Under review as a conference paper at ICLR 2020

META-DATASET: A DATASET OF DATASETS FOR
LEARNING TO LEARN FROM FEW EXAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Few-shot classification refers to learning a classifier for new classes given only a
few examples. While a plethora of models have emerged to tackle it, we find the
procedure and datasets that are used to assess their progress lacking. To address
this limitation, we propose META-DATASET: a new benchmark for training and
evaluating models that is large-scale, consists of diverse datasets, and presents
more realistic tasks. We experiment with popular baselines and meta-learners
on META-DATASET, along with a competitive method that we propose. We
analyze performance as a function of various characteristics of test tasks and
examine the models’ ability to leverage diverse training sources for improving their
generalization. We also propose a new set of baselines for quantifying the benefit of
meta-learning in META-DATASET. Our extensive experimentation has uncovered
important research challenges and we hope to inspire work in these directions.

1 INTRODUCTION

Few-shot learning refers to learning new concepts from few examples, an ability that humans naturally
possess, but machines still lack. Improving on this aspect would lead to more efficient algorithms
that can flexibly expand their knowledge without requiring large labeled datasets. We focus on
few-shot classification: classifying unseen examples into one of N new ‘test’ classes, given only a
few reference examples of each. Recent progress in this direction has been made by considering a
meta-problem: though we are not interested in learning about any training class in particular, we can
exploit the training classes for the purpose of learning to learn new classes from few examples, thus
acquiring a learning procedure that can be directly applied to new few-shot learning problems too.

This intuition has inspired numerous models of increasing complexity (see Related Work for some
examples). However, we believe that the commonly-used setup for measuring success in this direction
is lacking. Specifically, two datasets have emerged as de facto benchmarks for few-shot learning:
Omniglot (Lake et al.| [2015), and mini-ImageNet (Vinyals et al., 2016)), and we believe that both
of them are approaching their limit in terms of allowing one to discriminate between the merits of
different approaches. Omniglot is a dataset of 1623 handwritten characters from 50 different alphabets
and contains 20 examples per class (character). Most recent methods obtain very high accuracy
on Omniglot, rendering the comparisons between them mostly uninformative. mini-ImageNet is
formed out of 100 ImageNet (Russakovsky et al.l|2015)) classes (64/16/20 for train/validation/test)
and contains 600 examples per class. Albeit harder than Omniglot, it has the same property that
most recent methods trained on it present similar accuracy when controlling for model capacity. We
advocate that a more challenging and realistic benchmark is required for further progress in this area.

More specifically, current benchmarks: 1) Consider homogeneous learning tasks. In contrast, real-life
episodes are heterogeneous: they vary in terms of the number of classes and examples per class, and
are unbalanced. 2) Measure only within-dataset generalization. However, we are eventually after
models that can generalize to entirely new distributions (e.g. datasets) 3) Ignore the relationships
between classes when forming episodes. The coarse-grained classification of dogs and chairs may
present different difficulties than the fine-grained classification of dog breeds, and current benchmarks
do not establish a distinction between the two.

META-DATASET aims to improve upon previous benchmarks in the above directions: it is significantly
larger-scale and is comprised of multiple datasets of diverse data distributions; its task creation is
informed by class structure for ImageNet and Omniglot; it introduces realistic class imbalance; and it



Under review as a conference paper at ICLR 2020

varies the number of classes in each task and the size of the training set, thus testing the robustness of
models across the spectrum from very-low-shot learning onwards.

The main contributions of this work are: 1) A more realistic, large-scale and diverse environment for
training and testing few-shot learners. 2) Experimental evaluation of popular models, and a new set of
baselines combining inference algorithms of meta-learners with non-episodic training. 3) Analyses of
whether different models benefit from more data, heterogeneous training sources, pre-trained weights,
and meta-training. 4) A novel meta-learner that performs strongly on META-DATASET.

2 BACKGROUND

Task Formulation The end-goal of few-shot classification is to produce a model which, given a
new learning episode with N classes and a few labeled examples (k. per class, c € 1,...,N), is
able to generalize to unseen examples for that episode. In other words, the model learns from a
training (support) set S = {(x1,y1), (X2,¥2), ..., (XK, yx)} (With K = " k) and is evaluated on
a held-out test (query) set @ = {(x5,v7), (x5,v3), ..., (x5, y5)}. Each example (x,y) is formed of
an input vector x € R” and a class label y € {1,..., N}. Episodes with balanced training sets (i.e.,
k. = k, Vc) are usually described as ‘ N-way, k-shot’ episodes. Evaluation episodes are constructed
by sampling their IV classes from a larger set C.s; of classes and sampling the desired number of
examples per class.

A disjoint set Cy.qq Of classes is available to train the model; note that this notion of training is
distinct from the training that occurs within a few-shot learning episode. Few-shot learning does not
prescribe a specific procedure for exploiting C¢;-q;n, but a common approach matches the conditions
in which the model is trained and evaluated (Vinyals et al., 2016). In other words, training often (but
not always) proceeds in an episodic fashion. Some authors use fraining and testing to refer to what
happens within any given episode, and meta-training and meta-testing to refer to using C;.q;n, to turn
the model into a learner capable of fast adaptation and C.4; for evaluating its success to learn using
few shots. This nomenclature highlights the meta-learning perspective alluded to earlier, but to avoid
confusion we will adopt another common nomenclature and refer to the training and test sets of an
episode as the support and query sets and to the process of learning from Cy,.4iy, simply as training.
We use the term ‘meta-learner’ to describe a model that is trained episodically, i.e. learns to learn
across multiple tasks that are sampled from the training set C¢yqip,.

Non-episodic Approaches to Few-shot Classification A natural non-episodic approach simply
trains a classifier over all of the training classes Cy.qiy, at once, which can be parameterized by a
neural network with a linear layer on top with one output unit per class. After training, this neural
network is used as an embedding function g that maps images into a meaningful representation space.
The hope of using this model for few-shot learning is that this representation space is useful even for
examples of classes that were not included in training. It would then remain to define an algorithm
for performing few-shot classification on top of these representations of the images of a task. We
consider two choices for this algorithm, yielding the ‘6-NN’ and ‘Finetune’ variants of this baseline.

Given a test episode, the ‘k-NN’ baseline classifies each query example as the class that its ‘closest’
support example belongs to. Closeness is measured by either Euclidean or cosine distance in the
learned embedding space; a choice that we treat as a hyperparameter. On the other hand, the ‘Finetune’
baseline uses the support set of the given test episode to train a new ‘output layer’ on top of the
embeddings g, and optionally finetune those embedding too (another hyperparameter), for the purpose
of classifying between the [V new classes of the associated task.

A variant of the ‘Finetune’ baseline has recently become popular: Baseline++ (Chen et al.,|2019),
originally inspired by (Gidaris & Komodakis| (2018));|Q1 et al.|(2018)). It uses a ‘cosine classifier’ as
the final layer (¢2-normalizing embeddings and weights before taking the dot product), both during
the non-episodic training phase, and for evaluation on test episodes. We incorporate this idea in our
codebase by adding a hyperparameter that optionaly enables using a cosine classifier for the ‘k-NN’
(evaluation only) and ‘Finetune’ (both phases) baselines.

Meta-Learners for Few-shot Classification In the episodic setting, models are trained end-to-end
for the purpose of learning to build classifiers from a few examples. We choose to experiment
with Matching Networks (Vinyals et al., 2016), Relation Networks (Sung et al., 2018), Prototypical



Under review as a conference paper at ICLR 2020

Networks (Snell et al.,[2017) and Model Agnostic Meta-Learning (MAML, [Finn et al.,2017) since
they cover a diverse set of approaches to few-shot learning. We also introduce a novel meta-learner
which is inspired by the last two models.

In each training episode, episodic models compute for each query example x* € Q, the distribution
for its label p(y*|x*,S) conditioned on the support set S and allow training this differentiably-
parameterized conditional distribution end-to-end via gradient descent. The different models are
distinguished by the manner in which this conditioning on the support set is realized. In all cases, the
performance on the query set drives the update of the meta-learner’s weights, which include (and
sometimes consist only of) the embedding weights. We briefly describe each method below.

Prototypical Networks Prototypical Networks construct a prototype for each class and then classify
each query example as the class whose prototype is ‘nearest’ to it under Euclidean distance. More
concretely, the probability that a query example x* belongs to class k is defined as:

exp(—|lg(x*) — cx[3)
Pweq,.. Ny exp(=[lg(x*) = cr|[3)

p(y* = kIx*,S) =
where cy, is the ‘prototype’ for class k: the average of the embeddings of class k’s support examples.

Matching Networks Matching Networks (in their simplest form) label each query example as a
(cosine) distance-weighted linear combination of the support labels:

S|
p(y* = k‘X*,S) = ZO‘(X*in)lyi:k’

i=1

where 1 4 is the indicator function and «(x*, x;) is the cosine similarity between g(x*) and g(x;),
softmax-normalized over all support examples x;, where 1 < i < |S].

Relation Networks Relation Networks are comprised of an embedding function g as usual, and
a ‘relation module’ parameterized by some additional neural network layers. They first embed
each support and query using g and create a prototype p, for each class c by averaging its support
embeddings. Each prototype p. is concatenated with each embedded query and fed through the
relation module which outputs a number in [0, 1] representing the predicted probability that that query
belongs to class c. The query loss is then defined as the mean square error of that prediction compared
to the (binary) ground truth. Both g and the relation module are trained to minimize this loss.

MAML MAML uses a linear layer parametrized by W and b on top of the embedding function
g(+; 0) and classifies a query example as

P(y*[x", 8) = softmax(b’ + W'g(x";0')),

where the output layer parameters W’ and b’ and the embedding function parameters ' are obtained
by performing a small number of within-episode training steps on the support set .S, starting from
initial parameter values (b, W,#). The model is trained by backpropagating the query set loss
through the within-episode gradient descent procedure and into (b, W, 6). This normally requires
computing second-order gradients, which can be expensive to obtain (both in terms of time and
memory). For this reason, an approximation is often used whereby gradients of the within-episode
descent steps are ignored. This variant is referred to as first-order MAML (fo-MAML) and was used
in our experiments. We did attempt to use the full-order version, but found it to be impractically
expensive (e.g., it caused frequent out-of-memory problems).

Moreover, since in our setting the number of ways varies between episodes, b, W are set to zero and
are not trained (i.e., b’, W are the result of within-episode gradient descent initialized at 0), leaving
only 6 to be trained. In other words, MAML focuses on learning the within-episode initialization 6 of
the embedding network so that it can be rapidly adapted for a new task.

Introducing Proto-MAML We introduce a novel meta-learner that combines the complementary
strengths of Prototypical Networks and MAML.: the former’s simple inductive bias that is evidently
effective for very-few-shot learning, and the latter’s flexible adaptation mechanism.



Under review as a conference paper at ICLR 2020

As explained by Snell et al.|(2017)), Prototypical Networks can be re-interpreted as a linear classifier
applied to a learned representation g(x). The use of a squared Euclidean distance means that output
logits are expressed as

~[lg(x") — exll? = —g(x")"g(x") + 2L g(x") — cfex = 2eF g(x7) — |lexl[2 + constant

where constant is a class-independent scalar which can be ignored, as it leaves output probabilities
unchanged. The k-th unit of the equivalent linear layer therefore has weights W, . = 2cy, and biases
br = —||ck||?, which are both differentiable with respect to 6 as they are a function of g(+; 6).

We refer to (fo-)Proto-MAML as the (fo-)MAML model where the task-specific linear layer of each
episode is initialized from the Prototypical Network-equivalent weights and bias defined above and
subsequently optimized as usual on the given support set. When computing the update for 6, we
allow gradients to flow through the Prototypical Network-equivalent linear layer initialization. We
show that this simple modification significantly helps the optimization of this model and outperforms
vanilla fo-MAML by a large margin on META-DATASET.

3 META-DATASET: A NEW FEW-SHOT CLASSIFICATION BENCHMARK

META-DATASET aims to offer an environment for measuring progress in realistic few-shot classifica-
tion tasks. Our approach is twofold: 1) changing the data and 2) changing the formulation of the task
(i.e., how episodes are generated). The following sections describe these modifications in detail. Our
code is provided with this submission

3.1 META-DATASET’S DATA

META-DATASET’s data is much larger in size than any previous benchmark, and is comprised of
multiple existing datasets. This invites research into how diverse sources of data can be exploited
by a meta-learner, and allows us to evaluate a more challenging generalization problem, to new
datasets altogether. Specifically, META-DATASET leverages data from the following 10 datasets:
ILSVRC-2012 (ImageNet, Russakovsky et al.l2015)), Omniglot (Lake et al.,[2015), Aircraft (Maji
et al.}2013), CUB-200-2011 (Birds, Wah et al.,|2011), Describable Textures (Cimpoi et al., [ 2014),
Quick Draw (Jongejan et al., 2016)), Fungi (Schroeder & Cui, [2018)), VGG Flower (Nilsback &
Zisserman, 2008), Traffic Signs (Houben et al., [2013) and MSCOCO (Lin et al., [2014). These
datasets were chosen because they are free and easy to obtain, span a variety of visual concepts
(natural and human-made) and vary in how fine-grained the class definition is. More information
about each of these datasets is provided in the Appendix.

To ensure that episodes correspond to realistic classification problems, each episode generated in
META-DATASET uses classes from a single dataset. Moreover, two of these datasets, Traffic Signs
and MSCOCO, are fully reserved for evaluation, meaning that no classes from them participate in the
training set. The remaining ones contribute some classes to each of the training, validation and test
splits of classes, roughly with 70% / 15% / 15% proportions. Two of these datasets, ImageNet and
Omniglot, possess a class hierarchy that we exploit in META-DATASET.

ImageNet ImageNet is comprised of 82,115 ‘synsets’, i.e., concepts of the WordNet ontology, and
it provides ‘is-a’ relationships for its synsets, thus defining a DAG over them. META-DATASET uses
the 1K synsets that were chosen for the ILSVRC 2012 classification challenge and defines a new class
split for it and a novel procedure for sampling classes from it for episode creation, both informed by
its class hierarchy.

Specifically, we construct a sub-graph of the overall DAG whose leaves are the 1K classes of ILSVRC-
2012. We then ‘cut’ this sub-graph into three pieces, for the training, validation, and test splits,
such that there is no overlap between the leaves of any of these pieces. For this, we selected the
synsets ‘carnivore’ and ‘device’ as the roots of the validation and test sub-graphs, respectively. The
leaves that are reachable from ‘carnivore’ and ‘device’ form the sets of the validation and test classes,
respectively. All of the remaining leaves constitute the training classes. This method of splitting
ensures that the training classes are semantically different from the test classes. We end up with 712
training, 202 validation and 188 test classes, roughly adhering to the standard 70/ 15/ 15 (%) splits.

1 . .
https://storage.googleapis.com/meta-dataset-source-code/meta-dataset-iclr2020.tar.gz


https://storage.googleapis.com/meta-dataset-source-code/meta-dataset-iclr2020.tar.gz

Under review as a conference paper at ICLR 2020

Omniglot This dataset is one of the established benchmarks for few-shot classification as men-
tioned earlier. However, contrary to the common setup that flattens and ignores its two-level hierarchy
of alphabets and characters, we allow it to influence the episode class selection in META-DATASET,
yielding finer-grained tasks. We also use the original splits proposed in|Lake et al.[|(2015)): (all char-
acters of) the ‘background’ and ‘evaluation’ alphabets are used for training and testing, respectively.
However, we reserve the 5 smallest alphabets from the ‘background’ set for validation.

3.2 EPISODE SAMPLING

In this section we outline META-DATASET’s algorithm for sampling episodes, featuring hierarchically-
aware procedures for sampling classes of ImageNet and Omniglot, and an algorithm that yields
realistically imbalanced episodes of variable shots and ways. Given a particular split of a particular
dataset, we sample an episode from it in two steps: Step 1) sample a set of classes C from it, and Step
2) sample support and query sets of examples from those classes.

Step 1: Sampling the episode’s class set This procedure differs depending on which dataset is
chosen. For datasets without a known class organization, we sample the ‘way’ uniformly from the
range [5, MAX-CLASSES], where MAX-CLASSES is either 50 or as many as there are available.
Then we sample ‘way’ many classes uniformly at random from the requested class split of the given
dataset. ImageNet and Omniglot use class-structure-aware procedures outlined below.

ImageNet class sampling We adopt a hierarchy-aware sampling procedure: First, we sample an
internal (non-leaf) node uniformly from the DAG of the given split. The chosen set of classes is then
the set of leaves spanned by that node (or a random subset of it, if more than 50). We prevent nodes
that are too close to the root to be selected as the internal node, as explained in more detail in the
Appendix. This procedure enables the creation of tasks of varying degrees of fine-grainedness: the
larger the height of the internal node, the more coarse-grained the resulting episode.

Omniglot class sampling We sample classes from Omniglot by first sampling an alphabet uni-
formly at random from the chosen split of alphabets (train, validation or test). Then, the ‘way’ of the
episode is sampled uniformly at random using the same restrictions as for the rest of the datasets, but
taking care not to sample a larger number than the number of characters that belong to the chosen
alphabet. Finally, the prescribed number of characters of that alphabet are randomly sampled. This
ensures that each episode presents a within-alphabet fine-grained classification.

Step 2: Sampling the episode’s examples Having already selected a set of classes, the choice
of the examples from them that will populate an episode can be broken down into three steps. We
provide a high-level description here and elaborate in the Appendix with the accompanying formulas.

Step 2a: Compute the query set size. The query set is class-balanced, reflecting the fact that we
care equally to perform well on all classes of an episode. The number of query images per class is
set to a number such that all chosen classes have enough images to contribute that number and still
remain with roughly half on their images to possibly add to the support set (in a later step). This
number is capped to 10 images per class.

Step 2b: Compute the support set size. We allow each chosen class to contribute to the support set
at most 100 of its remaining examples (i.e. excluding the ones added to the query set). We multiply
this remaining number by a scalar sampled uniformly from the interval (0, 1] to enable the potential
generation of ‘few-shot’ episodes even when multiple images are available, as we are also interested
in studying that end of the spectrum. We do enforce, however, that each chosen class has a budget for
at least one image in the support set, and we cap the total support set size to 500 examples.

Step 2c: Compute the shot of each class. We now discuss how to distribute the total support set
size chosen above across the participating classes. The un-normalized proportion of the support set
that will be occupied by a given chosen class is a noisy version of the total number of images of
that class in the dataset. This design choice is made in the hopes of obtaining realistic class ratios,
under the hypothesis that the dataset class statistics are a reasonable approximation of the real-world
statistics of appearances of the corresponding classes. We ensure that each class has at least one
image in the support set and distribute the rest according to the above rule.



Under review as a conference paper at ICLR 2020

After these steps, we complete the episode creation process by choosing the prescribed number of
examples of each chosen class uniformly at random to populate the support and query sets.

4 RELATED WORK

In this work we evaluate four meta-learners on META-DATASET that we believe capture a good
diversity of well-established models. Evaluating other few-shot classifiers on META-DATASET is
beyond the scope of this paper, but we discuss some additional related models below.

Similarly to MAML, some train a meta-learner for quick adaptation to new tasks (Ravi & Larochelle}
2017;Munkhdalai & Yu, 2017;Rusu et al., 20195 Yoon et al., 2018)). Others relate to Prototypical
Networks by learning a representation on which differentiable training can be performed on some form
of classifier (Bertinetto et al., 2019} |Gidaris & Komodakis, [2018]; |Oreshkin et al., [2018]). Others relate
to Matching Networks in that they perform comparisons between pairs of support and query examples,
using either a graph neural network (Satorras & Estrach, |2018)) or an attention mechanism (Mishra
et al., [2018). Finally, some make use of memory-augmented recurrent networks (Santoro et al.,
2016), some learn to perform data augmentation (Hariharan & Girshick, [2017; |Wang et al.,|2018) in
a low-shot learning setting, and some learn to predict the parameters of a large-shot classifier from
the parameters learned in a few-shot setting (Wang & Hebert, 2016;|Wang et al.,|2017). Of relevance
to Proto-MAML is MAML++ (Antoniou et al.,[2019), which consists of a collection of adjustments
to MAML, such as multiple meta-trained inner loop learning rates and derivative-order annealing.
Proto-MAML instead modifies the output weight initialization scheme and could be combined with
those adjustments.

Finally, META-DATASET relates to other recent image classification benchmarks. The CVPR
2017 Visual Domain Decathlon Challenge trains a model on 10 different datasets, many of which
are included in our benchmark, and measures its ability to generalize to held-out examples for
those same datasets but does not measure generalization to new classes (or datasets). [Hariharan
& Girshick! (2017) propose a benchmark where a model is given abundant data from certain base
ImageNet classes and is tested on few-shot learning novel ImageNet classes in a way that doesn’t
compromise its knowledge of the base classes. [Wang et al.| (2018) build upon that benchmark
and propose a new evaluation protocol for it. |Chen et al.|(2019) investigate fine-grained few-shot
classification using the CUB dataset (Wah et al.} 2011} also featured in our benchmark) and cross-
domain transfer between mini-ImageNet and CUB. Larger-scale few-shot classification benchmarks
were also proposed using CIFAR-100 (Krizhevsky et al.,2009; Bertinetto et al., 2019;|Oreshkin et al.}
2018), tiered-ImageNet (Ren et al.,2018), and ImageNet-21k (Dhillon et al.,[2019). Compared to
these, META-DATASET contains the largest set of diverse datasets in the context of few-shot learning
and is additionally accompanied by an algorithm for creating learning scenarios from that data that
we advocate are more realistic than the previous ones.

5 EXPERIMENTS

Training procedure. META-DATASET does not prescribe a procedure for learning from the training
data. In these experiments, keeping with the spirit of matching training and testing conditions, we
trained the meta-learners via training episodes sampled using the same algorithm as we used for
META-DATASET’s evaluation episodes, described above. The choice of the dataset from which to
sample the next episode was random uniform. The non-episodic baselines are trained to solve the
large classification problem that results from ‘concatenating’ the training classes of all datasets.

Validation Another design choice was to perform validation on (the validation split of) ImageNet
only, ignoring the validation sets of the other datasets. The rationale behind this choice is that the
performance on ImageNet has been known to be a good proxy for the performance on different
datasets. We used this validation performance to select our hyperparameters, including backbone
architectures, image resolutions and model-specific ones. We describe these further in the Appendix.

Pre-training We gave each meta-learner the opportunity to initialize its embedding function from
the embedding weights to which the £-NN Baseline model trained on ImageNet converged to. We
treated the choice of starting from scratch or starting from this initialization as a hyperparameter.



Under review as a conference paper at ICLR 2020

Table 1: Few-shot classification results on META-DATASET using models trained on ILSVRC-2012

only (top) and trained on all datasets (bottom).

Model
=== MatchingNet

= fo-Proto-MAML
== RelationNet

[ TestSource [ k-NN [ Finetune | MatchingNet | ProtoNet | fo-MAML [ Relation Net | fo-Proto-MAML |
ILSVRC 41.03 44.83 45.00 50.50 36.09 34.69 51.01
Omniglot 37.07 59.29 52.27 59.98 38.67 45.35 63.00
Aircraft 46.81 67.89 48.97 53.10 34.50 40.73 55.31
Birds 50.13 5791 62.21 68.79 49.10 49.51 66.87
Textures 66.36 68.53 64.15 66.56 56.50 52.97 67.75
Quick Draw 32.06 43.21 42.87 48.96 27.24 43.30 53.70
Fungi 36.16 37.95 33.97 39.71 23.50 30.55 37.97
VGG Flower 83.10 85.14 80.13 85.27 66.42 68.76 86.86
Traffic Signs 44.59 67.08 47.80 47.12 3323 33.67 51.19
MSCOCO 30.38 36.05 34.99 41.00 27.52 29.15 43.41

| Avg. rank | 5 | 2.7 | 4.1 | 2.2 | 6.7 | 5.8 | 1.5 |

[ TestSource [ k-NN [ Finetune | MatchingNet | ProtoNet | fo-MAML [ Relation Net | fo-Proto-MAML |
ILSVRC 38.55 43.08 36.08 44.50 32.36 30.89 47.85
Omniglot 74.60 T1.11 78.25 79.56 71.91 86.57 82.86
Aircraft 64.98 72.03 69.17 71.14 52.76 69.71 74.24
Birds 66.35 59.82 56.40 67.01 47.24 54.14 69.97
Textures 63.58 69.14 61.80 65.18 56.66 56.56 67.94
Quick Draw 44.88 47.05 60.81 64.88 50.50 61.75 66.57
Fungi 37.12 38.16 33.70 40.26 21.02 32.56 41.99
VGG Flower 83.47 85.28 81.90 86.85 70.93 76.08 88.45
Traffic Signs 40.11 66.74 55.57 46.48 34.18 37.48 52.32
MSCOCO 29.55 35.17 28.79 39.87 24.05 27.41 41.29

[ Avgrank | 46 | 33 | 45 [ 25 [ 65 [ 52 | 14 |
9. Fungi . ILSVRC _ _Traffic S\gn  Aircraft VGG Flower _ 100.  Fungi ILSVRC _ _Traffic Sign . _ Aircraft _ VGG Flower .
2 : ] =1 i} | : M’::’c‘:rEIQNet o [ ] I i 7 b BV é 4
. ] . m= Matchin | sk A1

50- , s s :’ é 7 é /- m= protoNet 604 s ™ ? é A% 0/ wmm protoNet
B g% % ; %?é?_:%%é:-:"'r":“mm 7 mme T ?lgggé gééé?-“""“m

Eullule BUuke Rk %42%%2%:&5@ =Bl HmﬂymkEJHasza
_Quick Draw_ . Omnlglct CUBirds . Textures 100- Qun:k Draw, _ Omniglot _ _ MSCOCO _ . CUBirds . . Textures _

. A
A
A 3
5

Il
g }

ENWsUON®O

"

e
555

N
=

m—
555 .

1
1
1
1
A9

. MSCOCO

Initialization
== Pre-trained
@z From scratch

A
%
/

%

e

?
/

——
S
S

5
¥
¥
¥
¥
1
¥
5
Ld

%
18

S

%
éi

S
SN

i
1
E A
L

(a) Effect of pre-training (ImageNet)

Fungi . ILSVRC _

1 Wy

AR AN
uli
A1 B

Quick Draw . Omiglot

T
%?k I
ééé: A

ENWENON®RO

\\\\\
\\\\\\'

ENWENON®RO
RN

0.8
<
S06
2
S
2
o4 — kNN baseline
g == Finetune baseline
3 — MatchingNet
02 == ProtoNet
== fo-MAML
=== fo-Proto-MAML
~— RelationNet
0.0,

60 80
Shot

4o

(c) Shots analysis (ImageNet)

_Traffic sign. .

Bkl |%|2|% |%

_ MSCOCO _ . CUBirds _ _ Textures

1%
Bl
4% Uil

Aircraft VGG Flower _

Model
MatchingNet
ProtoNet

RN
RN

-
vt

Meta-training

AN

(e) Effect of meta-learning (ImageNet)

100

fo-Proto-MAML

Inference-only

Initialization
== Pre-trained
w7 From scratch

2 %
0, ~wilebl
outobr LEVLL ", p T
PUERE VEVEL - , m
PR LELLEL ol glza a
BULEE EEKE whoke RERUR REVRE
JMUNEY. BV GG VEELY. LUV
(b) Effect of pre-training (All datasets)
1.0, — k-Nl‘V hasel;ne
=== Finetune baseline
08- = MatchingNet
: = ProtoNet
w— fo-MAML
0.6 = fo-Proto-MAML
e «= RelationNet
g
2
F04-
0.2-
0.0, . | . 0 . . . . .
10 15 20 25 30 35 40 45 50
Way

(d) Ways analysis (ImageNet)

Fungi _ Traffic sign. .

. MSCOCO _ .

. ILSVRC

11
zlilélf |" I

Oulck Draw Ommglot .

ENWENON®RO

/
/

ENWENON®RO
AN
AT

Aircraft

cu Elrds .

[ —

- %%

= | :
n%%ﬁ%%
W W W, W,

VGG Flower

g

Textures

AMIIRINRNW
ST RSN

==
A
i é%"

Model
MatchingNet
ProtoNet
fo-Proto-MAML

Meta-training
Inference-only

N

f) Effect of meta-learning (All datasets)

Figure 1: Analyses. (ImageNet) or (All datasets) in the caption denotes the training source.

For a fair comparison with the baselines, we allowed the non-episodic models to start from this
initialization too. This is especially important for the baselines in the case of training on all datasets
since it offers the opportunity to start from ImageNet-pretrained weights.



Under review as a conference paper at ICLR 2020

Main results Table|l|displays the accuracy of each model on the test set of each dataset, after they
were training on ImageNet-only or all datasets. Traffic Signs and MSCOCO are not used for training
in either case, as they are reserved for evaluation. We propose to use the average (over the datasets)
rank of each method as our metric for comparison, where smaller is better. A method receives rank 1
if it has the highest accuracy, rank 2 if it has the second highest, and so on. If two models share the
best accuracy, they both get rank 1.5, and so on. We find that fo-Proto-MAML is the top-performer
according to this metric, the Finetune Baseline notably presents a worthy opponent, while fo-MAML,
to our surprise, performs quite poorly on META-DATASET. We include more detailed versions of
these tables displaying confidence intervals and per-dataset ranks in the Appendix.

Ways and shots analysis We further study the accuracy as a function of ‘ways’ (Figure[Id) and the
class precision as a function of ‘shots’ (Figure[Ic). As expected, we found that the difficulty increases
as the way increases, and performance degrades. More examples per class, on the other hand, indeed
make it easier to correctly classify that class. Interestingly, though, not all models benefit at the
same rate from more data: Prototypical Networks and fo-Proto-MAML outshine other models in
very-low-shot settings but saturate faster, whereas the Finetune baseline, Matching Networks, and
fo-MAML improve at a higher rate when the shot increases. We draw the same conclusions when
performing this analysis on all datasets, and include those plots in the Appendix.

Effect of pre-training In Figures [Ia] and [Ib] we quantify how beneficial it is to initialize the
embedding network of meta-learners using the pre-trained weights of the k-NN baseline trained on
ImageNet, as opposed to starting their episodic training from scratch. When training on ImageNet
only, we find that pre-training is generally useful, though interestingly the resulting solution is less
apt for generalizing to significantly different sources such as Omniglot and Quickdraw. On the other
hand, using this pre-trained initialization sometimes hurts when training on all datasets. Perhaps
this is because it’s challenging to sufficiently modify that ImageNet-converged solution to take into
account the other datasets during training.

Effect of meta-training We propose to disentangle the inference algorithm of each meta-learner
from the fact that it is meta-learned, to assess the benefit of meta-learning in META-DATASET. To
this end, we propose a new set of baselines: ‘Prototypical Networks Inference’, ‘Matching Networks
Inference’ and ‘fo-Proto-MAML Inference’ that are trained non-episodically but validate (and test)
episodically using the inference algorithm of the respective meta-learner. This is possible for these
meta-learners as they don’t have any additional parameters aside from the embedding function that
explicitly need to be learned episodically (like the relation module of Relation Networks for example).
We compare each Inference-only method to its corresponding meta-learner in Figures [Te|and[Tf] We
find that these baselines are strong: when training on ImageNet only, we can usually observe a small
benefit from meta-learning the embedding weights but this benefit often disappears when training on
all datasets, in which case meta-learning sometimes actually hurts. We find this result very interesting
and we believe it emphasizes the need for research on how to meta-learn across multiple diverse
sources, an important challenge that META-DATASET puts forth.

Fine-grainedness analysis We use ILVRC-2012 to investigate the hypothesis that finer-grained
tasks are harder than coarse-grained ones. Our findings suggest that while the test sub-graph is not
rich enough to exhibit any trend, the performance on the train sub-graph does seem to agree with this
hypothesis. We include the experimental setup and results for this analysis in the Appendix.

6 CONCLUSION

We have introduced a new large-scale, diverse, and realistic environment for few-shot classification.
We believe that our exploration of various models on META-DATASET has uncovered interesting
directions for future work pertaining to meta-learning across heterogeneous data: it remains unclear
what is the best strategy for creating training episodes, the most appropriate validation creation and
the most appropriate initialization. Current models don’t always improve when trained on multiple
sources and meta-learning is not always beneficial across datasets. Current models are also not robust
to the amount of data in test episodes, each excelling in a different part of the spectrum. We believe
that addressing these shortcomings consitutes an important research goal moving forward.



Under review as a conference paper at ICLR 2020

REFERENCES

Antreas Antoniou, Harrison Edwards, and Amos Storkey. How to train your MAML. In Proceedings
of the International Conference on Learning Representations, 2019.

Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differentiable
closed-form solvers. In Proceedings of the International Conference on Learning Representations,
2019.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. In Proceedings of the International Conference on Learning
Representations, 2019.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In
IEEE Conference on Computer Vision and Pattern Recognition, 2014.

Guneet S. Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. arXiv, abs/1909.02729, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the International Conference of Machine Learning, 2017.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In IEEE
Conference on Computer Vision and Pattern Recognition, 2018.

Bharath Hariharan and Ross Girshick. Low-shot visual recognition by shrinking and hallucinating
features. In Proceedings of the IEEE International Conference on Computer Vision, pp. 3018-3027,
2017.

Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and Christian Igel. Detection of
traffic signs in real-world images: The German Traffic Sign Detection Benchmark. In International
Joint Conference on Neural Networks, 2013.

Jonas Jongejan, Henry Rowley, Takashi Kawashima, Jongmin Kim, and Nick Fox-Gieg. The Quick,
Draw! — A L. experiment. quickdraw.withgoogle.com, 2016.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332-1338, 2015.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollér, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In European
Conference on Computer Vision, pp. 740-755, 2014.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv, abs/1306.5151, 2013.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive meta-
learner. In Proceedings of the International Conference on Learning Representations, 2018.

Tsendsuren Munkhdalai and Hong Yu. Meta networks. In Proceedings of the International Conference
on Machine Learning, pp. 2554-2563, 2017.

M-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes. In
Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing, 2008.

Boris N. Oreshkin, Pau Rodriguez, and Alexandre Lacoste. TADAM: Task dependent adaptive
metric for improved few-shot learning. In Advances in Neural Information Processing Systems, pp.
719-729, 2018.

Hang Qi, Matthew Brown, and David G Lowe. Low-shot learning with imprinted weights. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5822-5830,
2018.


quickdraw.withgoogle.com

Under review as a conference paper at ICLR 2020

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In Proceedings of
the International Conference on Learning Representations, 2017.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classification.
In Proceedings of the International Conference on Learning Representations, 2018.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252,
2015.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osindero,
and Raia Hadsell. Meta-learning with latent embedding optimization. In Proceedings of the
International Conference on Learning Representations, 2019.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
901-909, 2016.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In Proceedings of the International Conference
on Machine Learning, pp. 1842-1850, 2016.

Victor Garcia Satorras and Joan Bruna Estrach. Few-shot learning with graph neural networks. In
Proceedings of the International Conference on Learning Representations, 2018.

Brigit Schroeder and Yin Cui. FGVCx fungi classification challenge 2018. |github.com/
visipedia/fgvcx_fungi_comp, 2018.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
Advances in Neural Information Processing Systems, pp. 4077-4087, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 1199-1208, 2018.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, and Daan Wierstra. Matching networks for one shot
learning. In Advances in Neural Information Processing Systems, pp. 3630-3638, 2016.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

Yu-Xiong Wang and Martial Hebert. Learning to learn: Model regression networks for easy small
sample learning. In European Conference on Computer Vision, pp. 616—634. Springer, 2016.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. In Advances in
Neural Information Processing Systems, pp. 7029-7039, 2017.

Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. Low-shot learning from
imaginary data. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 7278-7286, 2018.

Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In Advances in Neural Information Processing Systems,
2018.

10


github.com/visipedia/fgvcx_fungi_comp
github.com/visipedia/fgvcx_fungi_comp

Under review as a conference paper at ICLR 2020

APPENDIX

.1  RECOMMENDATION FOR REPORTING RESULTS ON META-DATASET
We recommend that future work on META-DATASET reports two sets of results:

1. The main tables storing the average (over 600 test episodes) accuracy of each method on
each dataset, after it had been trained on ImageNet only and on All datasets, where the
evaluation metric is the average rank. This corresponds to Table[T]in our case (or the more
complete version in Table [2]in the Appendix).

2. The plots that measure robustness in variations of shots and ways. In our case these are
Figures[Ic|and [Id]in the main text for ImageNet-only training, and Figures [3band [3a]in the
Appendix for the case of training on all datasets.

We propose to use both of these aspects to evaluate performance on META-DATASET: it is not only
desirable to perform well on average, but also to perform well under different specifications of test
tasks, as it is not realistic in general to assume that we will know in advance what setup (number
of ways and shots) will be encountered at test time. Our final source code will include scripts for
generating these plots and for automatically computing ranks given a table to help standardize the
procedure for reporting results.

.2 DETAILS OF META-DATASET’S SAMPLING ALGORITHM

We now provide a complete description of certain steps that were explained on a higher level in the
main paper.

STEP 1: SAMPLING THE EPISODE’S CLASS SET.

ImageNet class sampling. The procedure we use for sampling classes for an ImageNet episode
is the following. First, we sample a node uniformly at random from the set of ‘eligible’ nodes of
the DAG structure corresponding to the specified split (train, validation or test). An internal node is
‘eligible’ for this selection if it spans at least 5 leaves, but no more than 392 leaves. The number 392
was chosen because it is the smallest number so that, collectively, all eligible internal nodes span all
leaves in the DAG. Once an eligible node is selected, some of the leaves that it spans will constitute
the classes of the episode. Specifically, if the number of those leaves is no greater than 50, we use all
of them. Otherwise, we randomly choose 50 of them.

This procedure enables the creation of tasks of varying degrees of fine-grainedness. For instance, if
the sampled internal node has a small height, the leaf classes that it spans will represent semantically-
related concepts, thus posing a fine-grained classification task. As the height of the sampled node
increases, we ‘zoom out’ to consider a broader scope from which we sample classes and the resulting
episodes are more coarse-grained.

STEP 2: SAMPLING THE EPISODE’S EXAMPLES

a) Computing the query set size. The query set is class-balanced, reflecting the fact that we care
equally to perform well on all classes of an episode. The number of query images per class is

computed as:
¢ = min {10, (mi(rjl [0.5 * |Im(c)|J> }
ce

where C is the set of selected classes and Imn(c) denotes the set of images belonging to class ¢. The
min over classes ensures that each class has at least ¢ images to add to the query set, thus allowing it
to be class-balanced. The 0.5 multiplier ensures that enough images of each class will be available to
add to the support set, and the minimum with 10 prevents the query set from being too large.

b) Computing the support set size. We compute the total support set size as:

|S| = min {500, > [Bmin{100, |Tm(c)| — q}] }

ceC

11



Under review as a conference paper at ICLR 2020

where £ is a scalar sampled uniformly from interval (0,1]. Intuitively, each class on average
contributes either all its remaining examples (after placing ¢ of them in the query set) if there are less
than 100 or 100 otherwise, to avoid having too large support sets. The multiplication with 3 enables
the potential generation of smaller support sets even when multiple images are available, since we are
also interested in examining the very-low-shot end of the spectrum. The ‘ceiling’ operation ensures
that each selected class will have at least one image in the support set. Finally, we cap the total
support set size to 500.

¢) Computing the shot of each class. We are now ready to compute the ‘shot’ of each class.
Specifically, the proportion of the support set that will be devoted to class ¢ is computed as:

exp(ac)|Im(c)|

R. =
Zexp M Im(c)|

ceC

where «, is sampled uniformly from the interval [log(0.5),log(2)). Intuitively, the un-normalized
proportion of the support set that will be occupied by class c is a noisy version of the total number of
images of that class in the dataset Im(c). This design choice is made in the hopes of obtaining realistic
class ratios, under the hypothesis that the dataset class statistics are a reasonable approximation of the
real-world statistics of appearances of the corresponding classes. The shot of a class c is then set to:

ke = min {| R, * (|S| = [C)] + 1, [Im(c)| — ¢}

which ensures that at least one example is selected for each class, with additional examples selected
proportionally to R., if enough are available.

.3 DATASETS

META-DATASET is formed of data originating from 10 different image datasets. A complete list of
the datasets we use is the following.

|

i % .... 15.” . \ :Hk ?’% ‘,’
1. 1~ B
NE BAQHE S 3 !

- i e s X
lmfﬂ BEHBEE 082 @I-!
DaviE BEBRE . DRE BN

(a) ImageNet (b) Omniglot (c) Aircraft (d) Birds

() Quick Draw (g) Fungi (h) VGG Flower (i) Traffic Signs (G) MSCOCO

Figure 2: Training examples taken from the various datasets forming META-DATASET.

ILSVRC-2012 (ImageNet, [Russakovsky et al.,[2015) A dataset of natural images from 1000
categories (Figure 2a). We removed some images that were duplicates of images in another dataset in
META-DATASET (43 images that were also part of Birds) or other standard datasets of interest (92
from Caltech-101 and 286 from Caltech-256). The complete list of duplicates is part of the source
code release.

Omniglot (Lake et al., 2015) A dataset of images of 1623 handwritten characters from 50 different
alphabets, with 20 examples per class (Figure[2b). While recently [Vinyals et al.| (2016) proposed a

12



Under review as a conference paper at ICLR 2020

new split for this dataset, we instead make use of the original intended split Lake et al.|(2015) which
is more challenging since the split is on the level of alphabets (30 training alphabets and 20 evaluation
alphabets), not characters from those alphabets, therefore posing a more challenging generalization
problem. Out of the 30 training alphabets, we hold out the 5 smallest ones (i.e. with the least number
of character classes) to form our validation set, and use the remaining 25 for training.

Aircraft (Maji et al., 2013) A dataset of images of aircrafts spanning 102 model variants, with
100 images per class (Figure [2c).

CUB-200-2011 (Birds, Wah et al., 2011) A dataset for fine-grained classification of 200 different
bird species. (Figure[2d).

Describable Textures (DTD, Cimpoi et al.,[2014) A texture database, consisting of 5640 images,
organized according to a list of 47 terms (categories) inspired from human perception. (Figure [2e).

Quick Draw (Jongejan et al., 2016) A dataset of 50 million black-and-white drawings across 345
categories, contributed by players of the game Quick, Draw! (Figure 2f).

Fungi (Schroeder & Cui, [2018) A large dataset of approximately 100K images of nearly 1,500
wild mushrooms species (Figure [2g).

VGG Flower (Nilsback & Zisserman, 2008) A dataset of natural images of 102 flower categories.
The flowers chosen to be ones commonly occurring in the United Kingdom. Each class consists of
between 40 and 258 images. (Figure [2h).

Traffic Signs (Houben et al.,2013) A dataset of 50,000 images of German road signs in 43 classes
(Figure [2i).

MSCOCO |Lin et al. (2014) A dataset of images collected from Flickr with 1.5 million object
instances belonging to 80 classes labelled and localized using bounding boxes. We choose the
train2017 split and create images crops from original images using each object instance’s groundtruth
bounding box. (Figure 2]).

.4 HYPERPARAMETERS

We used three architectures: a commonly-used four-layer convolutional network, an 18-layer residual
network and a wide residual network. While some of the baseline models performed best with the
latter, we noticed that the meta-learners preferred the resnet-18 backbone and rarely the four-layer-
convnet. For Relation Networks only, we also allow the option to use another architecture, aside from
the aforementioned three, inspired by the four-layer-convnet used in the Relation Networks paper
(Sung et al., 2018)). The main difference is that they omit the usual max-pooling operation, yielding
activations of larger spatial dimensions. In our case, we found that these increased spatial dimenions
did not fit in memory, so as a compromise we added max-pooling only to the first 3 out of the 4 layer
of the convnet.

For fo-MAML and fo-Proto-MAML, we tuned the inner-loop learning rate, the number of inner loop
steps, and the number of additional such steps to be performed in evaluation (i.e. validation or test)
episodes.

For the baselines, we tuned whether the cosine classifier of Baseline++ will be used, as opposed
to a standard forward pass through a linear classification layer. Also, since |Chen et al.| (2019)
added weight normalization (Salimans & Kingma, [2016) to their implementation of the cosine
classifier layer, we also implemented this and created a hyperparemter choice for whether or not it
is enabled. This hyperparameter is independent from the one that decides if the cosine classifier is
used. Both are applicable to the £-NN Basline (for its all-way training classification task) and to the
Finetune Baseline (both for its all-way training classification and for its within-episode classification
at validation and test times). For the Finetune Baseline, we tuned a binary hyperparameter deciding if
gradient descent or ADAM is used for the within-task optimization. We also tuned the decision of

13



Under review as a conference paper at ICLR 2020

whether all embedding layers are finetuned or, alternatively, the embedding is held fixed and only the
linear layer on top of it is optimized. Finally, we tuned the number of finetuning steps that will be
carried out.

We also tried two different image resolutions: the commonly-used 84x84 and 126x126. Finally, we
tuned the learning rate schedule and weight decay and we used ADAM to train all of our models. All
other details, dataset splits and the complete set of best hyperparameters discovered for each model
are included in the source code.

.5 COMPLETE MAIN RESULTS AND RANK COMPUTATION

Rank computation We rank models by decreasing order of accuracy and handle ties by assigning
tied models the average of their ranks. A tie between two models occurs when a 95% confidence
interval statistical test on the difference between their mean accuracies is inconclusive in rejecting
the null hypothesis that this difference is 0. We ended up not observing any such ties in the set of
accuracies of our experiments, but our recommendation is that this test is ran to determine this. As
mentioned earlier, our source code will include this computation.

Complete main tables For completeness, Table 2] presents a more detailed version of Table[T] that
also displays confidence intervals and per-dataset ranks computed using the above procedure.

.6 ANALYSIS OF PERFORMANCE ACROSS SHOTS AND WAYS

For completeness, in Figure 3| we show the results of the analysis of the robustness to different ways
and shots for the variants of the models that were trained on all datasets. We observe the same trends
as discussed in our Experiments section for the variants of the models that were trained on ImageNet.

k-NN baseline
Finetune baseline
MatchingNet
ProtoNet

fo-MAML g
30.6- fo-Proto-MAML @
] RelationNet o
5 2
8 t k-NN baseline
< 0.4- 0 Finetune baseline
O «==  MatchingNet
=== ProtoNet
0.2 == fo-MAML
== fo-Proto-MAML
0.0. | | | | | | | | | 0.0 | | | Relat‘ionNet 1
5 10 15 20 25 30 35 40 45 50 0 20 40 60 80 100
Way Shot
(a) Ways Analysis (b) Shots Analysis

Figure 3: Analysis of performance as a function of the episode’s way, shots for models whose
training source is (the training data of) all datasets.

.7 EFFECT OF TRAINING ON ALL DATASETS OVER TRAINING ON ILSVRC-2012 ONLY

For more clearly observing whether training on all datasets leads to improved generalization over
training on ImageNet only, Figure ] shows side-to-side the performance of each model trained on
ILSVRC only vs. all datasets.

We also computed the ‘element-wise’ difference between the main tables of results (trained on all
datasets - trained on ImageNet only). These differences are shown in Figure 5] A positive entry
indicates that the test performance on the corresponding datasets improved when using the variant of
the corresponding model that was trained on all training sources.

We notice that we do not always observe a clear generalization advantage in training from a wider
collection of image datasets. While some of the datasets that were added to the meta-training phase
did see an improvement across all models, in particular for Omniglot and Quick Draw, this was

14



Under review as a conference paper at ICLR 2020

vl 7 s 7 $9 7 ST 7 Sy 7 €'¢ 7 9% yued ‘5ay |

(D €0 IF6TIF | (9) 680FI LT | (L) OL'IFSOYT | (2 90 TFL86E | (S) 96°0F6L'8T | (£) 8O TFLI'SE | () 96'0FSS 6T 0DODSIN
(£) 80 1FZETS | (9) €6°0F8Y LE | (L) 9TIFSIYE | (1) 00 TFSE Y | (©) 8O TFLS'SS | (D ETITFHL99 | (S OU'TFITOF  SUSIS dyjed],
(1) L9°0FSH'88 | (9) 9L°0F809L | (L) 66°0FE6°0L | () 1L0FS898 | () 2L0FO06'18 | (£) 69°0FSTSS | () 19°0FLY €8 I9mo[] DOA
(DZI'IF66'IF | (9 80'1F9S2E | (L) 66'0F20 1T | (O €1'IFITOV | () vO TFOLEE | (©) ¥O IFII'8E | (1) 90'IFTI'LE 13ung
(1D 06'0FLS99 | (£) L6'0FSLT9 | (S) 61 TF0S0S | (2) 68°0F88+9 | (1) €O'TFIS09 | (9 9T TFSO LY | (L) SO'TF88 vy MBI Yomd
(@D T80FT6'L9 | (L) €L°0F9S9S | (9) #L°0F999S | (€) $8'0F81°S9 | (S) ¥L0F08°19 | (1) SSOFHI'69 | (1) 6L°0F8S €9 SaIMX3Y,
(1) S6'0FL6°69 | (9) 66°0FVI¥S | (WD) YL IFYT Ly | (© TOTFIOLY | (S) 00 TF0r9S | () SI'TFC86S | (£) T6'0FSE99 spag
(D LLOFYTPL | (1) €8°0F1L69 | (L) 06°0FILTS | (£) 98°0FFI'IL | () 96°0FLI'69 | (O LOTFE0TL | (9) T8 0F86'+9 1JeIoITY
(@D 6079828 | (1) 6L0FLS 98 | (9 OTIFI6IL | (©)TI'TFIS6L | (1) TOTFSTSL | (L) LETFILIL | (S) 80 TF09+L jo[SIuwQ
(D8O IFSSLY | (L) €6'0F680€ | (9) 20 1F9I¢TE | (2) SO TFOS Y | (S) 00 1F809¢€ | (£) 80 1F80° €y | () ¥6'0FSS'SE DIASTI
TAVIN-001d | 1NUone[dy | TAVIN-OJ |  19NOOId | JONSumojey | oumpunf | NN-Y

(quer) (9) 20uapyuod F (9,) AoBINdOY :POYISIA 90IMOS ISAL

'sjasejep [[e uo paurer) S[ApoN (q)
ST 7 8¢ 7 L9 7 T 7 'y 7 LT S yues 3y |

(D0 IFIFEr | O 10TFSI'6C | (WD ITTIFTSLT | @D OLUTFO0 LY | (1) 00 1F66+E | () 80 TFS09¢ | (S) 66 0FE0€ 0DO0DSIN
@QIUIF6LIS | 9 SOTFLYEE | (D YETFETEE | W OLUTFCLLY | (©) v TFO8 LY | (D €CTFS0°LI | (S) 61 TF6S +y  SUTIS oyjel],
(1) SL°0F98'98 | (9) €8°0F9L'89 | (L) 96'0FCH 99 | (©) LL'OFLTSS | (§) IL0FEI08 | (£) €L0FHI'SS | () 89'0FOL' €8 IoMO[ DOA
@ ITTFLELE | (9 +0TFSS0E | (LD 00 T1F0S €T | (D ITTFIL6E | (S) 00 TFLEEE | (©) 80 TFS6LE | () TO'TFIL9¢ 13un,
(D90 TFOLES | (©)80TTFOCEY | (VD) ¥TIFYT LT | (D) 80 TFI6'8Y | (S) 60 TFLY Ty | () STIFITEY | (9) 80'IF90°CE MBI YomQ
() 8LOFSL'LY | (L) 69°0FL6TS | (9) 08°0F0S9S | (€) £€8°0F9599 | (S) S80FSI¥9 | (1) ¥8°0F€S89 | () SLOFIE 99 SOINXIL,
@D 0 1FL899 | 9SO TFIS 6V | (L) SI'TFOI6Y | (1D IO TF6L'89 | (€) S60FITT9 | (b) STIFIOLS | () 00 TFEI'0S spag
(0 96'0F1€'SS | (9) €8°0F€LOF | (L) 06'0FOSHE | (£) 00 TFOI'ES | (1) €6°0FL6'8Y | (1) 6T 1F68°L9 | (S) 68°0F189 JeIoIy
(D SETF00°€9 | ()9 TFSESY | (9 6€T1FLY8E | (0) SETF86'6S | (1) STIFLTTS | (©) ¥SIF6T6S | (L) ST TFLOLE 0[S
(D SO'TFTI0IS | (L) 10 TF69FE | (9) T01F609¢ | (2) 80'ITF0S0S | (©) 0I'TF00SY | (b) O IFE] | () 10 TFE0 1+ DUASTI

TAVIN-0101d |

10N Uone[ay

*

TNVIN-OF |

JONO0I0I]

| joNSurmgoleiy |

QuN_UL]

NN-¥

(%) 20uapyuod F (9,) AoRINOOY :POYION

92INn0§ 189],

"AJUO TTOT-DWASTI UO pauten S[OPOIA (¥)

"1ASVIV-V.LAA UO S}NSAI UOHBIYISSE[O J0YS-Ma,] 7 d[qeL

15



Under review as a conference paper at ICLR 2020

Figure 4: Accuracy on the test datasets, when training on ILSVRC only or All datasets (same results

as shown in the main tables).

90- Fungi ~_ ILSVRC _ Traffic Sign _

Aircraft

80- - - 77

70- - - -
60- - -
40

i

?

v !”g

R N

1 **W ,,,,,-?

2@ 1 ﬁ ,,Iaﬁ 1= a
- ',,

MRV BUEREGE HEN

907QUIC|( Draw Omniglot o MSCOCO
80- - p

SANNNNNNN-

o

‘n\\\\\\\\\\\\\\\\\\v

n
i
¥

ill

ARNRINNNRNRNR.
SSSss s ssssSS
SNNNINNNNNNNN.
NANINIIINNRNRNN.-

e
NIINIRNRRRNRR
e

—
]
—
I
NNNNNRNNN
—
S
S
—
NN

B

NANNNRRRRR

RRRRRRh
ESSSSSSSSSSSSAY

;
? l
9
’ i
f

I?
g
1

CuU Blrds

i
7
?
5
1/
|?
ﬁ

y
!

L

————

SRETa—

é
1
7
1
4.

“<

ANANNNRRRNRRRRN

GG Flower

1
113
i
1113
113

Textures

SANRNINNNNNNNNRNRNRN
e

e

L

‘L\\\\\\\\\\\\\\\\‘

ANNNNANNNRNRNRR
e
el
AMIIIIIRNINRRRRN
——

SRINIRNNRNR

Model
k-NN baseline
Finetune baseline
MatchingNet
ProtoNet
fo-MAML
fo-Proto-MAML
RelationNet

Train Source

ILSVRC-2012
All datasets

Figure 5: Accuracy improvement on the test datasets, when training on all datasets instead of ILSVRC

only.

50- Fungi ~_ ILSVRC _ Traffic Sign _ _

40- - - - - -
30- L - L - .
20- - - :
10- - i :
_£f"+*-"f’l"**ﬁF‘ R
—20- J . 5
50- Quick Draw =~ Omniglot = =~ MSCOCO

40-
30-

i B
—10- - 5
—20- L L A

el I|I| |
oy I II il :

Aircraft

CU Birds

16

VGG Flower

$,ﬁ*i*l

Textures

Model
k-NN baseline
Finetune baseline
MatchingNet
ProtoNet
fo-MAML
fo-Proto-MAML
RelationNet



Under review as a conference paper at ICLR 2020

not true across the board. In fact, in certain cases the performance dropped. We believe that more
successfully leveraging diverse sources of data is an interesting open research problem.

.8 EFFECT OF PRE-TRAINING VERSUS TRAINING FROM SCRATCH

For each meta-learner, we selected the best model (based on validation on ImageNet’s validation
split) out of the ones that used the pre-trained initializaiton, and the best out of the ones that trained
from scratch. We then ran the evaluation of each on (the test split of) all datasets in order to quantify
how beneficial this pre-trained initialization is. We performed this experiment twice: for the models
that are trained on ImageNet only and for the models that are trained on (the training splits of) all
datasets.

The results of this investigation were reported in the main paper in Figure [Ta] and Figure [Tb] for
ImageNet-only training and all dataset training, respectively. We show the same results in Figure 6}
printed larger to facilitate viewing of error bars. For easier comparison, we also plot the difference in
performance of the models that were pre-trained over the ones that weren’t, in Figures [7a and [75]
These figures make it easier to spot that while using the pre-trained solution usually helps for datasets
that are visually not too different from ImageNet, it may hurt for datasets that are significantly different
from it, such as Omniglot, Quickdraw (and surprisingly Aircraft). Note that these three datasets
are the same three that we found benefit from training on All datasets instead of ImageNet-only. It
appears that using the pre-trained solution biases the final solution to specialize on ImageNet-like
datasets.

90. Fungi  _ ILSVRC  TrafficSign  Aircraft VGG Flower
80- | | | -
20 [ ] [ ] [ ] -] ; ;77-MMtO(:1'eINt
60- - - - - A 7- atchingNe
1 [ ] [ ] [ ] A1
50 70/ N7 07 mm ProtoNet
20 o T r,;,r,wu
W T ,77???7’77??}227?????,,,???2,-f0—MAML
BVl YUV vhiiby vviey vvivv
ggrﬂglgga42;,?7;,3?47;3,2’7Jgggﬁ—fo-Proto-MAML
MV ENE BVEEE VUG BEVEEY GULEY s reatonne
gp. Quick Draw = Omniglot = MSCOCO = = CUBirds = Textures
% : o o o :
60- - - @B - = - izl z -
" wl . "BV .. ¥Vl
50 5 g g ; ; ? [ é é G é ? % g 7 g ; Initialization
I? //I?;gégg I;I% ?Ig ;"%éé?"'2?%?%-Pre-trained
7 BV ] 7 /I: v - WV W W) = From scratch
| ,,224 i zzhzz,aezaa,z:zea
(a) ImageNet.
100.  Fungi _ . ILSVRC _ _TrafficSign = _ Aircraft _ VGG Flower
Model
80- - - - . b
T ¢g7¢§-MatchingNet
601 [ ] iz . é%?éﬁ?é;?- ProtoNet
0 g - : ggﬁg% g;,g——gg?ﬁ%—fo-mm
zorlgg %Ig I; I’ ;2 ;glg él’ g g? ¥ g 7 g g—-fo-Proto-MAML
oMz 2'2 5. W07 f % 17 2 i1z | 2 5. W /’ 7 wmm RelationNet
U

100. Quick Draw = Omniglot =~ MSCOCO = CUBirds = Textures
80- L
60-; L
40, ? i % 7 Initialization
? A 7 wmm Pre-trained
20 9 7 7 ? w4 From scratch
0- /

NN

NNNNANNNNNRNNNNNS
NN\

S
AANRNANNARNRNRRY
—
ANANRRRARNNRE
NRRIARRNNNRR®
ARRMANRNNNNRNRN
ANEARANARALRNRANANN Y
S
ANNNANNNRNNK

NN\
\\N

T . ]

1
% 7
i P ] 7’
™ ﬁ;”
b HERRE EEAE
111118 Rl

4 A
(b) All datasets.

Figure 6: Comparing pre-training to starting from scratch. Same plots as Figure and Figure
only larger.

.9 EFFECT OF META-LEARNING VERSUS INFERENCE-ONLY
Figure 8] shows the same plots as in Figures [Te]and [Tf]but printed larger to facilitate viewing of error

bars. Furthermore, as we have done for visualizing the observed gain of pre-training, we also present
in Figures [9a) and [9b| the gain observed from meta-learning as opposed to training the corresponding

17



Under review as a conference paper at ICLR 2020

15 Fungi _ _ ILSVRC _ Traffic Sign = Aircraft VGG Flower 25. Fungi  ILSVRC _ Traffic Sign = Aircraft VGG Flower
--. . ' Model ig X o ] X Model
- mmm MatchingNet [ : [ ] [ ] _ mmm MatchingNet
°iﬁﬁ+ﬁ i - I-rﬁi -i --i - ProtoNet S i. ..I T e - . . _mm= ProtoNet
710 - " mmm fo-MAML O-L‘ - i - L . B (TN P Fpivon
15 ] | ] ] : : " mmm fo-Proto-MAML ;5 ] L X . . ] - mmm fo-Proto-MAML
—20. | | | ] | | | ] _ mmm RelationNet ,15: ] [ ] [ [ ] _ mmm RelationNet
15.Quick Draw . Omniglot ~ MSCOCO . . CUBirds _  Textures . 25. Quick DrawA B Omnlglot .. MSCOCO . . CUBirds _ _ Textures _
10- | | | | | - A 20- - -
i rm® T TN T T] B walll. 10- ] ' ' I II
- . - = » » » ' I an i = .ni &
~10- o | o | A _5_1.- [ ] l
_15. o | o - A ~10- [ ]
~20. . . . . ! -1s.
(a) The gain from pre-training (ImageNet). (b) The gain from pre-training (All datasets)

Figure 7: The performance difference of initializing the embedding weights from a pre-trained
solution, before episodically training on ImageNet or all datasets, over using a random initialization
of those weights. The pre-trained weights that we consider are the ones that the £-NN baseline
converged to when it was trained on ImageNet. Positive values indicate that this pre-training was
beneficial.

inference-only baseline, as explained in the Experiments section of the main paper. This visulization
makes it clear that while meta-training usually helps on ImageNet (or doesn’t hurt too much), it
sometimes hurts when it is performed on all datasets, emphasizing the need for further research into
best practices of meta-learning across heterogeneous sources.

90- Fungi ~_ ILSVRC _ Traffic S|gn _Aircraft VGG Flower
gg: [ ] A Model
60- . mmm MatchingNet
50- -
s ww Wi 111 |E =
il I%ﬁ IE |§ |g Iz % |g |§ | i
wig W YUV o % A1
90. Quick Draw, _ Omniglot = = MSCOCO _ = CUBirds _ _ Textures
80- L
70- -
30/ ? ? % / ? ? . g mmm Meta-training
%8: % % g g g I‘ / g é A / g w7, Inference-only
0- , i

(a) ImageNet.
90- Fungi ~_ ILSVRC _ _Traffic Slgn _ Aircraft VGG Flower
8o [ ] [ ] ? ? g / Model
60- 5 / mmm MatchingNet
50: % - é / mmm ProtoNet
gglg I? I I I I Ig I? I é I/ I g % N P AL
#1181 Aéé%,/g 11
g0. Quick Draw __ Omniglot = MSCOCO Birds = = Textures
80- o wl el W
2 HEN -
111118 ;w j
30 / % % E % % 7z 0% / / 2 - mmm Meta-training
201 4 7 % 1 g % % ’ % % / / g / w  Inference-only
13444;:444::44 1 811

(b) All datasets.

Figure 8: Comparing the meta-trained variant of meta-learners against their inference-only counter-
part. Same plots as Figure [Te]and Figure|[Tf} only larger.

.10 FINEGRAINEDNESS ANALYSIS

We investigate the hypothesis that finer-grained tasks are more challenging than coarse-grained ones
by creating binary ImageNet episodes with the two classes chosen uniformly at random from the
DAG’s set of leaves. We then define the degree of coarse-grainedness of a task as the height of
the lowest common ancestor of the two chosen leaves, where the height is defined as the length of

18



Under review as a conference paper at ICLR 2020

20- Fungi ILSVRC _ Traffic Sign . Aircraft VGG Flower . 3s.  Fungi  ILSVRC  Traffic Sign  Aircraft VGG Flower
15 | I I A Model 10 | - - - A Model
0 i i i i _ == Matching Networks 5. | A i - s - . mmm Matching Networks
s - == Prototypical Networks 0-, - ! [ 1 .. - i * wmm Prototypical Networks
i " i 1 ¥ fo-Pr -MAML - |
oi - P B [ *i- -+— = fo-Proto. __13! -- . m= fo-Proto-MAML
i i i i ! ! To [ [ ] [ ] [ ] .
20.Quick Draw . Omniglot _  MSCOCO _ _ CUBirds _ _ Textures _ 15. Quick Draw _ _ Omniglot _ . MSCOCO _ . CUBirds _ . Textures _
15 - - - - . 10- . .
0 , , , \ , N oML -
- B HE. 0 BlE B, S gEmTr Tms e
0 5 .+ ; S -+ ~10- . - - -
s = O o
i i i i i i ) [ ] [ ] [ ] [ ]
(a) The gain from meta-training on ImageNet. (b) The gain from meta-training on All datasets.

Figure 9: The performance difference of meta-learning over the corresponding inference-only
baseline of each meta-learner. Positive values indicate that meta-learning was beneficial.

0.90-

0.95-

20.85- >
® I
5 Model So0.90 e
S o
k-NN baseline gl
£0.80 AN BEECEING g K-NN baseline
Finetune baseline Finetune baseline

MatchingNet
ProtoNet

MatchingNet
ProtoNet

o

9

G
o
@
a

fo-MAML 0.80- fo-MAML
fo-Proto-MAML fo-Proto-MAML
RelationNet RelationNet
0.70, - 0.75, . . . B -
6 0 2 8 10 12 14

3 4 4 6
Height of Lowest Common Ancestor Height of Lowest Common Ancestor

(a) Fine-grainedness Analysis (on ImageNet’s test (b) Fine-grainedness Analysis (on ImageNet’s train
graph) graph graph)

Figure 10: Analysis of performance as a function of the degree of fine-grainedness. Larger heights
correspond to coarser-grained tasks.

the longest path from the lowest common ancestor to one of the selected leaves. Larger heights
then correspond to coarser-grained tasks. We present these results in Figure[T0] We do not detect a
significant trend when performing this analysis on the test DAG. The results on the training DAG,
though, do seem to indicate that our hypothesis holds to some extent. We conjecture that this may be
due to the richer structure of the training DAG, but we encourage further investigation.

19



	Introduction
	Background
	Meta-Dataset: A New Few-Shot Classification Benchmark
	Meta-Dataset's Data
	Episode Sampling

	Related Work
	Experiments
	Conclusion
	Recommendation for reporting results on Meta-Dataset
	Details of Meta-Dataset's Sampling Algorithm
	Datasets
	Hyperparameters
	Complete Main Results and Rank Computation
	Analysis of Performance Across Shots and Ways
	Effect of training on all datasets over training on ILSVRC-2012 only
	Effect of pre-training versus training from scratch
	Effect of meta-learning versus inference-only
	Finegrainedness Analysis


