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ABSTRACT

A simple method for obtaining uncertainty estimates for Neural Network clas-
sifiers (e.g. for out-of-distribution detection) is to use an ensemble of indepen-
dently trained networks and average the softmax outputs. While this method
works, its results are still very far from human performance on standard data
sets. We investigate how this method works and observe three fundamental lim-
itations: “Unreasonable” extrapolation, “unreasonable” agreement between the
networks in an ensemble, and the filtering out of features that distinguish the
training distribution from some out–of–distribution inputs, but do not contribute
to the classification. To mitigate these problems we suggest “large” initializa-
tions in the first layers and changing the activation function to sin(x) in the last
hidden layer. We show that this combines the out-of-distribution behavior from
nearest neighbor methods with the generalization capabilities of neural networks,
and achieves greatly improved out-of- distribution detection on standard data sets
(MNIST/fashionMNIST/notMNIST, SVHN/CIFAR10).

1 INTRODUCTION

When a neural network classifies inputs, we often need to have some measure of the uncertainty
involved in the prediction. In particular, in safety critical applications we would like to know when
the classifier received an input that is different from the inputs it has been trained on - in such cases
it could be dangerous to just use the “best guess”, instead we may want to choose some safe action
or involve a human.

One solution for this “out-of-distribution detection” problem could be to add a label “unknown” and
augment the training set with inputs that do not belong to any of the labels of the classifier and which
get the new label “unknown”. However, the danger is that the classifier learns the particular type of
“known unknowns” it was trained on and does not generalize to the “unknown unknowns”. To avoid
this, we treat out-of-distribution detection as a “one class classification” problem, i.e. we want to
learn the input distribution without help of out of distribution inputs.

The simplest approach is to use the softmax output of a neural net as a confidence measure. It is
well known that the softmax output tends to be “overconfident”, so we cannot interpret it directly
as a probability for the chosen class. However, it still tends to be more confident for samples from
the correct distribution than for outliers, so setting a threshold for the softmax output can to some
extent distinguish between “in distribution” and “out-of-distribution” samples. This is the “baseline
method” for outlier detection suggested in (Hendrycks & Gimpel, 2017).

In (Lakshminarayanan et al., 2017) this baseline is improved by using an ensemble of classifiers
(and adversarial training): Often each random initialization of a neural network gives an overconfi-
dent classifier, but different classifiers disagree - averaging the softmax output over an ensemble of
classifiers then gives an improved signal.

Other, more computationally demanding approaches are Bayesian Neural Networks ((Neal, 1996),
(Barber & Bishop, 1998), (Blundell et al., 2015)), nearest neighbor methods (e.g. (Mandelbaum &
Weinshall, 2017), (Jiang et al., 2018), (Papernot & McDaniel, 2018), (Frosst et al., 2019)). For some
further (less closely) related works, see appendix A.
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We investigate limitations of the “ensemble averaged softmax output” method, as this seems to
hit the sweet spot of being easy and fast, but still giving good results. To overcome the observed
limitations and further improve this method, we propose two changes:

• Changing the activation function of the last hidden layer to the sin(x) function.
(We will see in the next section how this can guard against overgeneralization.)

• Use larger than usual initialization, to increase the chances of obtaining more diverse net-
works for an ensemble.

In the next three sections we go through three observed problems with ensembles of ReLU net-
works and explain how these changes mitigate them, and in the following sections we evaluate the
suggested changes on standard data sets (MNIST, CIFAR10, etc.).

We evaluate this uncertainty mainly with view to out-of-distribution detection: If we have meaning-
ful uncertainties, the classifier should in particular “know when it does not know the answer”. This
means it should display uncertainty for inputs that do not “belong to the same type of input” as the
training examples. By selecting different thresholds for the uncertainty, we can plot the ROC curve
by recording for each threshold the fraction of samples below the threshold for “in distribution” (x)
and for “out-of-distribution” (y) inputs. In particular, figure 1 gives this evaluation for our method
against the standard ensemble methods on two standard data sets.

Figure 1: ROC curves for networks ensembles trained on MNIST,
evaluated on notMNIST (left) and fashionMNIST (right).
x-axis: MNIST samples recognized as not belonging to MNIST,
y-axis: notMNIST samples recognized as not belonging to MNIST.

2 PROBLEM: “UNREASONABLE” EXTRAPOLATION

We first look at the simplest possible example of classification: The training set consists only of one
point x0 ∈ Rd which has label “1” (we assume there is another label, for which we do not have a
sample). Training standard ReLU networks with one hidden layer on just one point x0 = 2 ∈ R we
get something like figure 1: Gradient descent finds a simple functions describing the data, which will
(with very high probability) be an increasing function of x. So for larger values of x the network will
become arbitrarily certain that the label of x should also be “1”. (See appendix C for more details.)

Figure 2: Logits and probabilities from 10 randomly initialized ReLU–networks (left) and Fourier–
networks (right). x-axis: Input x, y-axis: Estimated logits/probabilites for input x.

It has been observed in (Hein et al., 2018) that this is true in general: Given any ReLU network
trained on some data for a classification problem in Rd, it will describe a piecewise linear function.
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If we look at the values of this function along a ray to infinity, this will be a linear function when we
are far enough from the origin, and in general this means the network will become arbitrarily certain
of its classification for all points on the ray far enough from the origin. This is clearly not desirable,
we would rather get a low confidence when we are far from the training data. (Here “far from the
training data” is a convenient aspect that can easily be checked mathematically. Since the data are
often bounded, it is actually more relevant in practice that this behavior starts as we leave the range
of the training data. As an illustration, see figures 3 and 4.)

Going back to our simplest possible special case, what should our confidence be that other points
belong to the same label? Of course, there is no unique “correct” answer, but a reasonable model
could be that our confidence decays like a Gauss function around this point ~x0, i.e. is proportional
to

e−|~x−~x0|2/2σ2

(1)

for some σ that defines the scale on which our confidence decays.

One way to force such a decay would be to use directly Gauss functions (equation 1) as activation
functions, which leads to RBF networks which we could consider as a form of nearest neighbor
methods. While they recognize reliably points that are not close to one of the ~x0 in (equation 1),
they do not generalize as well as ReLU networks, so we will use a more indirect approach.

Using that the Fourier transform of such a Gauss function is again of this shape, we can write
equation 1 also as an expectation:

e−|~x−~x0|2/2σ2

= E~w∼N (0,Σ)

[
cos
(
~w · (~x− ~x0)

)]
,

where Σ is the diagonal covariance matrix σ−2 · I . When we approximate the expectation by a finite
sum over N samples ~wi from N (0,Σ) we get an expression of the form

f(x) =

N∑
i=1

ui · cos(~wi · ~x+ bi)

where ui = 1/N and the bi are chosen such that the cos(~wi · ~x0 + bi) = 1. This function can be
interpreted as the output of a neural net with one hidden layer of N neurons with activation function
cos(x) (we will later shift the phase bi and use sin(x)). (The output is one dimensional since we
only care about the logits for the one label that appears in our training set.) This is the main idea in
the proof of the following result (see appendix C for details and proof):

Proposition 1: Assume the weight vectors ~wi are sampled from a normal distribution N (0,Σ) and
then fixed, the numbers bi and w′i are sampled independently from some distribution (not identically
zero) with finite second moments (e.g. a normal distribution) and then trained on one data point ~x0

with label 1, then Gradient Descent (for the usual cross-entropy loss) will make the network’s output
converge to a function that is approximately proportional to e−~x

T Σ~x/2. This approximation becomes
exact when the number of neurons approaches infinity, or when we take the expected value. �

We also have for general training sets (see appendix C for a proof):

Proposition 2: Under the same idealized conditions (infinite number of neurons, weights ~wi frozen),
but arbitrary finite training set, and assuming the training converged, the function goes to 0 for
|~x| → ∞. �

To get an exact formula, we froze the weights ~wi. In practice we would train them as well, but at
least experimentally we do not see a difference when the ~wi are large: They do not get changed
by a large amount, and the result still looks the same. An example is given in the two plots of
the right side of figure 2. When we train on a training set of a few points, we see experimentally
that (under the same idealized conditions: Large number of hidden neurons, frozen ~wi) we get an
approximation to a weighted sum of Gaussian functions at these points (see appendix E). So it may
seem we constructed a complicated approximation to a nearest neighbor classifier.

We now switch the activation function to sin(x), this makes no difference for the function if we
compensate by shifting the bi by π/2, but the region of “small initialization” |~wi|, bi ≈ 0 is now
similar to a linear network: The input to the hidden neurons i will be ~wi · ~x ≈ 0, and sin(~wi · ~x) ≈
~wi · ~x. As training progresses, |x| usually increases. For ReLU activation, this increase is not
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bounded (if we are on the side ~wi · ~x > 0), but for sin the increase will usually stop at the first
maximum or minimum of sin, i.e. around ≈ ±π/2. This means that on the training set, features
(i.e. the output of the sin(x) neurons in the last hidden layer) get a large value by tuning the input
to around x ≈ ±π/2, which is difficult to achieve “accidentally” for input that is not in the training
set. By contrast, for ReLU (or tanh) activation, the inputs only have to achieve any high value.

So the Fourier network is somewhere between a ReLU network (small initialization) and a nearest
neighbor classifier (large initialization). In particular for intermediate initializations it generalizes
better than a nearest neighbor classifier, but still detects more outliers than a ReLU network, which
leads to an out-of-distribution detection which is better than either of them, as we will see later.

3 PROBLEM: “UNREASONABLE” SIMILARITY OF NETWORKS IN THE
ENSEMBLE

In section 2 we considered only one network, and saw that ReLU networks become arbitrarily certain
far from the training set. However, averaging the softmax output over an ensemble of networks
could fix that: Even if each network is very certain about its prediction, the ensemble could give low
confidence if the different networks disagree. This indeed happens, but less often than one might
expect. To illustrate this, we generate the input in figure 3, which has 20 clusters of points with
labels “red”, “green”, or “blue”.

Figure 3: A 2-dim classification problem. Left image: Input, color indicates label.
Following images: Average output of an ensemble of 50 networks.

We take an ensemble of 50 networks that were independently trained on the same data set, and use
the average “probabilities” for the 3 possible labels as RGB values for the corresponding pixels. In
the second image (ReLU networks) the ensemble is still overconfident in most of the area, whereas
on the right the ensemble of Fourier networks is only confident close to the input.

The reason for the overconfidence of the ReLU ensemble is that the individual networks tend to
agree even far from the sample points. On the other hand, the Fourier networks find different sparse
Fourier interpolations to describe the input, so their output only agrees close to the inputs, see figure
4.

For another 2-dimensional example, see also appendix M.

As a higher dimensional illustration, we train 50 ReLU networks with standard initializations on
MNIST images with labels from 0 to 4. Evaluated on MNIST images for labels 5 to 9, for a quarter
of all images all 50 classifiers agree on the same label (which is of course wrong, since it is one of
known labels 0 – 4). If we use smaller initialization, all 50 classifiers agree even for the majority of
inputs.

We can understand why this similarity of independently initialized networks is particularly prevalent
for “small” initializations: We expect that Gradient Descent finds local optima “close to” the initial
point. If we start with high random initializations, we may have a better chance that they are far apart
and converge to different solutions, but for small initialization the networks are likely to converge to
the same closest solution. This can be made precise for ReLU networks with one hidden layer and
“infinitesimal” initialization, see appendix G.

As a method between RBF networks and Fourier networks, we can also try using a Gauss function as
an activation function. While this does show some of the benefits of Fourier networks, extrapolating
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Figure 4: Predictions of 4 randomly initialized networks.
Upper row: ReLU networks, lower row: Fourier networks.

with Gauss functions predictably reverts to zero, whereas the sum of periodic functions become
essentially random far from the training distribution, resulting in far more diverse ensembles, see
appendix F, figure 10.

4 PROBLEM: CONSTANT FUNCTIONS ON THE TRAINING MANIFOLD

The third problem we see may be a general problem for using networks trained as classifiers also
for out–of–distribution detection: If we have a feature (function) that is constant on the training
distribution, but takes on other values out–of–distribution, we can use it to detect out–of–distribution
inputs. However, when we train for distinguishing between different parts of the input distribution,
such a feature is useless and may be dropped during training.

How do such features arise? One simple possibility is that some part of the input is constant. For
example, for MNIST images, the corner pixels are always white. But in notMNIST or fashionM-
NIST this is not always true (see e.g. the ”E” in figure 13), and thus this gives an easy way to detect
images not in MNIST.

Another possibility is that there may be different ways to come to the conclusion that an input gets
a certain label L. For example, for MNIST we usually can already guess the input has label ”0”
when we only see the top or the bottom half of the image. Let us say features f and g get value 1
if their clues to detect label L is present in the image, and are 0 otherwise. Then f − g is always 0
on the training set (as they are 1 if and only if the image is of label L), but it may take on different
values out–of–distribution. (For some preliminary experiments with forcing such different features
into separate networks, see appendix N).

Why would such features be “dropped”? If we start from small initialization, only weights that are
useful for distinguishing between labels will be increased. So e.g. if the corners are always white,
there is no incentive to change the weight that connects a corner pixel to the next layers, and if we
start from small initialization, these pixels will never contribute to the end result

So an obvious mitigation is to use larger initialization: Although the weights will still not be
changed, the pixel will likely have an influence on the end result, and in different networks of the
ensemble this influence will be different. So if the pixel is not white, this may lead to the different
classifiers disagreeing about the label.

5 EXPERIMENTS: TWO HIDDEN LAYERS, FULLY CONNECTED

We follow the example given in (Lakshminarayanan et al., 2017) and look at fully connected net-
works with two hidden layers of 200 neurons, which we train on MNIST. For the baseline network,
we use the model presented in (Lakshminarayanan et al., 2017), namely ensembles of networks with
ReLU activations and the standard initialization of the weights (σ =

√
2/n with n = 784 for the
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first layer, n = 200 for the second layer). For the Fourier network we change the activation function
of the deeper layer to sin and use σ1 = 0.75 and σ2 = 0.0002.

We train the networks on the training set of MNIST (60000 images), and evaluate them both on
the test set of MNIST and on other data sets, here we use notMNIST (see (Bulatov, 2011)) and
fashionMNIST (see (Xiao et al., 2017)) as the “outlier” data sets. For other data sets see appendix
J). The ROC curves that are obtained this way are presented in figure 1. The variation of these curves
is captured by figure 11 in appendix H.

While using an ensemble of ReLU nets gives a very substantial improvement over using one ReLU
net, the result is still not close to what humans would achieve: The classifiers used here have some
98% accuracy, if we allow not recognizing an image as MNIST digit in 2% of the cases, we might
expect to recognize that the printed letters of the alphabet are no handwritten digits in most cases, but
in the above graph 2% error rate for MNIST corresponds to “only” 80% success rate on notMNIST.
However, the ensembles of Fourier networks recognizes almost all of notMNIST images if we allow
2% error rate on MNIST.

In appendix L, figure 18 shows the corresponding results for training on the more challenging data
set fashionMNIST, the results are qualitatively the same.

In the literature, the performance of such “out-of-distribution” detection is often measured by the
area under the ROC curve, in Table 1 are numbers for MNIST vs. notMNIST.

Paper Method AUROC
(Hendrycks & Gimpel, 2017) baseline 93.2%

(Liang et al., 2018) outlier exposure 98.2%
ours Fourier networks 99.9%

Table 1: Area under ROC curve for MNIST vs. notMNIST

(Hendrycks & Gimpel, 2017) use a slightly larger network and GELU activation functions, (Liang
et al., 2018) train also on images that do not belong to MNIST, but also not on the “notMNIST”
images that are used for evaluation.

6 EXPERIMENTS: EFFECT OF INITIALIZATION VS. ACTIVATION

If we use only one hidden layer, we can only vary the σ for weights between the input and the hidden
layer (we keep the initialization of the output layer at the standard σ =

√
2/n). This makes it easy

to plot how much of the effect is due to “high initialization” vs. the choice of activation function.

We plot the area under the ROC curve in dependence on initialization: On the x-axis we plot log(σ),
on the y-axis the negative logarithm of the “error” := area above the ROC curve.

The error bars correspond to two standard deviations (we has used randomly sampled ensembles of
10 networks out of 50 pre-computed networks).

Figure 5: Influence of initialization and activation function
x-axis: log(σ), y-axis: − log(Area above ROC curve), higher is better
Left to right: notMNIST, fashion MNIST, flipped MNIST, masked notMNIST
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We see in the first three images of figure 5 that notMNIST images are the easiest to detect, and
flipped digits from MNIST are the most difficult, but in each case the Fourier networks clearly
outperform the ReLU networks. One reason why notMNIST is particularly easy probably is that
its images often can be recognized by just looking at pixels close to the corners: In MNIST these
pixels are always white, but in notMNIST often not. To eliminate this shortcut, we also consider
“masked” versions of notMNIST and fashionMNIST in which these pixels are set to white (see
appendix J for details). The rightmost image in figure 5 shows the corresponding graphs for the
masked version of notMNIST, see figures 16 and 17 in appendix K for masked fashionMNIST and
images in which each pixel is independently sampled from MNIST images, so each pixel has the
same value distribution as in MNIST. Even with the “looking at the corners shortcut” disabled, the
Fourier networks still perform well.

The vertical line corresponds to σ = 0.2, which seems to be close to optimal for Fourier networks
for all test sets. This corresponds to a standard deviation of around 1.4 for the input to the sin(x)
activation function (for our encoding of the MNIST pixels, which we scale into the interval [−1, 1]).

We also see that “larger than usual” initialization alone already helps for ReLU networks, but using
the sin(x) activation function gives a significant additional benefit.

(See also appendix M for more general initialization schemes.)

7 EXPERIMENTS: CONVOLUTIONAL NETWORKS ON SVHN VS CIFAR10

The same phenomena described in the previous section for fully-connected networks apply for con-
volutional networks as well, thus allowing one to reap the benefits of using Fourier networks for
out-of-distribution detection on more complex image datasets. To illustrate this, we train ensembles
of classifiers on the Street View House Numbers dataset (SVHN) (Netzer et al., 2011) and use CI-
FAR10 (Krizhevsky et al., 2009) as out-of-distribution samples. Once again, we compare against a
baseline of ReLU networks, first described as performing well on this task in (Lakshminarayanan
et al., 2017).

Three different convolutional architectures have been considered, with increasing complexity: i)
a 2-layer convolutional block followed by a fully-connected layer with ReLU activations and one
with Sine activations dubbed SimpleCNN, ii) a network containing the first 4 layers from the classic
VGG16 architecture (Simonyan & Zisserman, 2015) followed by a sine fully-connected layer re-
ferred to as ShallowVGG, and iii) the full-fledged VGG16 network. Appendix I contains the exact
hyperparameter values used for each network.

Table 2 presents the best results obtained using this setup for both the ReLU and Fourier networks.
Out-of-distribution samples are detected using two approaches, by selecting a threshold for either the
maximum probability as obtained after aggregating the outputs of the softmax layers in an ensemble
(presented in appendix O) or for the entropy of the ensemble’s prediction (presented in Table 2).
For evaluation, we used the area under the ROC curve (AUROC↑) as well as the false positive rate
at 80% true positive rate (FPR80↓). The arrows indicate how the metrics change as the model gets
better (i.e. ↑ if a larger value is better and ↓ if a smaller value is better). Additional results are
presented in appendix O.

Network Activation AUROC↑ FPR80↓
Simple CNN ReLU 93.2% 10.3%

sin(x) 96.6% 5.17%

Shallow VGG ReLU 93.5% 9.97%
sin(x) 95.8% 6.71%

VGG16 ReLU 95.7% 6.73%
sin(x) 95.9% 6.51%

Table 2: Out-of-distribution performance on CIFAR10, for ensembles of 5 models trained on SVHN.

One other way in which one can assess qualitatively the performance of an out-of-distribution
detection approach is by inspecting the distribution of the entropy of the softmax outputs over
in-distribution and out-of-distribution samples. Ideally, the entropy for in-distribution samples
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stays close to 0 (meaning that the model is certain about its predictions) while the one for out-
of-distribution samples is pushed as far from 0 as possible (the maximum entropy that a 10-class
classifier can achieve is log 10 ≈ 2.3).

Figure 6 shows how Fourier networks compare to regular ReLU networks for the Shallow VGG
architectures (with σ = 0.01 used as the standard deviation of the initialization distribution of the
last layer). The Fourier networks make lower certainty predictions about out-of-distribution samples.
The histograms for the ReLU networks are similar to the ones reported by (Lakshminarayanan et al.,
2017) on the same task using ensembles of networks, with or without adversarial training.

Figure 6: Entropy histograms for SVHN as in-distribution set (top row) and CIFAR10 as out-of-
distribution set (bottom row). Comparison between using sin(x) (right-hand side) or ReLU activa-
tions (left-hand side) on the last layer of a Shallow VGG network.

8 CONCLUSION

We suggested using the sin(x) activation function in the last layer, and larger than usual weight
initializations to mitigate three problems we saw in using ensembles of ReLU networks for out–of–
distribution detection:

• “Unreasonable” extrapolation:
While ReLU networks tend to get more confident away from the training set, Fourier net-
works get decreasing confidence in the average.

• “Unreasonable” agreement between the networks in an ensemble:
Larger initialization can make the networks more diverse, and the mixture of sin(x) func-
tions with different frequencies makes the networks more random away from the training
set.

• Filtering out of features that distinguish the training distribution from some out–of–
distribution inputs, but do not contribute to the classification:
Larger initialization can preserve such features, they do not influence the in–distribution
classification, but create diversity in the ensemble when applied to out–of–distribution in-
put.

We showed that this combines the out-of-distribution behavior from nearest neighbor methods with
the generalization capabilities of neural networks, and achieves greatly improved out-of-distribution
detection on standard data sets (MNIST/fashionMNIST/notMNIST, SVHN/CIFAR10).
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A APPENDIX A: MORE RELATED WORKS

Related to (Lakshminarayanan et al., 2017) is the suggestion of “MC dropout” (Gal & Ghahramani,
2016), here the ensemble of networks is replaced by one network, from which different predictions
are produced by Dropout at prediction time. This is faster in training and evaluation, but in general
not as effective as training the networks independently.

Another method that is also suggested in (Lakshminarayanan et al., 2017) is adversarial training, but
its effect seems to be small compared to the effect of using ensembles instead of single networks.

Using a RBF layer on top of a normal network was first suggested in (Y. LeCun & Haffner, 1998),
and is further investigated in (Zadeh & Hosseini, 2018).

While we are avoiding the use of “outliers” as training input, it can be helpful. A recent work in
this direction is (Hendrycks et al., 2019). “Interesting outliers” can also be generated by a GAN, see
(Lee et al., 2018) and (Kliger & Fleishman, 2018).

We focused on the use of uncertainties for out–of–distribution detection, and for this purpose it does
not matter whether the “probabilities” are really correct (as long as they are higher for in–distribution
than for out–of–distribution). However, if one wants “correctly scaled” probabilities, one can try to
learn the right scale from the training data, see (Pawlowski et al., 2018).

We used the classifying networks and their “probability” output also for one–class–classification, as
this is the computationally cheapest solution. But another intuitive approach is to use a generative
model to produce a probability that an input belongs to the training distribution (Bishop, 1994).
However, (Choi et al., 2018) and (Nalisnick et al., 2018) showed how this can fail and actually
produce higher probabilities for out of distribution inputs. An interesting method that fixes this
problem was recently described in (Ren et al., 2019).

For more works related to sin(x) as activation function, see the next section.

B ACCURACY AND TRAINING WITH SIN AS ACTIVATION FUNCTION

We did not investigate in detail the general behavior of the sin(x)–function as an activation function
with respect to the usual accuracy and training behavior, but in our experiments, we did not see any
significant difference to ReLU(x) networks inside the training distribution.

For example, the table below shows the classification accuracy of ensembles of 5 ReLU networks
and Fourier networks on the SVHN test set. For each case, the accuracy is reported for the ensemble
with the best out-of-distribution detection performance (the same that are presented in Table 2).

Network ReLU network ReLU ensemble Fourier network Fourier network ensemble
Simple CNN 89.38% 91.9% 89.50% 91.9%
Shallow VGG 89.10% 90.7% 89.60% 90.8%

VGG16 86.21% 90.6% 86.47% 90.5%

Table 3: Classification accuracy of individual networks (averaged over 5 instances) and ensembles
of 5 models on SVHN.

These observations are consistent with the remarks in chapter 6.3.3. “Other Hidden Units” in (Good-
fellow et al., 2016).

It is usually said that ReLU works much better than other activation functions for deep neural nets,
but that is less relevant for us since we only use sin(x) in the last layer.

Nevertheless, there may be special cases in which sin(x) behaves better or worse than ReLU, as has
been observed in e.g. (Sopena et al., 1999) and (Parascandolo et al., 2017).

Another way to formulate what a sin(x)–layer does, is that it computes a sparse Fourier approxima-
tion. Sparse Fourier approximation has been extensively studied (e.g. (Gilbert et al., 2002), (Candes
et al., 2006)), but in a quite different context: Usually the aim is to fully reconstruct a function from
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a small amount of input / output data. This is possible when the function is known to have a sparse
Fourier representation. In our context it is unlikely that our functions have a sparse Fourier repre-
sentation, and instead of trying to reconstruct the function the aim is rather to use different sparse
Fourier interpolations to show the uncertainty we have in areas where we do not have data.

C PROOFS OF PROPOSITION 1 AND 2

We study the Gradient Descent dynamic of a neural net with

• input ~x ∈ Rd

• one hidden layer with N neurons with activation function cos,
connected to the input layer by fixed weights ~wi ∈ Rd, i = 1, 2, ..., N

• one output f(~x) ∈ R, connected to the hidden layer with weights ui ∈ R.

The output of this neural net at the point ~x is given by

f(~x) =

N∑
i=1

ui · cos(~wi · ~x+ bi)

(We are using only one output dimension since for Proposition 1 we will be training it only on one
data point, so the outputs for other labels do not matter for now.)

We use the cross entropy loss, which is for a data set of one point ~x0 with the correct label given by

L = log
(

1 + e−f(~x0)
)
.

The derivative of L for some parameter θ (i.e. one of the bi or ui) is

∂

∂θ
L = − 1

1 + ef(~x0)
· ∂
∂θ
f(~x0).

With di := ~wi · ~x0 the last derivative is

∂

∂bi
f(~x0) = −ui · sin(di + bi)

∂

∂ui
f(~x0) = cos(di + bi)

We will assume “infinitesimal” learning rate, compensated by “infinitely many” steps, so we get a
differential equation for the parameters, and a learning “velocity” α(t). Then we get as differential
equation

∂

∂t
bi(t) = − α(t)

1 + ef(~x0)
· ui · sin(di + bi(t))

∂

∂t
ui(t) =

α(t)

1 + ef(~x0)
· cos(di + bi(t)) (2)

We assume we can train as long as we want, and we are not interested in how fast this procedure is
proceeding. This means we are only interested in the direction of the vectors in (equation 2) and can
as well look at the re-scaled vectors giving the differential equation

∂

∂t
bi(t) = −ui · sin(di + bi(t))

∂

∂t
ui(t) = cos(di + bi(t)) (3)

These equations are independent for each neuron i, we we can fix a neuron i and drop the subscript.
Introducing the function

c(t) := cos(d+ b(t))

12
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and using the dot notation for the time derivative we get the simple differential equation

ċ = u · (1− c2)

u̇ = c (4)

(See figure 7 for a plot of the corresponding vector fields.)

Figure 7: Vector fields for differential equations (equation 3), (equation 4)

Lemma 1: For (Lebesgue–)almost all (c0, u0) ∈ [−1, 1] × R the solution curve of (equation 4)
starting at t = 0 at (c0, u0) will go either to (1,+∞) or to (−1,−∞) for t→∞.

Proof of Lemma 1:

Since we have a symmetry (c, u) 7→ (−c,−u), it is enough to consider u0 ≥ 0.

For c0 ∈ {±1} we obviously have c constant and u(t) = u0 + t · c0 → ±∞.

So we will assume |c| < 1. For 0 < c0 < 1, 0 < u0 the c(t) is increasing, hence we must have
u(t) ≥ u0 + t · c0 → +∞. So we can assume also ut ≥ 1. Then c(t) must be above the solution to
the differential equation

ḟ = 1− f2,

which has the solutions

f(t) =
e2t − a
e2t + a

,

so we also must have 1 ≥ c(t) ≥ f(t)→ 1, hence c(t)→ 1.

For c0 = 0, u0 > 0 or u0 = 0, c0 > 0 we move for small t > 0 into the domain c > 0, u > 0, so we
know that for them as well we have c(t) → 1, u(t) → +∞. By symmetry, for u0 = 0, c0 < 0 we
will have c(t)→ −1, u(t)→ −∞.

For c0 = 0, u0 = 0 the functions c, u are constant 0, so this is a point we have to exclude.

So the remaining part is −1 < c0 < 0, 0 < u0. From (equation 4) we see that in that case ċ > 0 and
u̇ < 0. So a solution curve starting in the quadrant −1 < c0 < 0, 0 < u0 has to leave this quadrant
by either

13
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1. Going through a point c = 0, u > 0, (light blue in figure 7), or

2. Going through a point c < 0, u = 0, (light red in figure 7), or

3. approaching c = 0, u = 0 (red line in figure 7).

We have already seen that the first two possibilities lead to c(t), u(t) → 1,+∞ and c(t), u(t) →
−1,−∞ respectively, so it remains to show that the points that will approach c = 0, u = 0 are
a null set. In fact, we show that for each −1 < c0 < 0 there can be at most one u0 with that
property: From (equation 4) we see that the tangent to a solution curve through a point (c0, u0) has
slope u · c/(1− c). If we look at the vertical distance between two solution curves in our quadrant,
this means that with increasing c their distance also increases. Therefore, two curves with positive
distance at c0 cannot converge both to (0, 0), and for each given c0 there can be at most one u0 in
our quadrant such that (c0, u0) belongs to the third set above. �

With Lemma 1 we can now prove:

Proposition 1: Assume the weight vectors ~wi are sampled from a normal distribution N (0,Σ) and
then fixed, the numbers bi and w′i are sampled independently from some distribution (not identically
zero) with finite second moments (e.g. a normal distribution) and then trained on one data point ~x0

with label 1, then Gradient Descent (for the usual cross-entropy loss) will make the network’s output
converge to a function that is approximately proportional to e−~x

T Σ~x/2. This approximation becomes
exact when the number of neurons approaches infinity, or when we take the expected value.

Proof:

We assume that we have trained equation 2 for some time T long enough such that we are in the
situation of Lemma 1, by symmetry (changing ui 7→ −ui, bi 7→ bi + π if necessary) we can assume
that we have always ui � 0 and cos(di + bi) ≈ 1. Setting Z :=

∑
i ui, we have

1

Z
f(~x) ≈ 1

Z

N∑
i=1

ui · cos
(
~wi · (~x− ~x0)

)
(5)

≈ E~w∼N (0,Σ)

[
cos
(
~w · (~x− ~x0)

)]
(6)

(For the second approximation we use that we have sampled the ~wi independent from the ui.) This
is then the Fourier transform of the Gauss function and we get

1

Z
f(~x) ≈ e−~x

T Σ~x/2.

The approximation (equation 5) becomes exact when we train infinitely long, and (equation 6) when
we have infinitely many neurons (or take the expected value). �

Proposition 2: Under the same idealized conditions (infinite number of neurons, weights ~wi frozen),
but arbitrary finite training set, and assuming the training converged, the function goes to 0 for
|~x| → ∞.

Proof: We assume we trained on M points x1, ..., xM (with the correct label) and use a shallow
Fourier net with N ≈ ∞ neurons. We also assume that the training “converged” in the sense that
the bj converged (the uj keep growing). Analog to the above case of one training point, we have

∂L

∂bj
= −

M∑
k=1

1

1 + ef(~xk)
· uj · sin(~wj · ~xk + bj).

With

ek :=
1

1 + ef(~xk)
, E(~w) :=

M∑
k=1

ek · ei ~w·~xk

we can write this using the imaginary part =:

∂L

∂bj
= −uj=

(
eibjE(~wj)

)
.
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If E(~wj) = 0, the value of L does not depend on bj ; we first show that this only happens for a
(Lebesque–)Null set of ~w.

The real part <(E) is a real analytic function, and its value at 0 does not vanish since

E(0) =

M∑
k=1

ek > 0.

Therefore the zero set of <(E) has Lebesgue measure zero (an exercise in Calculus II, according to,
and solved in (Mityagin, 2015)). This implies that the even smaller zero setZ := {~w ∈ Rd |E(~w) =
0} also has Lebesgue measure zero.

Using the arg function
arg : C \ {0} → R/2πZ, r · eiφ 7→ φ

we can define the continuous function

B : Rd \ Z → R/2πZ, ~w 7→ arg(E(~w))

which makes
eiB : Rd \ Z → C, ~w 7→ ei·B(~w)

a well defined continuous function.

Now for ~w ∈ Rd \ Z and uj 6= 0

∂L

∂bj
= −uj=

(
eibjE(~wj)

)
depends on bj ∈ R/2π, and L is minimal if this derivative crosses from negative to positive values
around bj , which happens exactly when

bj =

{
−B(~wj) uj > 0

−B(~wj) + π uj < 0

So for almost all ~wj the weight ~wj determines the phase bj in a way that depends continuously on
~wj . With this our function becomes∑

j

|uj | · cos
(
~w · ~x−B(~wj)

)
and in the limit of infinitely many neurons this becomes

f(~x) := E~w∼N (0,Σ)

[
cos(~w · ~x−B(~w))

]
.

With the Gauss function

φΣ(~w) :=
e−~x

T Σ~x√
(2π)d · det(Σ)

giving the probability density function for N (0,Σ) this is

f(~x) =

∫
Rd

φΣ(~w) · cos(~w · ~x−B(~w)) d~w

= <
(∫

Rd

φΣ(~w) · ei ~w·~x · e−iB(~w) d~w
)

= <
(∫

Rd

φΣ(~w) · e−iB(~w) · ei ~w·~x d~w
)
,

which is up to a multiplicative constant the real part of the Fourier transform of the function

g(~w) := φΣ(~w) · e−iB(~w).

Since |e−iB(~w)| = 1 and φΣ ∈ L1(Rd), this function is also in L1(Rd), so the Riemann–Lebesgue
Lemma gives that f(~x)→ 0 for |~x| → ∞ as claimed. �
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D RELU NETWORKS IN THE SIMPLEST 1-D PROBLEM

After randomly initializing the weight wi ∼ N (0, σ) and bias bi ∼ N (0, σ) for neuron i, the
location of the resulting kink of ReLU(wi · x + bi) is at −bi/wi, so it is Cauchy-distributed with
center 0 and part of them will fall on the right hand side of x0, and another part on the left hand side.
Training the parameters tries to increase the value at x0, but it will not move the kink across x0. So
we will with high probability (probability 1 for infinitely wide networks) see the sum of functions
of which some increase for large positive x, others increase for very negative X , so in general the
expected picture is indeed curving upward on both sides, like the experimental result in the first
image of figure 2.

E FEW POINTS

We construct as small set of points around -5, -2, 3, 9:

S = {−5.3,−5.,−5.1, −2.1,−2.,−1.88, 3.2, 3.1, 8.95, 9.1, 9.22}

The Fourier approximation gives figure 8.

Figure 8: Fourier approximation for set S of four small clusters in 1D

F GAUSS NETWORKS

We can define “Gauss networks” for which we take as activation functions Gauss functions

g(x) := e−x
2/2

Figure 9: Example function g(0.4 · x− 1)

Using this function instead of ReLU(x) or sin(x) gives in the 2-dim toy example the figure 10
(compare with figure 4).
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Figure 10: Upper row: Input, Average output for ensemble of 50 ReLU / Gauss / Fourier networks.
Lower row: Predictions of 4 individual randomly initialized Gauss networks.

G RELU NETWORKS WITH INFINITESIMAL INITIALIZATION

For given training data and infinitesimal initialization, there are only finitely many possibilities to
which networks can converge (independent of network size), see (Maennel et al., 2018). The argu-
ments given in that paper show also that with increasing number of weights we should with high
probability end up at the same possibility.

H MORE RESULTS ON MNIST

H.1 VARIATION OF ROC CURVES FOR MNIST VS NOTMNIST AND FASHIONMNIST

The ROC curves obtained when considering MNIST as in-distribution and notMNIST samples as
out-of-distribution and using two-layer classifiers for training were shown in figure 1. To visualize
the variation of these curves, we compute 50 networks, and apply this method 10 times on ensembles
of 10 randomly selected networks, this gives the left hand graph in figure 11. (The right hand graph
in figure 11 shows the corresponding results for testing for “outliers” from fashionMNIST. We also
get similar figures when training on fashionMNIST, see appendix L.)

Figure 11: 10 random samples of ROC curves for networks ensembles trained on MNIST,
evaluated on notMNIST (left) and fashionMNIST (right).
x-axis: MNIST samples not recognized as belonging to MNIST,
y-axis: notMNIST samples recognized as not belonging to MNIST.

H.2 ENTROPY HISTOGRAMS

To compare our method also to the evaluation given in (Lakshminarayanan et al., 2017), we compute
for each image the entropy of the softmax output and plot a histogram over the MNIST and the
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notMNIST data set for the ensemble sizes 1,5,10. The first three columns of figure 12 (copied from
figure 3 in (Lakshminarayanan et al., 2017)) show the resulting entropy of the softmax output for
ReLU networks, first using the ensemble as is, then with additional adversarial training, and in the
third column the corresponding results for “dropout at test time”.

Figure 12: Histogram of the predictive entropy from figure 3 in (Lakshminarayanan et al., 2017)
(first three columns) compared to the corresponding Fourier networks (last column). Top row:
Known classes (MNIST), bottom row: Unknown classes (notMNIST).

For input from the MNIST test set (first row, blue curves) the entropy is almost always close to
0, i.e. the classifier puts almost all probability on one label. For input from the notMNIST data
set the classifier ensembles distribute the probability over several labels, resulting in much higher
entropy. Use of adversarial training (second column) increases the entropy even a bit further for the
notMNIST examples.

The fourth column shows the results for the corresponding Fourier networks. On the MNIST test set
the behavior is basically the same as the usual network, but on notMNIST even one network often
is unsure about the label, and an ensemble of 10 networks gives most of the time an entropy around
2 (the maximum would be log(10) ≈ 2.3 for the uniform distribution across all 10 labels).

H.3 CONVOLUTIONAL NETWORKS ON MNIST

Since MNIST vs. notMNIST is too easy to profit from better classifiers, we use a more difficult
problem: Train on classes 0-4, see whether we detect classes 5-9 as “out of distribution”.

For MNIST we use two convolutional layers with 7×7 windows and max pooling in 3×3 windows
with stride 2, and add two fully connected layers with 200 / 100 neurons. We also use data augmen-
tation by randomly cropping to 24 × 24 pixels. For the Fourier network we change the activation
function of the last layer to sin(x).

First experiments seem to indicate that a good way to choose the initialization for the different layers
of the Fourier network is to start with small initializations for the first layers and the last layer, and
then choose the second last initialization as large as possible (see appendix I.5 for details).
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With this setup we get for the area under the ROC curve:

Network standard ReLU ReLU, large init sin(x)
convolutional 95.9% 98.1% 99.1%
fully connected 95.2% 96.2 96.3%

Table 4: AUROC on MNIST vs notMNIST.

I DETAILED SPECIFICATIONS OF THE NEURAL NETWORKS AND THEIR
PARAMETERS

I.1 ONE DIMENSIONAL TOY EXAMPLE

• Input data:
Only one point at x0 = 2 with label ”1”.

• Network:
One hidden layer with 500 neurons, weights initialized with σ = 0.0632 ≈

√
2/500.

• Learning:
– ReLU: 500 steps with learning rate 0.001
– sin: 5000 steps with learning rate 0.001

I.2 TWO DIMENSIONAL TOY EXAMPLE

• Input data:
20 centers randomly chosen in −10 ≤ x ≤ 10, −10 ≤ y ≤ 10. To each center one of
the labels ”Red”, ”Green”, ”Blue” was randomly chosen. For each center (x, y) there were
50000 points randomly drawn from a normal distribution N (µ,Σ), where Σ = R ·D2 for
a randomly drawn rotation matrix R and D the diagonal matrix with entries σ1 = 0.2 and
σ2 = 0.5.

• Network:
One hidden layer with 500 neurons, activation function sin or ReLU.
Weights (including bias terms) initialized with σ = 12.

• Learning:
26 epochs, batch size 256, learning rate 0.02.

I.3 784 DIM INPUT, ONE HIDDEN LAYER (FULLY CONNECTED), TRAINED ON MNIST

Input: 764 pixels, normalized to be in [−1, 1]

Hidden layers: One hidden layer of 100 neurons

Initialization: σ ∈ {0.002, 0.01, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2, 0.22, 0.25,

0.275, 0.3, 0.35, 0.4, 0.5, 1.0, 2.0, 4.0, 6.0}
Batch size: 256

Learning rate: 200 epochs with 0.02, 200 epochs with 0.005.

I.4 784 DIM INPUT, TWO HIDDEN LAYERS (FULLY CONNECTED), TRAINED ON MNIST

Input: 764 pixels, normalized to be in [−1, 1]

Hidden layers: Two hidden layer of 200 neurons, first layer: ReLU, second layer: ReLU / sin.

Initialization:
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• For ReLU network: σ1 = 0.07, σ2 = 0.14.
• For Sine network: σ1 = 0.75, σ2 = 0.0002

Parameters searched: For ReLU this is the standard initialization σ = 2/
√

(n).

For Sine networks, initial tests gave the result that for a given σ2 the σ1 should be as large as
possible such that the training still converges. Then I tried σ2 ∈ {0.0002, 0.001, 0.01} and σ1 ∈
{0.25, 0.5, 0.75, 1.0}. Learning rate was 0.01.

Best results: (σ1, σ2, area under ROC curve for MNIST vs. notMNIST):

0.5, 0.0002, 0.99898

0.5, 0.001, 0.99908

0.5, 0.01, 0.99946

0.75, 0.01, 0.99974

0.75, 0.001, 0.99977

0.75, 0.0002, 0.99977

I.5 784 DIM INPUT, CONVOLUTIONAL NETWORKS, TRAINED ON MNIST

Input: 764 pixels, normalized to be in [−1, 1],

Preprocessing: 4 times random cropping from 28× 28 to 24× 24.

Hidden layers:

• Convolution, 7× 7 windows, 1→ 16 channels (to size 24× 24× 16)
• Max pooling in 3× 3 windows with stride 2 (to size 12× 12× 16)
• Convolution, 5× 5 windows, 16→ 32 channels (to size 12× 12× 32)
• Max pooling in 3× 3 windows with stride 2 (to size 6× 6× 32)
• Fully connected, 200 neurons, ReLU activation function
• Fully connected, 100 neurons, ReLU or sin(x) activation function

Batch size: 40

Learning rate: 25 epochs 0.002, 20 epochs 0.001, 20 epochs 0.0005

Initialization: Given by σ = (σ1, σ2, σ3, σ4).

For Fourier networks:

After initial attempts systematic evaluation of area under ROC curve for MNIST 0-4 vs. MNIST
5-9 for

• σ = (0.001, 0.001, σ3, 0.0001), best result: 99.1% for σ3 = 20

• σ = (0.002, 0.001, σ3, 0.5), best result: 99.1% for σ3 = 1.5

• σ = (0.1, 0.1, σ3, 0.001), best result: 98.8% for σ3 = 1.75.

For ReLU networks:

After initial attempts systematic evaluation of area under ROC curve for MNIST 0-4 vs. MNIST
5-9 for

• σ = (0.01, 0.01, σ3, 1.0), best result: 97.8% for σ3 = 0.3

• σ = (0.01, 0.01, σ3, 0.6), best result: 97.4% for σ3 = 0.3

• σ = (σ1, σ1, 0.1, 0.1), best result: 97.7% for σ1 = 0.9

• σ = (σ1, σ1, σ1, σ1), best result: 98.1% for σ1 = 0.55
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I.6 SIMPLE CNN, TRAINED ON SVHN

Input: 32x32x3-shaped images, with the pixels normalized to be in [0, 1],

Hidden layers:

• Convolution, 7× 7 windows, 1→ 16 channels (to size 32× 32× 16)

• Max pooling in 3× 3 windows with stride 2 (to size 16× 16× 16)

• Convolution, 5× 5 windows, 16→ 32 channels (to size 16× 16× 32)

• Max pooling in 3× 3 windows with stride 2 (to size 8× 8× 32)

• Fully connected, 200 neurons, ReLU activation function

• Fully connected, 200 or 100000 neurons, ReLU or sin(x) activation function

Batch size: 128

Learning rate: 0.01 (for 200 neurons on the last layer) and 0.001 (for 100000 neurons). Halved
every 40 epochs.

Best σ for initializing the last layer: 0.75.

I.7 SHALLOW VGG, TRAINED ON SVHN

Input: 32x32x3-shaped images, with the pixels normalized to be in [0, 1],

Hidden layers:

• the first 4 convolutional blocks of the VGG16 architecture (including the corresponding
max pooling layers) (to size 8× 8× 128)

• Fully connected, 200 or 100000 neurons, ReLU or sin(x) activation function

Batch size: 128

Learning rate: 0.001. Halved every 40 epochs.

Best σ for initializing the last layer: 0.01.

I.8 VGG16, TRAINED ON SVHN

Input: 32x32x3-shaped images, with the pixels normalized to be in [0, 1],

Hidden layers:

• all the convolutional blocks of the original VGG16 architecture (to size 1× 1× 512)

• Fully connected, 200 neurons, ReLU activation function

• Fully connected, 100 or 100000 neurons, ReLU or sin(x) activation function

Batch size: 128

Learning rate: 0.001. Halved every 40 epochs.

Best σ for initializing the last layer: 0.25 and 0.1 for sin(x) and ReLU respectively, for 100 neurons
on the last layer and 0.002 for 100000 neurons.

J DEFINITION OF THE DATA SETS

As input distributions that are “clearly different” from MNIST we can use the fashionMNIST ((Xiao
et al., 2017)) and notMnist ((Bulatov, 2011)) data sets, see figure 13.

We also use some constructed data sets:
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Figure 13: FashionMNIST (top) and notMNIST (bottom) data sets.

• “Masked fashionMNIST”:
In MNIST some pixels are always or almost always white, see figure 15. Out of fashion-
MNIST we derive this data set by setting all pixels to 0 (white) that have an average gray
value of below 0.01.

• “Masked notMNIST”:
This is derived from notMNIST in the same way.

• Circles and lines:
Two lines and two circles in random positions.

• Flipped MNIST:
Derived from MNIST by mirroring the digits 3,4,6,7,9 horizontally and the digits 4,6,7,9
vertically.

• IID noise:
Uniform iid pixel values from [0.256].

• Independent pixels:
Each pixel is randomly sampled from pixels at the same position at MNIST training images,
independent of the other pixel values.

• PseudoMNIST: Here we try to mimic not only the value distribution for each pixel, but also
local correlations. We start with an image in which each pixel is independently sampled
like in the previous distribution. Then we perform 1000 (PseudoMNIST1) or 1500 (Pseu-
doMNIST2) updates of the following form: We randomly select a 3× 3 window, and find
the closest match in 1000 randomly sampled images from MNIST, where “closest” is with
respect to the L2 distance of the 8 outer pixels of the 3 × 3 window. Then we replace the
middle pixel in our image with the value of the middle pixel in this “closest match” from
MNIST.

We will also use a “masked version” with a mask from MNIST: see figure 15 for the origin of the
mask, and figure 14 for examples.

K TRAINING ON MNIST, USING OTHER OUTLIER SETS

With these data sets we can again compute the ROC curves that show how well we can distinguish
the training set from the outlier set by setting a threshold on the “confidence”. As confidence we
take again the averaged softmax output of the predicted label over an ensemble of 10 classifiers,
in which the weights are randomly sampled from a normal distribution with mean 0 and standard
deviation σ. We consider the area above the ROC curve as “error” and plot− log(error) against the
initialization σ used for the networks. The resulting graphs are in figure 16.

In some cases, it is easy to distinguish MNIST samples from outliers by just looking at pixels close
to the corners: In MNIST these pixels are always white, but in notMNIST often not. To eliminate
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Figure 14: Constructed data sets.
Top row: Masked fashionMNIST, masked notMNIST, circles and lines, flipped MNIST.
Bottom row: IID noise, independent pixels, pseudoMNIST1, pseudoMNIST2.

Figure 15: Average pixel value ≤ thresholds 0, 0.0001, 0.001, 0.01, 0.1 on MNIST

this shortcut, we also consider “masked” versions of notMNIST and fashionMNIST in which these
pixels are set to white (see appendix J for details). In figure 17 we show the corresponding graphs
for the masked versions, and for images in which each pixel is independently sampled from MNIST
images, so each pixel has the same value distribution as in MNIST. Even with the “looking at the
corners shortcut” disabled, the Fourier networks still perform well.

L TRAINING ON FASHION MNIST

We use the same two hidden layer network architecture, initializations, and learning rates as in figure
1, but train on fashion MNIST, the result is in figure 18 below. Since this is a more challenging data
set, the same architecture gives not as good results as for MNIST (note the x-axis extends now
to 0.2), but the difference between ReLU and sin(x) networks is comparable, resulting in graphs
(figure 18) that look very similar to figure 1.

We can also plot the area under the ROC curve for different initializations of a network with one
hidden layer - this gives figure 19. Again this is qualitatively the same result as in figure 5 or in
figure16 above.

M INFLUENCE OF THE DISTRIBUTION FROM WHICH WEIGHTS ARE SAMPLED

Our method for getting a variety of networks relies on different randomly sampled initializations
giving different networks. According to (Sirignano & Spiliopoulos, 2018) this actually no longer
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Figure 16: Influence of initialization
x-axis: log(σ), y-axis: − log(error), higher is better
Test sets: Circles and lines, pseudo mnist, IID noise.

Figure 17: Influence of initialization, axes as in figure 5
Left to right: masked notMnist / fashion MNIST, pixels sampled independently from MNIST

happens if the number of neurons is very large: Then the networks converge to an idealized net-
work in which there are infinitely many neurons that have their weights distributed according to the
probability distribution from which we sample.

To illustrate this potential problem visually, we look at a very simple 2-dimensional toy example, in
which we can again plot how the classifiers generalize from the training distribution to other points,
like we did in section 3.

As input we use only a line, with labeled training samples given as blue dots in the middle and red
dots at the end (figure 20).

We will use a ReLU network with one hidden layer of 100 neurons to classify all points in the
surrounding area of the plane. Colors encode the “probabilities” that the softmax computes from the
output layer, with blue / red signifying “probability 0/1 of being blue”. The result is in figure 21.

As in section 3, we see that most points belong with high confidence to on of the labels (here they
are either blue or red), and there is only limited variation for classifiers initialized from different
randomly chosen weights.

If we change the activation function of the hidden layer from to ReLU to sin(x), we obtain different
results outside of the training distribution (figure 22). While individual points are still mostly red
or blue, i.e. the individual classifiers are still “overconfident”, the different classifiers now tend to
disagree and averaging the softmax outputs over several of them we get much more realistic confi-
dences for the Fourier networks than for the ReLU networks: Now the ensemble is only confident
about the label for points in the vicinity of the training inputs.

To demonstrate the potential problem with very wide networks, we now use 20000 neurons (instead
of the 100 we used in the above pictures). Now the results of different initializations become more
similar to each other, see figure 23.
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Figure 18: 10 random samples of ROC curves for networks ensembles trained on fashion MNIST,
evaluated on notMNIST (left) and MNIST (right).
x-axis: MNIST samples not recognized as belonging to MNIST,
y-axis: notMNIST samples recognized as not belonging to MNIST.

Figure 19: Influence of initialization, networks trained on fashion MNIST
x-axis: log(σ), y-axis: − log(error), higher is better
Test sets: Circles and lines, MNIST, notMnist.

So in this case, we can no longer rely on different sampling from the same distribution, but need
to change the distribution itself. For higher dimensional input, this effect may be more theoretical
because the number of neurons required to get into that regime is no longer realistic.

However, even for a moderate number of neurons it may make sense to vary the distribution of
initial weights from which we sample to obtain a greater diversity. Here is an example in our case
of 2-dimensional input, 100 neurons, ReLU activation:

The weights in the 2-dimensional case have 3 coordinates: Two for the direction and one for the bias.
We can now sample the “direction” weights according to a Normal Distribution with one standard
deviation σ1, and the “bias” weight according to a Normal Distribution with a different standard
deviation σ2. Different pairs (σ1, σ2) describe different distributions from which we initialize the
weights.

If we vary now our weight initialization by varying (σ1, σ2), the resulting networks seem to converge
to different classifiers, see figure 24.

In particular, the networks initialized by σ1, σ2 = (5, 5) could in theory contain the same initializa-
tions as the networks initialized by σ1, σ2 = (0.01, 1), but the emphasis shifts to different networks:
The latter give blue cones extending downwards most of the time, whereas such a result is not among
the 50 samples I obtained for σ1, σ2 = (5, 5).

So even for not extremely large networks it would make sense to restrict the distribution of weights
from which we sample in different ways to obtain a more diverse set of networks.
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Figure 20: Input for the 2-dim example.

Figure 21: ReLU networks, extrapolating from a line to 2d.
Left: Output of three example networks, right: average softmax output over 50 networks

Figure 22: Fourier networks, extrapolating from a line to 2d.
Left: Output of three example networks, right: average softmax output over 50 networks

Figure 23: Different Fourier networks with weights initialized by samples from same distribution,
20000 hidden sin-neurons

Figure 24: Ensemble average, 100 hidden ReLU-neurons
Left to right: σ1, σ2 = (3, 1), (0.01, 0.01), (5, 5) (0.01, 1)
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N SEPARATING DIFFERENT FEATURES FOR THE SAME LABEL

We try restricting the weights in a neural network classifier to certain subspaces – not only during
initialization, but throughout the training. The hope would again be that classifiers with different
restrictions develop different features which generalize in different ways to unseen examples, giving
more variety for out-of-distribution samples.

In the MNIST case, we evaluate two strategies of restricting the weights of the first layer:

• Only allow access to half of the pixels.
If each classifier sees only half of the image, they usually still can figure out which digit it
is:

Figure 25: Restricting MNIST input to half of the image

• Only allow access to “line detectors” with certain directions.
We implement this by convolution with a 7 × 7–matrix which corresponds to a stripe of a
certain direction. We allow 4 (of 10) directions per location, and to reduce the dimension
of the resulting weight space we subsample the locations to a grid, see figure 26. This again
gives a vector space of dimension which is roughly half of the original dimension.

Figure 26: Convolution with stripes in some directions, centered at some locations

This seems to give a significant increase of the area under the ROC curve in particular for the difficult
case “trained on 0-4, evaluate 5-9 as outliers”:

Area under ROC curve

“Outliers” sin sin with half input sin with stripes combined
MNIST 5-9 96.5% 97.3% 97.5% 97.6%
fashionMNIST 99.3% 99.5% 99.6% 99.7%
notMNIST 99.9% 99.9% 99.9% 99.9%

Same test with restriction to half images on fashionMNIST:
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The classifier is trained on fashionMNIST 0-4.

“Outliers” relu, large init relu, restr. sin sin, restr.
fashionMNIST 5-9 91.3% 92.5% 93.5% 94.3%
MNIST 94.2% 95.1% 98.9% 99.2%
notMNIST 93.4% 95.2% 99.6% 99.6%

We have also applied the same approach when training convolutional networks on SVHN. The
table below shows the area under ROC curve obtained with a Simple CNN and a Shallow VGG.
By applying a square mask on one of the corners of the image (top left, top right, bottom left,
bottom right) we obtain an ensemble of constrained classifiers that is slightly more robust to out-of-
distribution samples.

Model Original input Masked input
Simple CNN 96.6% 96.5%
Shallow VGG 95.8% 96.6%

O MORE EXPERIMENTAL RESULTS FOR SVHN VS CIFAR10

Figure 27 shows which are the regions of optimal initialization for the final fully-connected layer
for both ReLU and Fourier networks. Note that if the initialization is too large, gradient descent on
the Simple VGG Fourier network will sometimes fail to converge.

Figure 27: Influence of initialization on AUROC for SVHN, axes like in figure 5.

The distribution of the entropy of the softmax outputs over in-distribution and out-of-distribution
samples for a Simple CNN network is shown in Figure 28. Results are presented for both regular
ReLU and sin(x) activations for the Simple CNN architectures (with σ = 0.75 used as the standard
deviation of the initialization distribution of the last layer).

Table 5 presents the best results obtained using convolutional networks trained on SVHN for both
the ReLU and Fourier setup. Out-of-distribution samples are detected using two approaches, by
selecting a threshold for either the maximum probability as obtained after aggregating the outputs
of the softmax layers in an ensemble or for the entropy of the ensemble’s prediction. For evaluation,
we used the following metrics:

• the area under the ROC curve (AUROC↑)
• the false positive rate at 80% true positive rate (FPR80↓)
• the negative log-likelihood score (NLL↓)
• the Brier score (Brier↓)

In order to be closer to the ideal case, which is the premise for theoretical results proved above, we
also report numbers for the same network architectures with significantly more neurons on the final
fully-connected layer (i.e. 100,000). For each configuration, the table contains the numbers for the
model with the best value for the initialization σ. The dependency between the area under the ROC
curve and the initialization strength is presented in figure 27.
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Figure 28: Entropy histograms for SVHN as in-distribution set (top row) and CIFAR10 as out-
of-distribution set (bottom row). Comparison between using sin(x) (right-hand side) or ReLU
activations (left-hand side) on the last layer of a Simple CNN network.

Network Last Layer
Activation

Last Layer
Units

Last Layer
Init σ

AUROC↑
using max-p

FPR90↓
using max-p

AUROC↑
using entropy

FPR80↓
using entropy NLL Score↓ Brier Score↓

Simple CNN ReLU 100000 1 91.97% 12.89% 92.18% 11.82% 0.3303 0.0136
Simple CNN sine 100000 0.75 95.25% 7.80% 96.29% 5.55% 0.3324 0.0141
Simple CNN ReLU 200 0.75 92.89% 11.55% 93.23% 10.31% 0.3058 0.0123
Simple CNN sine 200 0.75 95.62% 7.38% 96.63% 5.18% 0.2895 0.0123
Shallow VGG ReLU 100000 0.25 94.76% 8.41% 95.85% 6.29% 0.3512 0.0149
Shallow VGG sine 100000 0.1 95.05% 8.34% 96.40% 5.67% 0.3094 0.0133
Shallow VGG ReLU 200 0.01 92.65% 12.21% 93.51% 9.97% 0.3261 0.0138
Shallow VGG sine 200 0.01 94.40% 9.56% 95.80% 6.72% 0.3184 0.0137
VGG ReLU 100000 0.01 95.56% 7.50% 96.43% 5.31% 0.2452 0.0091
VGG sine 100000 0.002 95.69% 7.20% 96.49% 5.05% 0.2728 0.0090
VGG ReLU 100 0.1 94.26% 9.77% 95.77% 6.73% 0.3348 0.0144
VGG sine 100 0.25 94.63% 9.07% 95.88% 6.52% 0.3286 0.0143

Table 5: Extensive experimental results for ensembles of 5 models trained on SVHN and evaluated
on CIFAR10 as out-of-distribution dataset.
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