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ABSTRACT

Deep Infomax (DIM) is an unsupervised representation learning framework by
maximizing the mutual information between the inputs and the outputs of an en-
coder, while probabilistic constraints are imposed on the outputs. In this paper, we
propose Supervised Deep InfoMax (SDIM), which introduces supervised proba-
bilistic constraints to the encoder outputs. The supervised probabilistic constraints
are equivalent to a generative classifier on high-level data representations, where
class conditional log-likelihoods of samples can be evaluated. Unlike other works
building generative classifiers with conditional generative models, SDIMs scale
on complex datasets, and can achieve comparable performance with discrimina-
tive counterparts. With SDIM, we could perform classification with rejection.
Instead of always reporting a class label, SDIM only makes predictions when test
samples’ largest logits surpass some pre-chosen thresholds, otherwise they will be
deemed as out of the data distributions, and be rejected. Our experiments show
that SDIM with rejection policy can effectively reject illegal inputs including out-
of-distribution samples and adversarial examples.

1 INTRODUCTION

Non-robustness of neural network models emerges as a pressing concern since they are observed
to be vulnerable to adversarial examples (Szegedy et al., 2013; Goodfellow et al., 2014). Many
attack methods have been developed to find imperceptible perturbations to fool the target classi-
fiers (Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017; Brendel et al., 2017). Meanwhile,
many defense schemes have also been proposed to improve the robustnesses of the target mod-
els (Goodfellow et al., 2014; Tramèr et al., 2017; Madry et al., 2017; Samangouei et al., 2018).

An important fact about these works is that they focus on discriminative classifiers, which directly
model the conditional probabilities of labels given samples. Another promising direction, which
is almost neglected so far, is to explore robustness of generative classifiers (Ng & Jordan, 2002).
A generative classifier explicitly model conditional distributions of inputs given the class labels.
During inference, it evaluates all the class conditional likelihoods of the test input, and outputs the
class label corresponding to the maximum. Conditional generative models are powerful and natu-
ral choices to model the class conditional distributions, but they suffer from two big problems: (1)
it is hard to scale generative classifiers on high-dimensional tasks, like natural images classifica-
tion, with comparable performance to the discriminative counterparts. Though generative classifiers
have shown promising results of adversarial robustness, they hardly achieve acceptable classifica-
tion performance even on CIFAR10 (Li et al., 2018; Schott et al., 2018; Fetaya et al., 2019). (2)
The behaviors of likelihood-based generative models can be counter-intuitive and brittle. They may
assign surprisingly higher likelihoods to out-of-distribution (OoD) samples (Nalisnick et al., 2018;
Choi & Jang, 2018). Fetaya et al. (2019) discuss the issues of likelihood as a metric for density
modeling, which may be the reason of non-robust classification, e.g. OoD samples detection.

In this paper, we propose supervised deep infomax (SDIM) by introducing supervised statistical
constraints into deep infomax (DIM, Hjelm et al. (2018)), an unsupervised learning framework by
maximizing the mutual information between representations and data. SDIM is trained by opti-
mizing two objectives: (1) maximizing the mutual information (MI) between the inputs and the
high-level data representations from encoder; (2) ensuring that the representations satisfy the super-
vised statistical constraints. The supervised statistical constraints can be interpreted as a generative
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classifier on high-level data representations giving up the full generative process. Unlike full gener-
ative models making implicit manifold assumptions, the supervised statistical constraints of SDIM
serve as explicit enforcement of manifold assumption: data representations (low-dimensional) are
trained to form clusters corresponding to their class labels. With SDIM, we could perform classifica-
tion with rejection (Nalisnick et al., 2019; Geifman & El-Yaniv, 2017). SDIMs reject illegal inputs
based on off-manifold conjecture (Samangouei et al., 2018; Gu & Rigazio, 2014), where illegal
inputs, e.g. adversarial examples, lie far away from the data manifold. Samples whose class con-
ditionals are smaller than the pre-chosen thresholds will be deemed as off-manifold, and prediction
requests on them will be rejected. The contributions of this paper are :

• We propose Supervised Deep Infomax (SDIM), an end-to-end framework whose proba-
bilistic constraints are equivalent to a generative classifier. SDIMs can achieve compara-
ble classification performance with similar discrinimative counterparts at the cost of small
over-parameterization.

• We propose a simple but novel rejection policy based on off-manifold conjecture: SDIM
outputs a class label only if the test sample’s largest class conditional surpasses the pre-
chosen class threshold, otherwise outputs rejection. The choice of thresholds relies only on
training set, and takes no additional computations.

• Experiments show that SDIM with rejection policy can effectively reject illegal inputs,
including OoD samples and adversarial examples generated by a comprehensive group of
adversarial attacks.

2 BACKGROUND: DEEP INFOMAX

Deep InfoMax (DIM, Hjelm et al. (2018)) is an unsupervised representation learning framework by
maximizing the mutual information (MI) of the inputs and outputs of an encoder. The computation
of MI takes only input-output pairs with the deep neural networks based esimator MINE (Belghazi
et al., 2018).

Let Eφ be an encoder parameterized by φ, working on the training set X = {xi}Ni=1, and generating
output set Y = {E(xi)}Ni=1. DIM is trained to find the set of parameters φ such that: (1) the mutual
information I(X,Y ) is maximized over sample sets X and Y . (2) the representations, depending
on the potential downstream tasks, match some prior distribution. Denote J and M the joint and
product of marginals of random variables X , Y respectively. MINE estimates a lower-bound of MI
with Donsker-Varadhan (Donsker & Varadhan, 1983) representation of KL-divergence:

I(X,Y ) = DKL(J||M) ≥ EJ[Tω(x, y)]− logEM[e
Tω(x,y)] (1)

where Tω(x, y) ∈ R is a family of functions with parameters ω represented by a neural network.
Since in representation learning we are more interested in maximizing MI, than its exact value, non-
KL divergences are also favorable candidates. We can get a family of variational lower-bounds using
f -divergence representations (Nguyen et al., 2010):

If (X,Y ) ≥ EJ[Tω(x, y)]− EM[f
∗(Tω(x, y))] (2)

where f∗ is the Fenchel conjugate of a specific divergence f . For KL-divergence, f∗(t) = e(t−1). A
full f∗ list is provided in Tab. 6 of Nowozin et al. (2016). Noise-Contrastive Estimation (Gutmann
& Hyvärinen, 2010) can also be used as lower-bound of MI in “infoNCE” (Oord et al., 2018) .

3 SUPERVISED DEEP INFOMAX

The focus of Supervised Deep InfoMax (SDIM) is on introducing supervision to probabilistic con-
straints of DIM for (generative) classification. We choose to maximize the local MI, which has
shown to be more effective in classification tasks than maximizing global MI (Hjelm et al., 2018).
Equivalently, we minimize JMI:

JMI = −
1

M2

M2∑
i=1

Ĩ(L(i)
φ (x), Eφ(x)) (3)

where Lφ(x) is a local M ×M feature map of x extracted from some intermediate layer of encoder
E, and Ĩ can be any possible MI low-bounds.
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3.1 EXPLICIT ENFORCEMENT OF MANIFOLD ASSUMPTION

By adopting a generative approach p(x, y) = p(y)p(x|y), we assume that the data follows the man-
ifold assumption: the (high-dimensional) data lies on low-dimensional manifolds corresponding to
their class labels. Denote x̃ the compact representation generated with encoder Eφ(x). In order to
explicitly enforce the manifold assumption , we admit the existence of data manifold in the repre-
sentation space. Assume that y is a discrete random variable representing class labels, and p(x̃|y) is
the real class conditional distribution of the data manifold given y. Let pθ(x̃|y) be the class condi-
tionals we model parameterized with θ. We approximate p(x̃|y) by minimizing the KL-divergence
between p(x̃|y) and our model pθ(x̃|y), which is given by:

DKL

(
p(x̃|y)||pθ(x̃|y)

)
= Ex̃,y∼p(x̃,y)[log p(x̃|y)− log pθ(x̃|y)]
= Ex̃,y∼p(x̃,y)[log p(x̃|y)]− Ex̃,y∼p(x̃,y)[log pθ(x̃|y)]

(4)

where the first item on RHS is a constant independent of the model parameters θ. Eq. 4 equals to
maximize the expectation Ex̃,y∼p(x̃,y)[log pθ(x̃|y)].
In practice, we minimize the following loss JNLL, equivalent to empicically maximize the above
expectation over {x̃i = Eφ(xi), yi}Ni=1:

JNLL = −Ex̃,y∼p(x̃,y)[log pθ(x̃|y)] ≈ −
1

N

N∑
i=1

log pθ(x̃i|yi) (5)

Besides the introduction of supervision, SDIM differs from DIM in its way of enforcing the statisti-
cal constraints: DIM use adversarial learning (Makhzani et al., 2015) to push the representations to
the desired priors, while SDIM directly maximizes the parameterized class conditional probability.

Maximize Likelihood Margins Since a generative classifier, at inference, decides which class a
test input x belongs to according to its class conditional probability. On one hand, we maximize
samples’ true class conditional probabilities (classes they belong to) using JNLL; On the other hand,
we also hope that samples’ false class conditional probabilities (classes they do not belong to) can
be minimized. This is assured by the following likelihood margin loss JLM:

JLM =
1

N
· 1

C − 1

N∑
i=1

C∑
c=1,c 6=yi

max(log p(x̃i|y = c) +K − log p(x̃i|y = yi), 0)
2 (6)

where K is a positive constant to control the margin. For each encoder output x̃i, the C − 1 true-
false class conditional gaps are squared1, which quadratically increases the penalties when the gap
becomes large, then are averaged.

Putting all these together, the complete loss function we minimize is:
JSDIM = α · JMI + β · JNLL + γ · JLM (7)

Parameterization of Class Conditional Probability Each of the class conditional distribution is
represented as an isotropic Gaussian. So the generative classifier is simply a embedding layer with
C entries, and each entry contains the trainable mean and variance of a Gaussian. This minimized
parameterization encourages the encoder to learn simple and stable low-dimensional representations
that can be easily explained by even unimodal distributions. Considering that we maximize the true
class conditional probability, and minimize the false class conditional probability at the same time,
we do not choose conditional normalizing flows, since the parameters are shared across class labels,
and the training can be very difficult. In Schott et al. (2018), each class conditional probability is rep-
resented with a VAE, thus scaling to complex datasets with huge number of classes, e.g. ImageNet,
is almost impossible.

3.2 DECISION FUNCTION WITH REJECTION

A generative approach models the class-conditional distributions p(x|y), as well as the class priors
p(y). For classification, we compute the posterior probabilities p(y|x) through Bayes’ rule:

p(y|x) = p(x|y)p(y)
p(x)

∝ p(x|y)p(y)

1Using squared margin, we achieve slightly better results in our experiments than simple margin.
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The prior p(y) can be computed from the training set, or we simply use uniform class prior for all
class labels by default. Then the prediction of test sample x∗ from posteriors is:

y∗ = argmax
c=[1...C]

log p(x∗|y = c). (8)

The drawback of the above decision function is that it always gives a prediction even for illegal
inputs. Instead of simply outputting the class label that maximizes class conditional probability of
x∗, we set a threshold for each class conditional probability, and define our decision function with
rejection to be: {

y∗, if log p(x∗|y∗) ≥ δy∗
Rejection, otherwise

(9)

The model gives a rejection when log p(x∗|y∗) is smaller than the threshold δy∗ . Note that here we
can use p(x∗|y∗) and p(x̃∗|y∗) interchangeably. This is also known as selective classification (Geif-
man & El-Yaniv, 2017) or classification with reject option (Nalisnick et al., 2019)(See Supp. A)

4 RELATED WORKS

Robustness of Likelihood-based Generative Models Though likelihood-based generative mod-
els have achieved great success in samples synthesis, the behaviors of their likelihoods can be
counter-intuitive. Flow-based models (Kingma & Dhariwal, 2018) and as well as VAEs (Kingma
& Welling, 2013), surprisingly assign even higher likelihoods to out-of-distribution samples than
the samples in the training set (Nalisnick et al., 2018; Choi & Jang, 2018). Pixel-level statistical
analyses in Nalisnick et al. (2018) show that OoD dataset may “sit inside of” the in-distribution
dataset (i.e. with roughly the same mean but smaller variance).

Off-Manifold Conjecture Grosse et al. (2017) observe that adversarial examples are outside the
training distribution via statistical testing.

DefenseGAN (Samangouei et al., 2018) models real data distribution with the generator G of GAN.
At inference, instead of feeding the test input x to the target classifier directly, it searches for the
“closest” sampleG(z∗) from generator distribution to x as the final input to the classifier. It ensures
that the classifier only make predictions on the data manifold represented by the generator, ruling out
the potential adversarial perturbations in x. PixelDefend (Song et al., 2017) takes a similar approach
which uses likelihood-based generative model - PixelCNN to model the data distribution.

Both DefenseGAN and PixelDefend are additionally trained as peripheral defense schemes agnos-
tic to the target classifiers. Training generative models on complex datasets notoriously takes huge
amount of computational resources (Brock et al., 2018). In contrast, the training of SDIM is com-
putationally similar to its discriminative counterpart. The verification of whether inputs are off-
manifold is a built-in property of the SDIM generative classifier. The class conditionals of SDIM
are modeled on low-dimensional data representations with simple Gaussians, which is much easier,
and incurs very small computations.

5 EXPERIMENTS

Datasets We evaluate the effectiveness of the rejection policy of SDIM on four image datasets:
MNIST, FashionMNIST (both resized to 32×32 from 28×28); and CIFAR10, SVHN. See App. B.1
for details of data processing. For out-of-distribution samples detection, we use the dataset pairs on
which likelihood-based generative models fail (Nalisnick et al., 2018; Choi & Jang, 2018): Fash-
ionMNIST (in)-MNIST (out) and CIFAR10 (in)-SVHN (out). Adversarial examples detection are
evaluated on MNIST and CIFAR10.

Choice of thresholds It is natural that choosing thresholds based on what the model knows, i.e.
training set, and can reject what the model does not know, i.e. possible illegal inputs. We set one
threshold for each class conditional. For each class conditional probability, we choose to evaluate on
two different thresholds: 1st and 2nd percentiles of class conditional log-likelihoods of the correctly
classified training samples. Compared to the detection methods proposed in Li et al. (2018), our
choice of thresholds is much simpler, and takes no additional computations.
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Models A typical SDIM instance consists of three networks: an encoder, parameterized by φ,
which outputs a d-dimensional representation; mutual information evaluation networks, i.e. Tω in
Eqn. (1) and Eqn. (2); and C-way class conditional embedding layer, parameterized by θ, with each
entry a 2d-dimensional vector. We set d = 64 in all our experiments.

For encoder of SDIM, we use ResNet (He et al., 2016) on 32× 32 with a stack of 8n+2 layers, and
4 filter sizes {32, 64, 128, 256}. The architecture is summarized as:

output map size 32× 32 16× 16 8× 8 4× 4

# layers 1 + 2n 2n 2n 2n
# filters 32 64 128 256

The last layer of encoder is a d-way fully-connected layer. To construct a discriminative coun-
terpart, we simply set the output size of the encoder’s last layer to C for classification. We use
ResNet10 (n = 1) on MNIST, FashionMNIST, and ResNet26 (n = 3) on CIFAR10, SVHN.

5.1 EVALUATION ON CLEAN DATA

We report the classification accuracies (see Tab. 1) of SDIMs and the discriminative counterparts on
clean test sets . Results show that SDIMs achieve the same level of accuracy as the discriminative
counterparts with slightly increased number of parameters (17% increase for ResNet10, and 5%
increase for ResNet26). We are aware of the existence of better results reported on these datasets
using more complex models (Huang et al., 2017; Han et al., 2017) or automatically designed archi-
tectures (Cai et al., 2018), but pushing the state-of-the-arts is not the focus of this paper.

Model # Parameters MNIST FashionMNIST CIFAR10 SVHN

Disc. (ResNet10, n = 1) 1.25M 99.42% 94.25% - -
SDIM (ResNet10, n = 1) 1.46M ( 17% ↑) 99.55% 94.58% - -

Disc. (ResNet26, (n = 3)) 4.39M - - 92.35% 95.96%
SDIM (ResNet26, n = 3) 4.60M ( 5% ↑) - - 92.53% 95.74%

Table 1: Clean test accuracies of SDIMs and the discriminative counterparts.

Is Fully Generative Model Necessary for Generative Classification? In the evaluations of Li
et al. (2018) and Schott et al. (2018), both model class conditional probability with VAE (Kingma
& Welling, 2013; Rezende et al., 2014), and achieve acceptable accuracies (> 98%) on MNIST.
However, it is hard for fully conditional generative models to achieve satisfactory classification ac-
curacies even on CIFAR10. On CIFAR10, methods in Li et al. (2018) achieve only< 50% accuracy.
They also point out that the classification accuracy of a conditional PixelCNN++ (Salimans et al.,
2017) is only 72.4%. The test accuracy of ABS in (Schott et al., 2018) is only 54%. In contrast,
SDIM could achieve almost the same performance with similar discriminative classifier by giving
up the full generative process, and building generative classifier on high-level representations. Li
et al. (2018) improves the accuracy to 92% by feeding the features learned by powerful discrimi-
native classifier-VGG16 (Simonyan & Zisserman, 2014) to their generative classifiers, which also
suggests that modeling likelihood on high-level representation (features) is more favorable for gener-
ative classification than pixel-level likelihood of fully generative classifiers. For classification tasks,
discovering discriminative features is much more important than reconstructing the all the image
pixels. Thus performing generative classification with full generative models may not be the right
choice.

Decision with Rejection We also investigate the implications of the proposed decision function
with rejection under different thresholds. The results in Tab. 2 show that choosing a higher percentile
as threshold will reject more prediction requests. At the same time, the classification accuracies of
SDIM on the left test sets become increasingly better. This demonstrate that out rejection policy
tend to reject the ones on which SDIMs make wrong predictions.
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Dataset Original Acc. 1st percentile 2nd percentile
Acc. Left Rej. Rate Acc. Left Rej. Rate

MNIST 99.55% 99.95% 3.02% 99.97% 4.00%
FashionMNIST 94.58% 96.45% 4.63% 96.94% 6.60%
CIFAR10 92.53% 96.18% 8.90% 96.60% 10.86%
SVHN 95.74% 97.43% 3.99% 98.00% 6.36%

Table 2: Classification performances of SDIMs using the proposed decision function with rejection.
We report the rejection rates of the test sets and the accuracies on the left test sets for each threshold.

5.2 OUT-OF-DISTRIBUTION SAMPLES DETECTION

Class-wise OoD detections are performed, and mean detection rates over all in-distribution classes
are reported in Tab. 3. For each in-distribution class c, we evaluate the log-likelihoods of the whole
OoD dataset. Samples whose log-likelihoods are lower the class threshold δc will be detected as
OoD samples. Same evaluations are applied on conditional Glows with 10th percentile thresholds,
but the results are not good. The results are clear and confirm that SDIMs, generative classifiers on
high-level representations, are more effective on classification tasks than fully conditional generative
models on raw pixels. Note that fully generative models including VAE used in Li et al. (2018);
Schott et al. (2018) fail on OoD detection. The stark difference between SDIM and full generative
models (flows or VAEs) is that SDIM models samples’ likelihoods in the high-level representation
spaces, while generative models evaluate directly on the raw pixels.

Model FashionMNIST(in)-MNIST(out) CIFAR10(in)-SVHN(out)

SDIM(1st Per.) 99.36% 94.24 %
SDIM(2nd Per.) 99.64% 95.81%
Glow(10th Per.) 3.53% 0.02%

Table 3: Mean detection rates of SDIMs and Glows with different thresholds on OoD detection.

5.3 ROBUSTNESS AGAINST ADVERSARIAL EXAMPLES AND DETECTION

We comprehensively evaluate the robustness of SDIMs against various attacks:

• gradient-based attacks: one-step gradient attack FGSM (Goodfellow et al., 2014), its iter-
ative variant projected gradient descent (PGD, Kurakin et al. (2016); Madry et al. (2017)),
CW-L2 attack (Carlini & Wagner, 2017), deepfool (Moosavi-Dezfooli et al., 2016).

• score-based attacks: local search attack (Narodytska & Kasiviswanathan, 2016).

• decision-based attack: boundary attack (Brendel et al., 2017).

Attacks Using Cross-Entropy We find that SDIMs are much more robust to gradient-based at-
tacks using cross-entropy, e.g. FGSM and PGD, since the gradients numerically vanish as a side
effect of the likelihood margin loss JLM of SDIM. This phenomenon is similar to some defences
that try to hinder generations of adversarial examples by masking the gradients on inputs. While full
generative classifiers in Li et al. (2018) still suffer from these attacks. See Supp. C.1 for detailed
results.

Conservative Adversarial Examples Adversarial attacks aim to find the minimal perturbations
that sufficiently change the classification labels, i.e. flip other logits to be the largest one. We show
case examples on MNIST generated by untargeted attacks and their logits in Tab. 4 (See Supp. C.2
for examples of CIFAR10). Though these attacks successfully flip the logits, they are designed
to be conservative to avoid more distortions to the original images. As a result, the largest logits
of adversarial examples are still much lower than the thresholds, so they can be detected by our
rejection policy. We find that our rejection policy performs perfectly on MNIST, but fails to detect
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all adversarial examples on CIFAR10 except for Boundary attack (See Tab. 5). It seems to be a
well-known observation that models trained on CIFAR10 are more vulnerable than one trained on
MNIST. Gilmer et al. (2018) connects this observation to the generalization of models. They found
that many test samples, though correctly classified, are close to the misclassfied samples, which
implies the existence of adversarial examples. If a model has higher error rate, it would take smaller
perturbations to move correctly classified samples to misclassified areas.

Samples Original DeepFool CW-L2 Boundary LocalSearch

1st Per. 477.6 465.2 481.1 477.7 465.4 407.2 474.5 470.4 472.3 463.5
Original 482.5 -644.5 -440.8 -378.8 -1082.5 -409.8 -473.8 -850.0 -415.0 -699.2

DeepFool 243.4 -306.4 -172.4 -394.1 -538.3 -181.0 243.5 -944.2 -107.7 -524.1
CW-L2 175.9 -244.9 -486.4 -287.5 -500.8 -257.6 -409.5 -233.5 -174.3 176.5
Boundary -58.5 11.5 205.7 -149.7 -415.1 -308.0 -356.3 205.8 -223.3 -250.3
LocalSearch 180.4 -225.3 -481.9 -281.3 -498.9 -223.2 -378.8 -257.9 -143.1 189.9

Table 4: Full logits of the adversarial examples generated with different attacks. The original image
is the fist sample of class 0 of MNIST test set. The first row gives the 1st percentile thresholds, and
the second row shows the logits of the original image. The largest logits are marked in bold.

Attacks MNIST CIFAR10
1st Per. 2nd Per. 1st Per. 2nd Per.

DeepFool 98.00% 98.60% 61.10% 64.30%
Boundary 100% 100% 100% 100%
LocalSearch 99.90% 100% 88.80% 93.10%

Table 5: Detection rates of our rejection policies. We perform untargeted adversarial evaluation on
the first 1000 images of test sets. CW-L2 is not involved here, but carefully investigated below.

Adversarial examples with more confidence Based on the observations above, a natural question
we should ask is: can we generate adversarial examples with not only successfully flipped logits,
but also the largest logit larger than some threshold value? Unlike the conservativeness on paying
more distortions of other attacks, CW attack allows us to control the gap between largest and second
largest logits with some confidence value κ.

We perform targeted CW attacks with confidences κ = {0, 500, 1000} (Tab. 6). We find that in-
creasing the confidences help increasing the largest logits of adversarial examples to some extent,
but may lead to failures of generation. The sensitivity to confidence values is also different given
different targets. The success rates of generating adversarial examples monotonically decreases with
the confidences increasing (Tab. 7). Note that on discriminative counterparts, CW-L2 with the same
settings easily achieves 100% success rates. This means that explicitly forcing data representations
to form clusters with maximum margins between them help increase average distances between
normal samples and the nearest misclassified areas, thus increase the hardness of finding minimal
adversarial perturbations . In this case, it takes a large enough adversarial perturbation to move a
sample from its cluster to the other. Meanwhile, detection rates remain satisfactory on MNIST, but
obviously decline on CIFAR10. For victim generative classifiers in (Li et al., 2018) under CW-L2

attack, the detection rates of adversarial examples using the proposed detection methods can be
> 95% on MNIST, but fall < 50% on even CIFAR10-binary (their models don’t scale on CIFAR10,
and CW-L2 with non-zero confidences are also not evaluated).

Discussions on off-manifold conjecture Gilmer et al. (2018) challenges whether the off-manifold
conjecture holds in general. They experiment on synthetic dataset-two high-dimensional concentric
spheres with theoretical analyses, showing that even for a trained classifier with close to zero test er-
ror, there may be a constant fraction of the data manifold misclassified, which indicates the existence
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1st Per. 477.6 465.2 481.1 477.7 465.4 407.2 474.5 470.4 472.3 463.5

κ = 0 482.5 105.0 283.9 189.4 -76.8 230.4 151.5 -9.5 138.6 137.5

κ = 500 482.5 - 448.5 395.2 80.4 406.0 378.3 293.3 - 341.4

κ = 1000 482.5 - 435.8 480.0 259.1 328.9 448.7 355.2 - -

Table 6: Adversarial examples generated with targeted CW with different confidences. The original
image is the fist sample of class 0. The first row gives the 1st percentile thresholds. Below the
images are the logits corresponding to the given targets. “-” denotes failure of generation.

Attacks MNIST CIFAR10
1st Per. 2nd Per. success rate 1st Per. 2nd Per. success rate

CW-L2(κ = 0) 100% 100% 84.65% 93.93% 94.80% 70.84%
CW-L2(κ = 500) 99.78% 99.78% 76.61% 76.55% 84.07% 61.26%
CW-L2(κ = 1000) 90.24% 95.98% 45.56% 47.86% 75.13% 48.86%

Table 7: Targeted adversarial evaluations results of our rejection policies on the first 1000 test sam-
ples. We report the detection rates with different thresholds and success rates of generating adver-
sarial examples.

of adversarial examples within the manifold. But there are still several concerns to be addressed:
First, as also pointed out by the authors, the manifolds in natural datasets can be quite complex than
that of simple synthesized dataset. Fetaya et al. (2019) draws similar conclusion from analyses on
synthesized data with particular geometry. So the big concern is whether the conclusions in Gilmer
et al. (2018); Fetaya et al. (2019) still hold for the manifolds in natural datasets. A practical ob-
stacle to verify this conclusion is that works modeling the full generative processes are based on
manifold assumption, but provide no explicit manifolds for analytical analyses like Gilmer et al.
(2018); Fetaya et al. (2019). While SDIM enables explicit and customized manifolds on high-level
data representations via probabilistic constraints, thus enables analytical analyses. In this paper,
samples of different classes are trained to form isotropic Gaussians corresponding to their classes in
representation space (other choices are possible). The relation between the adversarial robustness
and the forms and dimensionalities of data manifolds is to be explored. Second, in their experi-
ments, all models evaluated are discriminative classifiers. Considering the recent promising results
of generative classifiers against adversarial examples, would using generative classifiers lead to dif-
ferent results? One thing making us feel optimistic is that even though the existence of adversarial
examples is inevitable, Gilmer et al. (2018) suggest that adversarial robustness can be improved by
minimizing the test errors, which is also supported by our experimental differences on MNIST and
CIFAR10.

6 CONCLUSIONS

We introduce supervised probabilistic constraints to DIM. Giving up the full generative process,
SDIMs are equivalent to generative classifiers on high-level data representations. Unlike full condi-
tional generative models which achieve poor classification performance even on CIFAR10, SDIMs
attain comparable performance as the discriminative counterparts on complex datasets. The training
of SDIM is also computationally similar to discriminative classifiers, and does not require pro-
hibitive computational resources. Our proposed rejection policy based on off-manifold conjecture,
a built-in property of SDIM, can effectively reject illegal inputs including OoD samples and ad-
versarial examples. We demonstrate that likelihoods modeled on high-level data representations,
rather than raw pixel intensities, are more robust on downstream tasks without the requirement of
generating real samples.
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A CLASSIFICATION WITH REJECTION

A very related work to our paper is (Nalisnick et al., 2019), which propose a hybrid model modeling
distribution of features p(features) and predictive distribution p(targets|features) at the same time.
Normalizing flow is used to learn invertible features as inputs of discriminative model, i.e. predictive
distribution, and provides evaluation of features x∗. Inputs out of the training data distribution are
rejected by setting a threshold for p(x∗). For SDIM, illagel inputs are rejected by setting thresholds
for each of the class conditional. The class conditionals are modeled on the data representations from
encoder regularized by MI loss JMI. The hybrid model in Nalisnick et al. (2019) can successfully
distinguish in-distribution dataset and OoD dataset. While SDIM reject illegal inputs including OoD
dataset samples and adversarial examples with more fine-grained class conditionals.

Geifman & El-Yaniv (2017) propose a selection method to perform selective classification with
desired risk level given a trained model, but they focus on discriminative models.

B EVALUATION DETAILS

B.1 DATA PROCESSING

• MNIST, FashionMNIST: All images are resized to 32 × 32 from 28 × 28. We scale the
images pixels to [0, 1], and normalization is not used for fair comparisons with the baselines
in (Li et al., 2018).

• CIFAR10, SVHN: We follow the simple data augmentation in (He et al., 2016) for training:
4 pixels are padded on each side, and a 32× 32 crop is randomly sampled from the padded
image or its horizontal flip. For testing, we only evaluate the single view of the original
32× 32 image. All image pixels are also scaled to [0, 1].

No other data augmentations or processings are used except for the explicitly listed above.

B.2 MODELS AND TRAINING SETTINGS

MI computation The local MI JMI is computed between the 4× 4 feature maps and the encoder
outputs. We use lower-bound of Jensen-Shannon divergence to estimate the MI IJSD(X,Y ), and
leave other lower-bounds unexplored. In practice, we find using other bounds would take more
computational resources. However, we think better results can be expected if using these bounds
according to the experimental results reported in Hjelm et al. (2018).

MI evaluation network Following Hjelm et al. (2018), we parameterize the MI evaluation net-
work Tω as a 1× 1 convolutional neural network with architecture:

Operation Size Activation

Input→ 1× 1 conv 256 ReLU
1× 1 conv 256 ReLU
1× 1 1

Table 8: Local MI evaluation concat-and-convolve network architecture.

The input of Tω is positive or negative pair of local feature map Lφ(x) and encoder output Eφ(x).
The positive pairs, samples from the joint distribution, are constructed by concat the encoder output
Eφ(x) and the corresponding feature map Lφ(x) of the given batch. The negative pairs, samples
from product of marginals, can be constructed by Eφ(x) and shuffled Lφ(x) along the batch-axis.

Optimization We set α = β = γ = 1 in our experiments. The constant K in the likelihood
margin loss JLM is 10. All models are trained 500 epochs, and we always save the checkpoints
reporting the minimum ongoing training losses for evaluation. We use optimizer Adam (Kingma &
Ba, 2014) with default learning rate 0.001.
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C ADDITIONAL RESULTS OF ADVERSARIAL EVALUATIONS

C.1 ROBUSTNESS AGAINST ATTACKS USING CROSS-ENTROPY

We make comparisons between SDIM and GBZ (Li et al., 2018), which consistently performs best
in Deep Bayes.

FGSM and PGD-L∞ The results in Fig 1 and Fig 2 show that SDIM performs consistently better
than the baseline. We find that increasing the distortion factor ε of FGSM has no influences of
SDIM’s accuracy, and the adversarial examples keep the same. Recall that the class conditionals
are optimized to keep a considerable margin. Before evaluating the cross entropy loss, softmax
is applied on the class conditionals log p(x|c) to generate a even sharper distribution. So for the
samples that are correctly classified, their losses are numerically zeros, and the gradient on inputs
∇Jx(x, y) are also numerically zeros. The PGD-L∞ we use here is the randomized version (Madry
et al., 2017)2, which adds a small random perturbation before the iterative loop. The randomness is
originally introduced to generate different adversarial examples for adversarial training, but here it
breaks the zero loss so that the gradient on inputs ∇Jx(x, y) will not be zeros in the loop. FGSM
can also be randomized (Tramèr et al., 2017), which can be seen as a one-step variant of randomized
PGD.

This phenomena is similar to what some defenses using gradient obfuscation want to achieve. De-
fensive distillation (Carlini & Wagner, 2016) masks the gradients of cross-entropy by increasing the
temperature of softmax. But for CW attacks, which do not use cross-entropy, and operate on logits
directly, this could be ineffective.

Figure 1: The adversarial classification accuracies of SDIM and GBZ on MNIST under FGSM-L∞
and PGD-L∞ attacks. On the right are the generated adversarial examples with ε from 0 to 0.5.

Figure 2: The adversarial classification accuracies of SDIM and GBZ on CIFAR10 under FGSM-
L∞ and PGD-L∞ attacks. On the right are the generated adversarial examples with ε from 0 to
0.5.

2We use cleverhans in this evaluation. There are two types of implementations in cleverhans. By default
rand init is set to True, the PGD is randomized. If rand init is False, then the implementation is Basic Iterative
Method (Kurakin et al., 2016)
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C.2 ADVERSARIAL EXAMPLES OF CIFAR10

Samples original deepfool cw-L2 boundary JSMA

1st Per. 408.6 396.6 375.9 378.4 363.3 376.7 409.4 383.0 397.1 412.2
original 424.2 -386.1 -379.2 -319.8 -370.2 -357.2 -356.9 -259.3 -291.9 -239.0

DeepFool 153.4 -391.6 -344.1 -262.6 -376.1 -345.9 215.1 -306.5 -244.3 -326.4
CW-L2 129.9 -555.3 235.4 -353.1 -471.6 -400.3 -342.7 -367.2 -486.4 -326.4
Boundary 213.9 -417.4 -458.3 -548.0 -587.4 -236.3 214.0 -1246.1 -171.2 -555.6
LocalSearch 165.2 -485.7 190.9 -325.6 -439.0 -379.0 -318.8 -327.5 -357.9 -272.3

Table 9: Full logits of adversarial examples generated with different attacks. The original image is
the fist sample of class 0 of CIFAR10 test set. The first row gives the 1st percentile thresholds, and
the second row shows the logits of the original image. The largest logits are marked in bold.
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