

>ξw

B.3.2 OPTIMIZING OVER THE STIEFEL MANIFOLD

Optimization over Stiefel manifolds in the context of neural networks has been studied by (Harandi &
Fernando, 2016; Wisdom et al., 2016; Vorontsov et al., 2017). Unlike (Wisdom et al., 2016; Vorontsov
et al., 2017) we propose the parametrization using the Euclidean metric, which results in a different
definition of vector transport.

Stiefel gradient The gradient gradf of the cost function f with respect to the weights lying in
St(p, n) is given as a projection of the Euclidean gradient Gradfonto the tangent at W (Edelman
et al., 1998; Absil et al., 2007)

gradf = (I−WW>)Gradf (44)

+
1

2
W
(
W>Gradf −Gradf>W

)
Stiefel retraction The retraction RtW(ξW) for the Stiefel manifold is given by the Q factor of the
QR decomposition (Absil et al., 2007).

RtW(ξW) = qf(W + ξW) (45)

Stiefel vector transport The vector transport T moves the tangent vector ξw along the geodesic
with initial velocity ζw for W ∈ St(p, n) endowed with the Euclidean metric.

Tζw(ξw) =
(
I−YY>

)
ξW +

1

2
Y
(
Y>ξW − ξW>Y

)
(46)

where Y , RtW(ζW). It is easy to see that the transport T consists of a retraction of tangent ζW
followed by the orthogonal projection of ηW at RtW(ζW). The projection is the same as the one
mapping P : Gradf → gradf in equation 44.

B.3.3 OPTIMIZING OVER NON-COMPACT MANIFOLDS

The critical weight initialization yielding a singular spectrum of the Jacobian tightly concentrating
on 1 implies that a substantial fraction of the pre-activations lie in expectation in the linear regime
of the squashing nonlinearity and as a consequence the network acts quasi-linearly. To relax this
constraint during training we allow the scales of the manifold constrained weights to vary. We chose
to represent the weights as a product of a scaling diagonal matrix and a matrix belonging to the
manifold. Then the optimization of each layer consists in the optimization of the two variables in the
product. In this work we only consider isotropic scalings, but the method generalizes easily to the use
of any invertible square matrix.

B.4 FIM AND NTK HAVE THE SAME SPECTRUM

The empirical Neural Tangent Kernel (NTK) Recall the definition in equation 18:

Θ̂t,i,j , Jhg

x0Jhg>
x0 (47)

which gives a Ng|D| by Ng|D| kernel matrix. By comparison the empirical Fisher Information
matrix with a Gaussian likelihood is ∑

i=1|D|

Jh
g>
θ ∇2

hgLJh
g

θ (48)
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To see that the spectra of these two coincide consider the third order tensor underlying both Jhg

h1i for
i ∈ 1 . . . |D|, additionally consider and unfolding A with dimensions |θ| by Ng|D|; i.e. we construct
a matrix with dimension of number of parameters by number of outputs times number of data points.
Then

Ḡ = A>A (49)

Θ̂ = AA> (50)
(51)

and their spectra trivially coincide.

Remark. It is interesting to note that when the Fisher information metric and NTK are applied to a
regression problem with Gaussian noise then the relation between admits the following interpretation.
For L = 1

2 ‖ŷ − y‖ the Fisher information matrix Ḡ is the Riemannian metric on the tangent bundle
and Θ̂ is the Riemannian metric on the co-tangent bundle.
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