
Under review as a conference paper at ICLR 2020

SCALE-EQUIVARIANT NEURAL NETWORKS WITH DE-
COMPOSED CONVOLUTIONAL FILTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Encoding the input scale information explicitly into the representation learned
by a convolutional neural network (CNN) is beneficial for many vision tasks
especially when dealing with multiscale input signals. We study, in this paper,
a scale-equivariant CNN architecture with joint convolutions across the space
and the scaling group, which is shown to be both sufficient and necessary to
achieve scale-equivariant representations. To reduce the model complexity and
computational burden, we decompose the convolutional filters under two pre-fixed
separable bases and truncate the expansion to low-frequency components. A further
benefit of the truncated filter expansion is the improved deformation robustness
of the equivariant representation. Numerical experiments demonstrate that the
proposed scale-equivariant neural network with decomposed convolutional filters
(ScDCFNet) achieves significantly improved performance in multiscale image
classification and better interpretability than regular CNNs at a reduced model size.

1 INTRODUCTION

Convolutional neural networks (CNNs) have achieved great success in machine learning problems
such as image classification (Krizhevsky et al., 2012), object detection (Ren et al., 2015), and semantic
segmentation (Long et al., 2015; Ronneberger et al., 2015). Compared to fully-connected networks,
CNNs through spatial weight sharing have the benefit of being translation-equivariant, i.e., translating
the input leads to a translated version of the output. This property is crucial for many vision tasks such
as image recognition and segmentation. However, regular CNNs are not equivariant to other important
group transformations such as rescaling and rotation, and it is beneficial in some applications to also
encode such group information explicitly into the network representation.

Several network architectures have been designed to achieve (2D) rotation-equivarianc (Cheng et al.,
2019; Marcos et al., 2017; Weiler et al., 2018b; Worrall et al., 2017; Zhou et al., 2017), and the feature
maps of such networks typically include an extra index for the rotation group SO(2). Building on
the idea of group convolutions proposed by Cohen & Welling (2016) for discrete symmetry groups,
Cheng et al. (2019) and Weiler et al. (2018b) constructed rotation-equivariant CNNs by conducting
group convolutions jointly across the space and SO(2) using steerable filters (Freeman & Adelson,
1991). Scale-equivariant CNNs, on the other hand, have only been studied in a less general setting
in the existing literature (Kim et al., 2014; Marcos et al., 2018; Xu et al., 2014). In particular, to
the best of our knowledge, a joint convolution across the space and the scaling group S has yet
been proposed to achieve scale-equivariance in the most general form. This is possibly because of
two difficulties one encounters when dealing with the scaling group: First, unlike SO(2), it is an
acyclic and unbounded group; second, an extra index in S incurs a significant increase in model
parameters and computational burden, which is further exacerbated by a lack of the counterpart of
“steerable filters” for the scaling group. Moreover, since the scaling transformation is rarely perfect in
practice (due to changing view angle or numerical discretization), one needs to quantify and promote
the deformation robustness of the equivariant representation (i.e., is the model still “approximately”
equivariant if the scaling transformation is “contaminated” by a nuisance input deformation), which,
to the best of our knowledge, has yet been studied in prior works.

The purpose of this paper is to address the aforementioned theoretical and practical issues in the
construction of scale-equivariant CNN models. Specifically, our contribution is three-fold:
1. We propose a general scale-equivariant CNN architecture with a joint convolution over R2and S ,

which is proved in Section 4 to be both sufficient and necessary to achieve scale-equivariance.
2. A truncated decomposition of the convolutional filters under a pre-fixed separable basis on the

two geometric domains (R2 and S) is used to reduce the model size and computational cost.

1

Under review as a conference paper at ICLR 2020

3. We prove the representation stability of the proposed architecture up to equivariant scaling action
of the input signal.

Our contribution to the family of group-equivariant CNNs is non-trivial; in particular, the scaling
group unlike the rotation group is acyclic and non-compact. This poses challenges both in theory and
in practice, so that many previous works on group-equivariant CNNs cannot be directly extended.
We introduce new algorithm design and mathematical techniques to obtain the first general scale-
equivariant CNN in literature with both computational efficiency and proved representation stability.

2 RELATED WORK

Mixed-scale and scale-equivariant CNNs. Incorporating multiscale information into a CNN rep-
resentation has been studied in many existing works. The Inception net (Szegedy et al., 2015) and
its variants (Szegedy et al., 2017; 2016) stack filters of different sizes in a single layer to address
the multiscale salient features. Building on this idea, the selective kernel network (Li et al., 2019)
utilizes a nonlinear learnable mechanism to aggregate information from multiple scales. Dilated
convolutions (Pelt & Sethian, 2018; Wang et al., 2018; Yu & Koltun, 2016; Yu et al., 2017) have also
been used to combine multiscale information without increasing the model complexity. Although the
effectiveness of such models have been empirically demonstrated in various vision tasks, there is
still a lack of interpretability of their ability to encode the input scale information. Group-equivariant
CNNs, on the other hand, explicitly encode the group information into the network representation.
Cohen & Welling (2016) proposed CNNs with group convolutions that are equivariant to several finite
discrete symmetry groups. This idea is later generalized in Cohen et al. (2018) and applied mainly
to the rotation groups SO(2) and SO(3) (Cheng et al., 2019; Weiler et al., 2018a;b). Although
scale-equivariant CNNs have also been proposed in the literature (Kim et al., 2014; Marcos et al.,
2018; Xu et al., 2014), they are typically studied in a less general setting. In particular, none of the
previous works proposed to conduct joint convolutions over R2 × S as a necessary and sufficient
condition to impose scale-equivariance, for which reason they are thus variants of a special case of our
proposed architecture where the convolutional filters in S are Dirac delta functions (c.f. Remark 1.)

Representation stability to input deformations. Input deformations typically induce noticeable
variabilities within object classes, some of which are uninformative for the vision tasks. Models that
are stable to input deformations are thus favorable in many applications. The scattering transform
(Bruna & Mallat, 2013; Mallat, 2010; 2012) computes translation-invariant representations that
are Lipschitz continuous to deformations by cascading predefined wavelet transforms and modulus
poolings. A joint convolution over R2 × SO(2) is later adopted in Sifre & Mallat (2013) to build
roto-translation scattering with stable rotation/translation-invariant representations. These models,
however, use pre-fixed wavelet transforms in the networks, and are thus nonadaptive to the data.
DCFNet (Qiu et al., 2018) combines a pre-fixed filter basis and learnable expansion coefficients in
a CNN architecture, achieving both data adaptivity and representation stability inherited from the
filter regularity. This idea is later extended by Cheng et al. (2019) to produce rotation-equivariant
representations that are Lipschitz continuous in L2 norm to input deformations modulo a global
rotation, i.e., the model stays approximately equivariant even if the input rotation is imperfect. To the
best of our knowledge, a theoretical analysis of the deformation robustness of a scale-equivariant
CNN has yet been studied, and a direct generalization of the result in Cheng et al. (2019) is futile
because the feature maps of a scale-equivariant CNN is typically not in L2 (c.f. Remark 2.)

3 SCALE-EQUIVARIANT CNN AND FILTER DECOMPOSITION

Group-equivariance is the property of a mapping f : X → Y to commute with the group actions on
the domain X and codomain Y . More specifically, let G be a group, and Dg, Tg, respectively, be
group actions on X and Y . A function f : X → Y is said to be G-equivariant if

f(Dgx) = Tg(f(x)), ∀ g ∈ G, x ∈ X.
G-invariance is thus a special case of G-equivariance where Tg = IdY . For learning tasks where
the feature y ∈ Y is known a priori to change equivariantly to a group action g ∈ G on the input
x ∈ X , e.g. image segmentation should be equivariant to translation, it would be beneficial to reduce
the hypothesis space to include only G-equivaraint models. In this paper, we consider mainly the
scaling-translation group ST ∼= S × R2 ∼= R × R2. Given g = (β, v) ∈ ST and an input image
x(0)(u, λ) (u ∈ R2 is the spatial position, and λ is the unstructured channel index, e.g. RGB channels
of a color image), the scaling-translation group action Dg = Dβ,v on x(0) is defined as

Dβ,vx
(0)(u, λ) := x(0)

(
2−β(u− v), λ

)
. (1)

2

Under review as a conference paper at ICLR 2020

*

*

*

*

*

*

(a) A special case of scale-equivariant CNN with
(multiscale) spatial convolutions.

*

*

*

(b) The general case of scale-equivariant CNN
with joint convolutions (Theorem 1).

Figure 1: (a) A special case of scale-equivariant CNN with only (multiscale) spatial convolutions. The previous
works on scale-equivariant CNNs (Kim et al., 2014; Marcos et al., 2018; Xu et al., 2014) are all variants of
this architecture. (b) The general case of scale-equivariant CNN with joint convolutions (Theorem 1) where
information transfers among different scales. See Remark 1 for more explanation.

Constructing scale-equivariant CNNs thus amounts to finding an architectureA such that each trained
network f ∈ A commutes with the group action Dβ,v on the input and a similarly defined group
action Tβ,v (to be explained in Section 3.1) on the output.

3.1 SCALE-EQUIVARIANT CNNS

Inspired by Cheng et al. (2019) and Weiler et al. (2018b), we consider scale-equivariant CNNs
with an extra index α ∈ S for the the scaling group S ∼= R: for each l ≥ 1, the l-th layer output
is denoted as x(l)(u, α, λ), where u ∈ R2 is the spatial position, α ∈ S is the scale index, and
λ ∈ [Ml] := {1, . . . ,Ml} corresponds to the unstructured channels. We use the continuous model
for formal derivation, i.e., the images and feature maps have continuous spatial and scale indices.
In practice, the images are discretized on a Cartesian grid, and the scales are computed only on a
discretized finite interval. Similar to Cheng et al. (2019), the group action Tβ,v on the l-th layer
output is defined as a scaling-translation in space as well as a shift in the scale channel:

Tβ,vx
(l)(u, α, λ) := x(l)

(
2−β(u− v), α− β, λ

)
, ∀ l ≥ 1. (2)

A feedforward neural network is said to be scale-equivariant, i.e., equivariant to ST , if

x(l)[Dβ,vx
(0)] = Tβ,vx

(l)[x(0)], ∀ l ≥ 1, (3)

where we slightly abuse the notation x(l)[x(0)] to denote the l-th layer output given the input x(0).
The following Theorem shows that scale-equivariance is achieved if and only if joint convolutions
are conducted over S × R2 as in (4) and (5).
Theorem 1. A feedforward neural network with an extra index α ∈ S for layerwise output is
scale-equivariant if and only if the layerwise operations are defined as (4) and (5):

x(1)[x(0)](u, α, λ) = σ

(∑
λ′

∫
R2

2−2αx(0)(u+ u′, λ′)W
(1)
λ′,λ

(
2−αu′

)
du′ + b(1)(λ)

)
, (4)

x(l)[x(l−1)](u, α, λ) = σ

(∑
λ′

∫
R2

∫
R

2−2αx(l−1)(u+ u′, α+ α′, λ′) ·

W
(l)
λ′,λ

(
2−αu′, α′

)
dα′du′ + b(l)(λ)

)
, ∀l > 1, (5)

where σ : R→ R is a pointwise nonlinear function.

We defer the proof of Theorem 1, as well as those of other theorems, to the appendix.

Remark 1. When the (joint) convolutional filter W (l)
λ′,λ(u, α) takes the special form W

(l)
λ′,λ(u, α) =

V
(l)
λ′,λ(u)δ(α), the joint convolution (5) over R2×S reduces to only a (multiscale) spatial convolution

x(l)[x(l−1)](u, α, λ) = σ

(∑
λ′

∫
R2

x(l−1)(u+ u′, α, λ′)V
(l)
λ′,λ

(
2−αu′

)
2−2αdu′ + b(l)(λ)

)
,

i.e., the feature maps at different scales do not transfer information among each other (see Figure 1a).
The previous works (Kim et al., 2014; Marcos et al., 2018; Xu et al., 2014) on scale-equivariant
CNNs are all based on this special case of Theorem 1.

3

Under review as a conference paper at ICLR 2020

Although the joint convolutions (5) on R2 × S provide the most general way of imposing scale-
equivariance, they unfortunately also incur a significant increase in the model size and computational
burden. Following the idea of Cheng et al. (2019) and Qiu et al. (2018), we address this issue by
taking a truncated decomposition of the convolutional filters under a pre-fixed separable basis, which
will be discussed in detail in the next section.

3.2 SEPARABLE BASIS DECOMPOSITION

We consider decomposing the convolutional filters W (l)
λ′,λ(u, α) under the product of two func-

tion bases, {ψk(u)}k and {ϕm(α)}m, which are the eigenfunctions of the Dirichlet Laplacian on,
respectively, the unit disk D ⊂ R2 and [−1, 1], i.e.,{

∆ψk = −µkψk in D,
ψk = 0 on ∂D,

and
{
ϕ′′m = −νmϕm in [−1, 1]

ϕm(−1) = ϕm(1) = 0.
(6)

In particular, the spatial basis {ψk}k satisfying (6) is the Fourier-Bessel (FB) basis (Abramowitz
& Stegun, 1965). In the continuous formulation, the spatial “pooling” operation is equivalent to
rescaling the convolutional filters in space. We thus assume, without loss of generality, that the
convolutional filters are compactly supported as follows

W
(1)
λ′,λ ∈ Cc(2

j1D), and W
(l)
λ′,λ ∈ Cc(2

jlD × [−1, 1]), ∀ l > 1.

Let ψj,k(u) := 2−2jψk(2−ju), then W (l)
λ′,λ can be decomposed under {ψjl,k}k and {ϕm}m as

W
(1)
λ′,λ(u) =

∑
k

a
(1)
λ′,λ(k)ψj1,k(u), W

(l)
λ′,λ(u, α) =

∑
m

∑
k

a
(l)
λ′,λ(k,m)ψjl,k(u)ϕm(α), l > 1 (7)

where a(1)λ′,λ(k) and a(l)λ′,λ(k,m) are the expansion coefficients of the filters under the joint bases.
During training, the basis functions are fixed, and only the expansion coefficients are updated. In
practice, we truncate the expansion to only low-frequency coefficients (i.e., a(l)λ′,λ(k,m) are non-zero
only for k ∈ [K], m ∈ [Kα]), which are kept as the trainable parameters. This directly leads to a
reduction of network parameters and computational burden. More specifically, let us compare the l-th
convolutional layer (5) of a scale-equivariant CNN with and without truncated basis decomposition:

Number of trainable parameters: Suppose the filters W (l)
λ′,λ(u, α) are discretized on a Cartesian

grid of size L× L× Lα. The number of trainable parameters at the l-th layer of a scale-equivariant
CNN without basis decomposition is L2LαMl−1Ml. On the other hand, in an ScDCFNet with
truncated basis expansion up to K leading coefficients for u and Kα coefficients for α, the number
of parameters is instead KKαMl−1Ml. Hence a reduction to a factor of KKα/L

2Lα in trainable
parameters is achieved for ScDCFNet via truncated basis decomposition. In particular, ifL = 5, Lα =
5,K = 8, and Kα = 3, then the number of parameters is reduced to (8× 3)/(52 × 5) = 19.2%.

Computational cost: Suppose the size of the input x(l−1)(u, α, λ) and output x(l)(u, α, λ) at the
l-th layer are, respectively, W ×W × Nα ×Ml−1 and W ×W × Nα ×Ml, where W ×W is
the spatial dimension, Nα is the number of scale channels, and Ml−1(Ml) is the number of the
unstructured input (output) channels. Let the filters W (l)

λ′,λ(u, α) be discretized on a Cartesian grid of
size L× L× Lα. The following theorem shows that, compared to a regular scale-equivariant CNN,
the computational cost in a forward pass of ScDCFNet is reduced again to a factor of KKα/L

2Lα.
Theorem 2. Assume Ml � L2, Lα, i.e., the number of the output channels is much larger than the
size of the convolutional filters in u and α, then the computational cost of an ScDCFNet is reduced to
a factor of KKα/L

2Lα when compared to a scale-equivariant CNN without basis decomposition.

Apart from reducing the model size and computational burden, similar to Cheng et al. (2019),
truncating the filter decomposition has the further benefit of improving the deformation robustness of
the equivariant representation, i.e., the equivaraince relation (3) still approximately holds true if the
spatial scaling of the input Dβ,vx

(0) is contaminated by a local deformation (e.g., due to changing
view angle or numerical discretization.) This will be addressed in detail in the next section.

4 REPRESENTATION STABILITY OF SCDCFNET TO INPUT DEFORMATION

We study, in this section, the representation stability of ScDCFNet to input deformations modulo a
global scale change, i.e., the input undergoes not only a scale change but also a small spatial distortion.

4

Under review as a conference paper at ICLR 2020

To quantify the distance between different feature maps at each layer, we define the norm of x(l) as

‖x(0)‖2 =
1

M0

M0∑
λ=1

∫ ∣∣∣x(0)(u, λ)
∣∣∣2 du, ‖x(l)‖2 = sup

α

1

Ml

Ml∑
λ=1

∫ ∣∣∣x(l)(u, α, λ)
∣∣∣2 du, l ≥ 1. (8)

Remark 2. The definition of ‖x(l)‖ is different from that of RotDCFNet (Cheng et al., 2019), where
an L2 norm is taken for the α index as well. The reason why we adopt the L∞ norm for α in (8) is
that x(l) is typically not L2 in α, since the scaling group S , unlike SO(2), has infinite Haar measure.

We next quantify the representation stability of ScDCFNet under three mild assumptions on the
convolutional layers and input deformations. First,

(A1) The pointwise nonlinear activation σ : R→ R is non-expansive.

Next, we need a bound on the convolutional filters under certain norms. For each l ≥ 1, define Al as
A1 := πmax

{
sup
λ

M0∑
λ′=1

‖a(1)λ′,λ‖FB,
M0

M1
sup
λ′

M1∑
λ=1

‖a(1)λ′,λ‖FB

}
,

Al := πmax

sup
λ

Ml−1∑
λ′=1

∑
m

‖a(l)λ′,λ(·,m)‖FB,
2Ml−1

Ml

∑
m

sup
λ′

Ml∑
λ=1

‖a(l)λ′,λ(·,m)‖FB

 ,

(9)

where the Fourier-Bessel (FB) norm ‖a‖FB of a sequence {a(k)}k≥0 is a weighted l2 norm defined
as ‖a‖2FB :=

∑
k µka(k)2, where µk is the k-th eigenvalue of the Dirichlet Laplacian on the unit disk

defined in (6). We next assume that each Al is bounded:

(A2) For all l ≥ 1, Al ≤ 1.

The boundedness of Al is facilitated by truncating the basis decomposition to only low-frequency
components (small µk), which is one of the key idea of ScDCFNet explained in Section 3.2. After a
proper initialization of the trainable coefficients, (A2) can generally be satisfied. The assumption
(A2) implies several bounds on the convolutional filters at each layer (c.f. Lemma 2 in the appendix),
which, combined with (A1), guarantees that an ScDCFNet is layerwise non-expansive:
Proposition 1. Under the assumption (A1) and (A2), an ScDCFNet satisfies the following.
(a) For any l ≥ 1, the mapping of the l-th layer, x(l)[·] defined in (4) and (5), is non-expansive, i.e.,

‖x(l)[x1]− x(l)[x2]‖ ≤ ‖x1 − x2‖, ∀x1, x2.

(b) Let x(l)0 be the l-th layer output given a zero bottom-layer input, then x(l)0 (λ) depends only on λ.

(c) Let x(l)c be the centered version of x(l) after removing x(l)0 , i.e.,

x(0)c (u, λ) := x(0)(u, λ)− x(0)0 (λ) = x(0)(u, λ), x(l)c (u, α, λ) := x(l)(u, α, λ)− x(l)0 (λ), l ≥ 1,

then ‖x(l)c ‖ ≤ ‖x(l−1)c ‖, ∀l ≥ 1. As a result, ‖x(l)c ‖ ≤ ‖x(0)c ‖ = ‖x(0)‖.

Finally, we make an assumption on the input deformation modulo a global scale change. Given a C2

function τ : R2 → R2, the spatial deformation Dτ on the feature maps x(l) is defined as
Dτx

(0)(u, λ) = x(0)(ρ(u), λ), and Dτx
(l)(u, α, λ) = x(l)(ρ(u), α, λ), l ≥ 1, (10)

where ρ(u) = u− τ(u). We assume a small local deformation on the input:

(A3) |∇τ |∞ := supu ‖∇τ(u)‖ < 1/5, where ‖ · ‖ is the operator norm.

The following theorem demonstrates the representation stability of an ScDCFNet to input deformation
modulo a global scale change.
Theorem 3. Let Dτ be a small spatial deformation defined in (10), and let Dβ,v, Tβ,v be the group
actions corresponding to an arbitrary scaling 2−β ∈ R+ centered at v ∈ R2 defined in (1) and (2).
In an ScDCFNet satisfying (A1), (A2), and (A3), we have, for any L,∥∥∥x(L)[Dβ,v ◦Dτx

(0)]− Tβ,vx(L)[x(0)]
∥∥∥ ≤ 2β+1

(
4L|∇τ |∞ + 2−jL |τ |∞

)
‖x(0)‖. (11)

Theorem 3 gauges how approximately equivariant is ScDCFNet if the input undergoes not only a
scale change Dβ,v but also a nonlinear spatial deformation Dτ , which is important both in theory
and in practice because the scaling of an object is rarely perfect in reality.

5

Under review as a conference paper at ICLR 2020

Figure 2: Verification of scale-equivariance in Section 5.1. Given the original input x(0) and its rescaled version
Dβ,vx

(0), the four figures in each dashed rectangle are: x(l)[x(0)] (l-th layer feature of the original input),
x(l)[Dβ,vx

(0)] (l-th layer feature of the rescaled input), Tβ,vx(l)[x(0)] (rescaled l-th layer feature of the original
input), and the difference (x(l)[Dβ,vx

(0)]− Tβ,vx
(l)[x(0)]) displayed in a (signal intensity) scale relative to the

maximum value of x(l)[Dβ,vx(0)]. It is clear that even after numerical discretization, scale-equivariance still
approximately holds for ScDCFNet, i.e., x(l)[Dβ,vx(0)]− Tβ,vx

(l)[x(0)] ≈ 0, but not for a regular CNN.

5 NUMERICAL EXPERIMENTS

In this section, we conduct several numerical experiments for the following three purposes.
1. To verify that ScDCFNet indeed achieves scale equivariance (3).

2. To illustrate that ScDCFNet significantly outperforms regular CNNs at a much reduced model
size in multiscale image classification.

3. To show that a trained ScDCFNet auto-encoder is able to reconstruct rescaled versions of the
input by simply applying group actions on the image codes, demonstrating that ScDCFNet indeed
explicitly encodes the input scale information into the representation.

The experiments are tested on the Scaled MNIST (SMNIST) and Scaled Fashion-MNIST (SFashion)
datasets, which are built by rescaling the original MNIST and Fashion-MNIST (Xiao et al., 2017)
images by a factor randomly sampled from a uniform distribution on [0.3, 1]. A zero-padding to a
size of 28× 28 is conducted after the rescaling. If mentioned explicitly, for some experiments, the
images are resized to 64× 64 for better visualization.

Before going into the details of the numerical results, we need to clarify the implementation of the
spatial pooling module of ScDCFNet. Given a feature x(l)(u, α, λ), the traditional average-pooling in
u with the same spatial kernel size across α destroys scale equivariance (3). To remedy this, we first
convolve x(l) with a scale-specific low-pass filter before downsampling the convolved signal on a
coarser spatial grid. Specifically, we have x̃(l)(u, α, λ) =

∫
R2 x

(l)(Nu+ u′, α, λ)η(2−αu′)2−2αdu′,
where x̃(l) is the feature after pooling, η is a low-pass filter, e.g., a Gaussian kernel, and N ∈ Z+ is
the pooling factor. We will refer to this as scale-equivariant average-pooling in what follows.

5.1 VERIFICATION OF SCALE EQUIVARIANCE

We first verify that ScDCFNet indeed achieves scale-equivariance (3). Specifically, we compare
the feature maps of a two-layer ScDCFNet with randomly generated truncated filter expansion
coefficients and those of a regular CNN. The exact architectures are detailed in Appendix B.1.
Figure 2 displays the first- and second-layer feature maps of an original image x(0) and its rescaled

6

Under review as a conference paper at ICLR 2020

Without batch-normalization SMNIST test accuracy (%) SFashion test accuracy (%)

Architectures Ratio Ntr = 2000 Ntr = 5000 Ntr = 2000 Ntr = 5000

CNN, M = 32 1.00 92.60± 0.17 94.86± 0.25 77.74± 0.28 82.57± 0.38

ScDCFNet, M = 16
K = 10,Kα = 3 0.84 93.75± 0.02 95.70± 0.09 78.95± 0.31 83.51± 0.71
K = 8,Kα = 3 0.67 93.91± 0.30 95.71± 0.10 79.22± 0.50 83.06± 0.32
K = 5,Kα = 3 0.42 93.52± 0.29 95.19± 0.13 79.74± 0.44 83.46± 0.69
K = 10,Kα = 2 0.56 93.68± 0.23 95.54± 0.21 79.01± 0.61 83.43± 0.60
K = 8,Kα = 2 0.45 93.67± 0.19 95.51± 0.20 79.15± 0.59 83.44± 0.37
K = 5,Kα = 2 0.28 93.51± 0.30 95.35± 0.21 78.57± 0.53 82.95± 0.46

ScDCFNet, M = 8
K = 10,Kα = 2 0.14 93.68± 0.17 95.21± 0.12 79.11± 0.76 82.92± 0.68
K = 8,Kα = 2 0.11 93.39± 0.25 95.25± 0.47 78.43± 0.76 82.53± 0.58
K = 5,Kα = 2 0.09 93.21± 0.20 94.99± 0.12 77.97± 0.37 82.21± 0.67
K = 10,Kα = 1 0.09 93.26± 0.52 95.22± 0.31 78.71± 0.46 83.05± 0.51
K = 8,Kα = 1 0.06 93.61± 0.11 95.03± 0.31 78.69± 0.72 82.96± 0.27
K = 5,Kα = 1 0.04 93.23± 0.13 94.84± 0.38 78.38± 0.81 82.14± 0.25

With batch-normalization SMNIST test accuracy (%) SFashion test accuracy (%)

Architectures Ratio Ntr = 2000 Ntr = 5000 Ntr = 2000 Ntr = 5000

CNN, M = 32 1.00 94.78± 0.17 96.58± 0.17 79.79± 0.40 84.38± 0.17

ScDCFNet, M = 16
K = 10,Kα = 3 0.84 95.69± 0.15 96.99± 0.23 81.12± 0.42 84.97± 0.16
K = 8,Kα = 3 0.67 95.72± 0.29 97.15± 0.24 81.41± 0.35 85.11± 0.26
K = 5,Kα = 3 0.42 95.31± 0.21 96.75± 0.13 81.73± 0.14 84.70± 0.19
K = 10,Kα = 2 0.56 95.58± 0.16 96.92± 0.07 81.21± 0.20 84.77± 0.15
K = 8,Kα = 2 0.45 95.76± 0.17 96.74± 0.22 80.84± 0.28 84.70± 0.18
K = 5,Kα = 2 0.28 95.43± 0.09 96.54± 0.20 81.23± 0.23 84.65± 0.36

Table 1: Classification accuracy on the SMNIST and SFashion dataset with and without batch-normalization.
The architectures are detailed in Table 2. In particular, M stands for the number of the first-layer (unstructured)
output channels, which is doubled after each layer, and K/Kα is the number of basis function in u/α used for
filter decomposition. The networks are tested with different training data size, Ntr = 2000 and 5000, and the
means and standard deviations after three independent trials are reported. The column “ratio” stands for the ratio
between the number of trainable parameters of the current architecture and that of the baseline CNN.

version Dβ,vx
(0) using the two comparing architectures. Feature maps at different layers are rescaled

to the same spatial dimension for visualization. The four images enclosed in each of the dashed
rectangle correspond to: x(l)[x(0)] (l-th layer feature of the original input), x(l)[Dβ,vx

(0)] (l-th layer
feature of the rescaled input), Tβ,vx(l)[x(0)] (rescaled l-th layer feature of the original input, where
Tβ,v is understood as Dβ,v for a regular CNN due to the lack of a scale index α), and the difference
x(l)[Dβ,vx

(0)] − Tβ,vx(l)[x(0)]. It is clear that even with numerical discretization, which can be
modeled as a form of input deformation, ScDCFNet is still approximately scale-equivariant, i.e.,
x(l)[Dβ,vx

(0)] ≈ Tβ,vx(l)[x(0)], whereas a regular CNN does not have such a property.

5.2 MULTISCALE IMAGE CLASSIFICATION

We next demonstrate the improved performance of ScDCFNet in multiscale image classification.
The experiments are conducted on the SMNIST and SFashion datasets, and a regular CNN is used
as a performance benchmark. Both networks are comprised of three convolutional layers with the
exact architectures (Table 2) detailed in Appendix B.2. Unlike SO(2), the scaling group S ∼= R is
unbounded, and we thus compute only the feature maps x(l)(u, α, λ) with the α index restricted to
the scale interval [−1.6, 0] (2−1.6 ≈ 0.3), which is discretized uniformly into Nα = 9 channels. The
performance of the comparing architectures with and without batch-normalization is shown in Table 1.
It is clear that, by limiting the hypothesis space to scale-equivaraint models and taking truncated
basis decomposition to reduce the model size, ScDCFNet achieves a significant improvement in
classification accuracy with a reduced number of trainable parameters. The advantage of ScDCFNet
is more pronounced when the number of training samples is small (Ntr = 2000), suggesting that, by
hardwiring the input scale information directly into its representation, ScDCFNet is less susceptible
to overfitting the limited multiscale training data.

7

Under review as a conference paper at ICLR 2020

Input

ScDCFNet auto-encoderCNN auto-encoder

Figure 3: Reconstructing rescaled versions of the original test image by manipulating its image code C
according to the group action (2). The first two images on the left are the original inputs; Decoder(C) denotes
the reconstruction using the (unchanged) image code C; Decoder(Dβ,vC) and Decoder(Tβ,vC) denote the
reconstructions using the “rescaled” image codes Dβ,vC and Tβ,vC respectively according to (1) and (2).
Unlike the regular CNN auto-encoder, the ScDCFNet auto-encoder manages to generate rescaled versions of the
original input, suggesting that it successfully encodes the scale information directly into the representation.

We also observe that even when a regular CNN is trained with data augmentation (random cropping
and rescaling), its performance is still inferior to that of an ScDCFNet without manipulation of the
training data. In particular, although the accuracies of the regular CNNs trained on 2000 SMNIST
and SFashion images after data augmentation are improved to, respectively, 93.85% and 79.41%,
they still underperform the ScDCFNets without data augmentation (93.91% and 79.94%) using only
a fraction of trainable parameters. Moreover, if ScDCFNet is trained with data augmentation, the
accuracies can be further improved to 94.30% and 80.62% respectively. This suggests that ScDCFNet
can be combined with data augmentation for optimal performance in multiscale image classification.

5.3 IMAGE RECONSTRUCTION

In the last experiment, we illustrate the ability of ScDCFNet to explicitly encode the input scale
information into the representation. To achieve this, we train an ScDCFNet auto-encoder on the
SMNIST dataset with images resized to 64×64 for better visualization. The encoder stacks two scale-
equivaraint convolutional blocks with 2× 2 average-pooling, and the decoder contains a succession
of two transposed convolutional blocks with 2× 2 upsampling. A regular CNN auto-encoder is also
trained for comparison (see Table 3 in Appendix B.3 for the detailed architecture.)

Our goal is to demonstrate that the image code produced by the ScDCFNet auto-encoder contains
the scale information of the input, i.e., by applying the group action Tβ,v (2) to the code C of a test
image before feeding it to the decoder, we can reconstruct rescaled versions of original input. This
property can be visually verified in Figure 3. In contrast, a regular CNN auto-encoder fails to do so.

6 CONCLUSION

We propose, in this paper, a scale-equivaraint CNN with joint convolutions across the space R2 and
the scaling group S, which we show to be both sufficient and necessary to impose scale-equivariant
network representation. To reduce the computational cost and model complexity incurred by the joint
convolutions, the convolutional filters supported on R2 × S are decomposed under a separable basis
across the two domains and truncated to only low-frequency components. Moreover, the truncated
filter expansion leads also to improved deformation robustness of the equivaraint representation,
i.e., the model is still approximately equivariant even if the scaling transformation is imperfect.
Experimental results suggest that ScDCFNet achieves improved performance in multiscale image
classification with greater interpretability and reduced model size compared to regular CNN models.

For future work, we will study the application of ScDCFNet in other more complicated vision tasks,
such as object detection/localization and pose estimation, where it is beneficial to directly encode
the input scale information into the deep representation. Moreover, the memory usage of our current
implementation of ScDCFNet scales linearly to the number of the truncated basis functions in order
to realize the reduced computational burden explained in Theorem 2. We will explore other efficient
implementation of the model, e.g., using filter-bank type of techniques to compute convolutions with
multiscale spatial filters, to significantly reduce both the computational cost and memory usage.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with formulas, graphs,
and mathematical tables, volume 55. Courier Corporation, 1965.

Joan Bruna and Stéphane Mallat. Invariant scattering convolution networks. IEEE transactions on
pattern analysis and machine intelligence, 35(8):1872–1886, 2013.

Xiuyuan Cheng, Qiang Qiu, Robert Calderbank, and Guillermo Sapiro. RotDCF: Decomposition
of convolutional filters for rotation-equivariant deep networks. In International Conference on
Learning Representations, 2019.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999, 2016.

Taco Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homogeneous
spaces. arXiv preprint arXiv:1811.02017, 2018.

William T. Freeman and Edward H Adelson. The design and use of steerable filters. IEEE Transactions
on Pattern Analysis & Machine Intelligence, (9):891–906, 1991.

Angjoo Kim, Abhishek Sharma, and David Jacobs. Locally scale-invariant convolutional neural
networks. arXiv preprint arXiv:1412.5104, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective kernel networks. 2019.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2015.

Stéphane Mallat. Recursive interferometric representation. In Proc. of EUSICO conference, Dane-
mark, 2010.

Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65
(10):1331–1398, 2012.

Diego Marcos, Michele Volpi, Nikos Komodakis, and Devis Tuia. Rotation equivariant vector
field networks. In Proceedings of the IEEE International Conference on Computer Vision, pp.
5048–5057, 2017.

Diego Marcos, Benjamin Kellenberger, Sylvain Lobry, and Devis Tuia. Scale equivariance in cnns
with vector fields. arXiv preprint arXiv:1807.11783, 2018.

Daniël M Pelt and James A Sethian. A mixed-scale dense convolutional neural network for image
analysis. Proceedings of the National Academy of Sciences, 115(2):254–259, 2018.

Qiang Qiu, Xiuyuan Cheng, Robert Calderbank, and Guillermo Sapiro. DCFNet: Deep neural network
with decomposed convolutional filters. In Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 4198–4207,
StockholmsmÃd’ssan, Stockholm Sweden, 10–15 Jul 2018. PMLR.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett (eds.), Advances in Neural Information Processing Systems 28, pp. 91–99. Curran
Associates, Inc., 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F.
Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp.
234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4.

Laurent Sifre and Stéphane Mallat. Rotation, scaling and deformation invariant scattering for texture
discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1233–1240, 2013.

9

Under review as a conference paper at ICLR 2020

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell.
Understanding convolution for semantic segmentation. In 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 1451–1460. IEEE, 2018.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3d steerable cnns:
Learning rotationally equivariant features in volumetric data. In Advances in Neural Information
Processing Systems, pp. 10381–10392, 2018a.

Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant cnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 849–858, 2018b.

Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Harmonic
networks: Deep translation and rotation equivariance. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5028–5037, 2017.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Yichong Xu, Tianjun Xiao, Jiaxing Zhang, Kuiyuan Yang, and Zheng Zhang. Scale-invariant
convolutional neural networks. arXiv preprint arXiv:1411.6369, 2014.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In Interna-
tional Conference on Learning Representations, 2016.

Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao. Oriented response networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 519–528, 2017.

A PROOFS

A.1 PROOF OF THEOREM 1

Proof of Theorem 1. We note first that (3) holds true if and only if the following being valid for all
l ≥ 1,

Tβ,vx
(l)[x(l−1)] = x(l)[Tβ,vx

(l−1)], (12)

where Tβ,vx(0) is understood as Dβ,vx
(0). We also note that the layer-wise operations of a general

feedforward neural network with an extra index α ∈ S can be written as

x(1)[x(0)](u, α, λ) = σ

(∑
λ′

∫
R2

x(0)(u+ u′, λ′)W (1)(u′, λ′, u, α, λ)du′ + b(1)(λ)

)
, (13)

and, for l > 1,

x(l)[x(l−1)](u, α, λ) =σ

(∑
λ′

∫
R2

∫
R
x(l−1)(u+ u′, α+ α′, λ′)

W (l)(u′, α′, λ′, u, α, λ)dα′du′ + b(l)(λ)
)
. (14)

10

Under review as a conference paper at ICLR 2020

To prove the sufficient part: when l = 1, (1), (2), and (4) lead to

Tβ,vx
(1)[x(0)](u, α, λ) = x(1)[x(0)]

(
2−β(u− v), α− β, λ

)
=σ

(∑
λ′

∫
x(0)

(
2−β(u− v) + u′, λ′

)
W

(1)
λ′,λ

(
2−(α−β)u′

)
2−2(α−β)du′ + b(1)(λ)

)

=σ

(∑
λ′

∫
x(0)

(
2−β(u− v + ũ), λ′

)
W

(1)
λ′,λ

(
2−αũ

)
2−2αdũ+ b(1)(λ)

)
,

and

x(1)[Dβ,vx
(0)](u, α, λ)

=σ

(∑
λ′

∫
R2

Dβ,vx
(0)(u+ u′, λ′)W

(1)
λ′,λ

(
2−αu′

)
2−2αdu′ + b(1)(λ)

)

=σ

(∑
λ′

∫
R2

x(0)(2−β (u+ u′ − v), λ′)W
(1)
λ′,λ

(
2−αu′

)
2−2αdu′ + b(1)(λ)

)
.

Hence Tβ,vx(1)[x(0)] = x(1)[Dβ,vx
(0)].

When l > 1, we have

Tβ,vx
(l)[x(l−1)](u, α, λ) = x(l)[x(l−1)]

(
2−β(u− v), α− β, λ

)
=σ

(∑
λ′

∫ ∫
x(l−1)

(
2−β(u− v) + u′, α− β + α′, λ′

)
·

W
(l)
λ′,λ

(
2−(α−β)u′, α′

)
2−2(α−β)du′dα′ + b(l)(λ)

)
=σ

(∑
λ′

∫ ∫
x(l−1)

(
2−β(u− v + ũ), α− β + α′, λ′

)
W

(l)
λ′,λ

(
2−αũ, α′

)
2−2αdũdα′ + b(l)(λ)

)
and

x(l)[Tβ,vx
(l−1)](u, α, λ)

=σ

(∑
λ′

∫ ∫
Tβ,vx

(l−1)(u+ u′, α+ α′, λ′)W
(l)
λ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(l)(λ)

)

=σ

(∑
λ′

∫ ∫
x(l−1)(2−β(u+ u′ − v), α+ α′ − β, λ′)W (l)

λ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(l)(λ)

)

Therefore Tβ,vx(l)[x(l−1)] = x(l)[Tβ,vx
(l−1)], ∀l > 1.

To prove the necessary part: when l = 1, we have

Tβ,vx
(1)[x(0)](u, α, λ) = x(1)[x(0)]

(
2−β(u− v), α− β, λ

)
=σ

(∑
λ′

∫
x(0)

(
2−β(u− v) + u′, λ′

)
W (1)

(
u′, λ′, 2−β(u− v), α− β, λ

)
du′ + b(1)(λ)

)

=σ

(∑
λ′

∫
x(0)

(
2−β(u+ u′ − v), λ′

)
·

W (1)
(
2−βu′, λ′, 2−β(u− v), α− β, λ

)
2−2βdu′ + b(1)(λ)

)
,

and

x(1)[Dβ,vx
(0)](u, α, λ) = σ

(∑
λ′

∫
Dβ,vx

(0) (u+ u′, λ′)W (1) (u′, λ′, u, α, λ) du′ + b(1)(λ)

)

11

Under review as a conference paper at ICLR 2020

=σ

(∑
λ′

∫
x(0)

(
2−β(u+ u′ − v), λ′

)
W (1) (u′, λ′, u, α, λ) du′ + b(1)(λ)

)
Hence for (12) to hold when l = 1, we need

W (1) (u′, λ′, u, α, λ) = W (1)
(
2−βu′, λ′, 2−β(u− v), α− β, λ

)
2−2β ,∀ u, α, λ, u′, λ′, v, β. (15)

Keeping u, α, λ, u′, λ′, β fixed while changing v in (15), we obtain that W (1)(u′, λ′, u, α, λ) does
not depend on the third variable u. Thus W (1) (u′, λ′, u, α, λ) = W (1) (u′, λ′, 0, α, λ) , ∀u. Define
W

(1)
λ,λ(u′) as

W
(1)
λ′,λ(u′) := W (1) (u′, λ′, 0, 0, λ) .

Then, for any given u′, λ′, u, α, λ, setting β = α in (15) leads to

W (1) (u′, λ′, u, α, λ) = W (1)
(
2−αu′, λ′, 2−α(u− v), 0, λ

)
2−2α

=W (1)
(
2−αu′, λ′, 0, 0, λ

)
2−2α = W

(1)
λ′,λ

(
2−αu′

)
2−2α.

Hence (13) can be written as (4).

For l > 1, a similar argument leads to

W (l) (u′, α′, λ′, u, α, λ) = W (l)
(
2−βu′, α′, λ′, 2−β(u− v), α− β, λ

)
2−2β ,∀u, α, λ, u′, α′, λ′, v, β.

(16)

Again, keeping u, α, λ, u′, α′, λ′, β fixed while changing v in (16) leads us to the conclusion that
W (l)(u′, α′, λ′, u, α, λ) does not depend on the fourth variable u. Define

W
(l)
λ′,λ(u′, α′) := W (l) (u′, α′, λ′, 0, 0, λ) .

After setting β = α in (16), for any given u′, α′, λ′, u, α, λ, we have

W (l) (u′, α′, λ′, u, α, λ) = W (l)
(
2−αu′, α′, λ′, 2−α(u− v), 0, λ

)
2−2α

=W (l)
(
2−αu′, α′, λ′, 0, 0, λ

)
2−2α = W

(l)
λ′,λ

(
2−αu′

)
2−2α.

This concludes the proof of the Theorem.

A.2 PROOF OF THEOREM 2

Proof of Theorem 2. In a regular scale-equivariant CNN, the l-th convolutional layer (5) is computed
as follows:

y(u, α, α′, λ, λ′) =

∫
R2

x(l−1)(u+ u′, α+ α′, λ′)W
(l)
λ′,λ

(
2−αu′, α′

)
2−2αdu′, (17)

z(u, α, λ, λ′) =

∫
R
y(u, α, α′, λ, λ′)dα′, (18)

x(l)(u, α, λ) = σ

Ml−1∑
λ′=1

z(u, α, λ, λ′) + b(l)(λ)

 . (19)

The spatial convolutions in (17) take 2W 2L2NαLαMlMl−1 flops (there are NαLαMlMl−1 convo-
lutions in u, each taking 2W 2L2 flops.) The summation over α′ in (18) requires LαNαW 2MlMl−1
flops. The summation over λ′, adding the bias, and applying the nonlinear activation in (19) requires
an additional W 2NαMl(2 +Ml−1) flops. Thus the total number of floating point computations in a
forward pass through the l-th layer of a regular scale-equivariant CNN is

W 2NαMl(2L
2LαMl−1 + LαMl−1 +Ml−1 + 2). (20)

On the other hand, in an ScDCFNet with separable basis truncation up to KKα leading coefficients,
(5) can be computed via the following steps:

y(u, α, λ′,m) =

∫
R
x(l−1)(u, α+ α′, λ′)ϕm(α′)dα′ (21)

12

Under review as a conference paper at ICLR 2020

z(u, α, λ′, k,m) =

∫
R2

y(u+ u′, α, λ′,m)ψjl,k(2−αu′)2−2αdu′ (22)

x(l)(u, α, λ) = σ

 Kα∑
m=1

K∑
k=1

Ml−1∑
λ′=1

z(u, α, λ′, k,m)a
(l)
λ′,λ(k,m) + b(l)(λ)

 . (23)

The convolutions in α (21) require 2LαNαW
2KαMl−1 flops (there are W 2KαMl−1 convolutions

in α, each taking 2LαNα flops.) The spatial convolutions in (22) take 2W 2L2NαMl−1KαK flops
(NαMl−1KαK convolutions in u, each taking 2W 2L2 flops.) The last step (23) requires an additional
2W 2NαMl(1 + KKαMl−1) flops. Hence the total number of floating point computation for an
ScDCFNet is

2W 2Nα(KKαMl−1Ml +Ml + L2Ml−1KαK + LαKαMl−1). (24)

In particular, when Ml � L2, Lα, the dominating terms in (20) and (24) are, respectively,
2W 2NαMlMl−1L

2Lα and 2W 2NαMl−1MlKKα. Thus the computational cost in an ScDCFNet
has been reduced to a factor of KKα

L2Lα
.

A.3 PROOF OF PROPOSITION 1

Before proving Proposition 1, we need the following two lemmas.
Lemma 1. Suppose that {ψk}k are the FB bases, and F (u) =

∑
k a(k)ψj,k(u) =∑

k a(k)2−2jψk(2−ju) is a smooth function on 2jB(0, 1), then∫
|F (u)| du,

∫
|u| |∇F (u)| du, 2j

∫
|∇F (u)| du ≤ π‖a‖FB = π

(∑
k

µk · a(k)2

)1/2

. (25)

This is Lemma 3.5 and Proposition 3.6 in Qiu et al. (2018) after rescaling u. Lemma 1 easily leads to
the following lemma.

Lemma 2. Let a(l)λ′,λ(k,m) be the coefficients of the filter W (l)
λ′,λ(u, α) under the joint bases {ψk}k

and {ϕm}m defined in (7), and define W (l)
λ′,λ,m(u) as

Wλ′,λ,m(u) :=
∑
k

a
(l)
λ′,λ(k,m)ψjl,k(u). (26)

We have

B
(1)
λ′,λ, C

(1)
λ′,λ, 2

j1D
(1)
λ′,λ ≤ π‖a

(1)
λ′,λ‖FB, B

(l)
λ′,λ,m, C

(l)
λ′,λ,m, 2

jlD
(l)
λ′,λ,m ≤ π‖a

(l)
λ′,λ(·,m)‖FB, ∀l > 1,

where

B
(1)
λ′,λ :=

∫ ∣∣∣W (1)
λ′,λ(u)

∣∣∣ du, B
(l)
λ′,λ,m :=

∫ ∣∣∣W (l)
λ′,λ,m(u)

∣∣∣ du, l > 1,

C
(1)
λ′,λ :=

∫
|u|
∣∣∣∇uW (1)

λ′,λ(u)
∣∣∣ du, C

(l)
λ′,λ,m :=

∫
|u|
∣∣∣∇uW (l)

λ′,λ,m(u)
∣∣∣ du, l > 1,

D
(1)
λ′,λ :=

∫ ∣∣∣∇uW (1)
λ′,λ(u)

∣∣∣ du, D
(l)
λ′,λ,m :=

∫ ∣∣∣∇uW (l)
λ′,λ,m(u)

∣∣∣ du, l > 1.

(27)

We thus have
Bl, Cl, 2

jlDl ≤ Al,
where

B1 := max

{
sup
λ

M0∑
λ′=1

B
(1)
λ′,λ,

M0

M1
sup
λ′

M1∑
λ=1

B
(1)
λ′,λ

}
,

C1 := max

{
sup
λ

M0∑
λ′=1

C
(1)
λ′,λ,

M0

M1
sup
λ′

M1∑
λ=1

C
(1)
λ′,λ

}
,

D1 := max

{
sup
λ

M0∑
λ′=1

D
(1)
λ′,λ,

M0

M1
sup
λ′

M1∑
λ=1

D
(1)
λ′,λ

}
,

(28)

13

Under review as a conference paper at ICLR 2020

and, for l > 1,

Bl := max

sup
λ

Ml−1∑
λ′=1

∑
m

B
(l)
λ′,λ,m,

2Ml−1

Ml

∑
m

Bl,m

 , Bl,m := sup
λ′

Ml∑
λ=1

B
(l)
λ′,λ,m,

Cl := max

sup
λ

Ml−1∑
λ′=1

∑
m

C
(l)
λ′,λ,m,

2Ml−1

Ml

∑
m

Cl,m

 , Cl,m := sup
λ′

Ml∑
λ=1

C
(l)
λ′,λ,m,

Dl := max

sup
λ

Ml−1∑
λ′=1

∑
m

D
(l)
λ′,λ,m,

2Ml−1

Ml

∑
m

Dl,m

 , Dl,m := sup
λ′

Ml∑
λ=1

D
(l)
λ′,λ,m.

(29)

In particular, (A2) implies that Bl, Cl, 2jlDl ≤ 1, ∀l.

Proof of Proposition 1. To simplify the notation, we omit (l) in W (l)
λ′,λ, W (l)

λ′,λ,m, and b(l), and let
M = Ml, M ′ = Ml−1. The proof of (a) for the case l = 1 is similar to Proposition 3.1(a) of Qiu
et al. (2018) after noticing the fact that∫

R2

∣∣W (2−αu)
∣∣ 2−2αdu =

∫
R2

|W (u)| du, (30)

and we include it here for completeness. From the definition of B1 in (28), we have

sup
λ

∑
λ′

B
(1)
λ′,λ ≤ B1, and sup

λ′

∑
λ

B
(1)
λ′,λ ≤ B1

M

M ′
.

Thus, given two arbitrary functions x1 and x2, we have∣∣∣(x(1)[x1]− x(1)[x2]
)

(u, α, λ)
∣∣∣2

=

∣∣∣∣∣σ
(∑

λ′

∫
x1(u+ u′, λ′)Wλ′,λ

(
2−αu′

)
2−2αdu′ + b(λ)

)

−σ

(∑
λ′

∫
x2(u+ u′, λ′)Wλ′,λ

(
2−αu′

)
2−2αdu′ + b(λ)

)∣∣∣∣∣
2

≤

∣∣∣∣∣∑
λ′

∫
x1(u+ u′, λ′)Wλ′,λ

(
2−αu′

)
2−2αdu′ −

∑
λ′

∫
x2(u+ u′, λ′)Wλ′,λ

(
2−αu′

)
2−2αdu′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
λ′

∫
(x1 − x2)(u+ u′, λ′)Wλ′,λ

(
2−αu′

)
2−2αdu′

∣∣∣∣∣
2

≤

(∑
λ′

∫
|(x1 − x2)(u+ u′, λ′)|2

∣∣Wλ′,λ(2−αu′)
∣∣ 2−2αdu′)(∑

λ′

∫ ∣∣Wλ′,λ(2−αu′)
∣∣ 2−2αdu′)

=

(∑
λ′

∫
|(x1 − x2)(u+ u′, λ′)|2

∣∣Wλ′,λ(2−αu′)
∣∣ 2−2αdu′)(∑

λ′

B
(1)
λ′,λ

)

≤B1

∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2

∣∣Wλ′,λ(2−α (ũ− u))
∣∣ 2−2αdũ

Therefore, for any α,∑
λ

∫ ∣∣∣(x(1)[x1]− x(1)[x2]
)

(u, α, λ)
∣∣∣2 du

≤
∑
λ

∫
B1

∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2

∣∣Wλ′,λ(2−α (ũ− u))
∣∣ 2−2αdũdu

14

Under review as a conference paper at ICLR 2020

=B1

∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2

(∑
λ

∫ ∣∣Wλ′,λ(2−α (ũ− u))
∣∣ 2−2αdu) dũ

=B1

∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2

(∑
λ

B
(1)
λ′,λ

)
dũ

≤B2
1

M

M ′

∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2 dũ

=B2
1M‖x1 − x2‖2

≤M‖x1 − x2‖2,

where the last inequality makes use of the fact that B1 ≤ A1 ≤ 1 under (A2) (Lemma 2.) Therefore

‖x(1)[x1]− x(1)[x2]‖2 = sup
α

1

M

∑
λ

∫ ∣∣∣(x(1)[x1]− x(1)[x2]
)

(u, α, λ)
∣∣∣2 du ≤ ‖x1 − x2‖2.

This concludes the proof of (a) for the case l = 1. To prove the case for any l > 1, we first recall
from (29) that

sup
λ

∑
λ′

∑
m

B
(l)
λ′,λ,m ≤ Bl, and

∑
m

Bl,m ≤ Bl
M

2M ′
, where Bl,m = sup

λ′

∑
λ

B
(l)
λ′,λ,m.

Thus, for two arbitrary functions x1 and x2, we have∣∣∣(x(l)[x1]− x(l)[x2]
)

(u, α, λ)
∣∣∣2

=

∣∣∣∣∣σ
(∑

λ′

∫
R2

∫
R
x1(u+ u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(λ)

)

−σ

(∑
λ′

∫
R2

∫
R
x2(u+ u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(λ)

)∣∣∣∣∣
2

≤

∣∣∣∣∣∑
λ′

∫
R2

∫
R

(x1 − x2)(u+ u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
λ′

∫
R2

∫
R

(x1 − x2)(u+ u′, α+ α′, λ′)2−2α
∑
m

Wλ′,λ,m

(
2−αu′

)
ϕm(α′)dα′du′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
λ′

∑
m

∫
R2

Gm(u+ u′, α, λ′)2−2αWλ′,λ,m(2−αu′)du′

∣∣∣∣∣
2

≤

(∑
λ′

∑
m

∫
R2

|Gm(u+ u′, α, λ′)|2
∣∣Wλ′,λ,m(2−αu′)

∣∣ 2−2αdu′) ·(∑
λ′

∑
m

∫
R2

∣∣Wλ′,λ,m(2−αu′)
∣∣ 2−2αdu′)

=

(∑
λ′

∑
m

∫
R2

|Gm(ũ, α, λ′)|2
∣∣Wλ′,λ,m(2−α(ũ− u))

∣∣ 2−2αdũ)(∑
λ′

∑
m

B
(l)
λ′,λ,m

)

≤Bl
∑
λ′

∑
m

∫
R2

|Gm(ũ, α, λ′)|2
∣∣Wλ′,λ,m(2−α(ũ− u))

∣∣ 2−2αdũ,
where

Gm(u, α, λ′) :=

∫
R
(x1 − x2)(u, α+ α′, λ′)ϕm(α′)dα′. (31)

15

Under review as a conference paper at ICLR 2020

We claim (to be proved later in Lemma 3) that

M ′‖Gm‖2 = sup
α

∑
λ′

∫
R2

|Gm(u, α, λ′)|2 du ≤ 2M ′‖x1 − x2‖2, ∀m. (32)

Thus, for any α,∑
λ

∫
R2

∣∣∣(x(l)[x1]− x(l)[x2]
)

(u, α, λ)
∣∣∣2 du

≤
∑
λ

∫
R2

Bl
∑
λ′

∑
m

∫
R2

|Gm(ũ, α, λ′)|2
∣∣Wλ′,λ,m(2−α(ũ− u))

∣∣ 2−2αdũdu
=Bl

∑
λ′

∑
m

∫
R2

|Gm(ũ, α, λ′)|2
(∑

λ

∫
R2

∣∣Wλ′,λ,m(2−α(ũ− u))
∣∣ 2−2αdu) dũ

=Bl
∑
λ′

∑
m

∫
R2

|Gm(ũ, α, λ′)|2
(∑

λ

B
(l)
λ′,λ,m

)
dũ

≤Bl
∑
λ′

∑
m

∫
R2

|Gm(ũ, α, λ′)|2Bl,mdũ

=Bl
∑
m

(∑
λ′

∫
R2

|Gm(ũ, α, λ′)|2 dũ

)
Bl,m

≤Bl · 2M ′‖x1 − x2‖2
∑
m

Bl,m

≤B2
l · 2M ′‖x1 − x2‖2

M

2M ′
≤M‖x1 − x2‖2.

Therefore

‖x(l)[x1]− x(l)[x2]‖2 = sup
α

1

M

∑
λ

∫
R2

∣∣∣(x(l)[x1]− x(l)[x2]
)

(u, α, λ)
∣∣∣2 du ≤ ‖x1 − x2‖2.

To prove (b), we use the method of induction. When l = 0, x(0)0 (u, λ) = 0 by definition. When l = 1,
x
(1)
0 (u, α, λ) = σ(b(1)(λ)). Suppose x(l−1)0 (u, α, λ) = x

(l−1)
0 (λ) for some l > 1, then

x
(l)
0 (u, α, λ) = σ

(∑
λ′

∫
R2

∫
R
x
(l−1)
0 (u+ u′, α+ α′, λ′)W

(l)
λ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(l)(λ)

)

= σ

(∑
λ′

x
(l−1)
0 (λ′)

∫
R2

∫
R
W

(l)
λ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(l)(λ)

)

= σ

(∑
λ′

x
(l−1)
0 (λ′)

∫
R2

∫
R
W

(l)
λ′,λ (u′, α′) dα′du′ + b(l)(λ)

)
= x

(l)
0 (λ).

Part (c) is an easy corollary of part (a). More specifically, for any l > 1,

‖x(l)c ‖ = ‖x(l) − x(l)0 ‖ = ‖x(l)[x(l−1)]− x(l)0 [x
(l−1)
0]‖ ≤ ‖x(l−1) − x(l−1)0 ‖ = ‖x(l−1)c ‖.

Lemma 3. Suppose ϕ ∈ L2(R) with supp(ϕm) ⊂ [−1, 1] and ‖ϕ‖L2 = 1, and x is a function of
three variables

x : R2 × R× [M]→ R
(u, α, λ) 7→ x(u, α, λ)

16

Under review as a conference paper at ICLR 2020

with ‖x‖2 := supα
1
M

∑
λ

∫
R2 |x(u, α, λ)|2du. Define G(u, α, λ) as

G(u, α, λ) :=

∫
R
x(u, α+ α′, λ)ϕ(α′)dα.

Then we have

M‖G‖2 = sup
α

∑
λ

∫
R2

|G(u, α, λ)|2 du ≤ 2M‖x‖2. (33)

Proof of Lemma 3. Notice that, for any α, we have

∑
λ

∫
R2

|G(u, α, λ)|2 du =
∑
λ

∫
R2

∣∣∣∣∫ 1

−1
x(u, α+ α′, λ)ϕ(α′)dα′

∣∣∣∣2 du
≤
∑
λ

∫
R2

(∫ 1

−1
|x(u, α+ α′, λ)|2 dα′

)
‖ϕ‖2L2du

=

∫ 1

−1

(∑
λ

∫
R2

|x(u, α+ α′, λ)|2 du

)
dα′

≤
∫ 1

−1
M‖x‖2dα′ = 2M‖x‖2.

Thus

sup
α

∑
λ

∫
R2

|G(u, α, λ)|2 du ≤ 2M‖x‖2.

A.4 PROOF OF THEOREM 3

To prove Theorem 3, we need the following two Propositions.
Proposition 2. In an ScDCFNet satisfying (A1) and (A3), we have
1. For any l ≥ 1,∥∥∥x(l)[Dτx

(l−1)]−Dτx
(l)[x(l−1)]

∥∥∥ ≤ 4(Bl + Cl)|∇τ |∞‖x(l−1)c ‖. (34)

2. For any l ≥ 1, we have

‖Tβ,vx(l)‖ = 2β‖x(l)‖, (35)

and ∥∥∥x(l)[Tβ,v ◦Dτx
(l−1)]− Tβ,vDτx

(l)[x(l−1)]
∥∥∥ ≤ 2β+2(Bl + Cl)|∇τ |∞‖x(l−1)c ‖, (36)

where the first Tβ,v in (36) is replaced by Dβ,v when l = 1.

3. If (A2) also holds true, then∥∥∥x(l)[Dβ,v ◦Dτx
(0)]− Tβ,vDτx

(l)[x(0)]
∥∥∥ ≤ 2β+3l|∇τ |∞‖x(0)‖, ∀l ≥ 1. (37)

Proposition 3. In an ScDCFNet satisfying (A1) and (A3), we have, for any l ≥ 1,∥∥∥Tβ,vDτx
(l) − Tβ,vx(l)

∥∥∥ ≤ 2β+1|τ |∞Dl‖x(l−1)c ‖ ≤ 2β+1|τ |∞Dl‖x(0)‖. (38)

If (A2) also holds true, then∥∥∥Tβ,vDτx
(l) − Tβ,vx(l)

∥∥∥ ≤ 2β+1−jl |τ |∞‖x(0)‖. (39)

17

Under review as a conference paper at ICLR 2020

Proof of Theorem 3. Putting together (37) and (39), we have∥∥∥x(L)[Dβ,v ◦Dτx
(0)]− Tβ,vx(L)[x(0)]

∥∥∥
≤
∥∥∥x(L)[Dβ,v ◦Dτx

(0)]− Tβ,vDτx
(L)[x(0)]

∥∥∥+
∥∥∥Tβ,vDτx

(L)[x(0)]− Tβ,vx(L)[x(0)]
∥∥∥

≤2β+3L|∇τ |∞‖x(0)‖+ 2β+1−jL |τ |∞‖x(0)‖
=2β+1

(
4L|∇τ |∞ + 2−jL |τ |∞

)
‖x(0)‖

This concludes the proof of Theorem 3.

Finally, we need to prove Proposition 2 and Proposition 3, where the following lemma from Qiu et al.
(2018) is useful.
Lemma 4 (Lemma A.1 of Qiu et al. (2018)). Supppose that |∇τ |∞ < 1/5, ρ(u) = u− τ(u), then
at every point u ∈ R2,

||Jρ| − 1| ≤ |∇τ |∞(2 + |∇τ |∞), (40)

where Jρ is the Jacobian of ρ, and |Jρ| is the Jacobian determinant. As a result,

||Jρ| − 1| ,
∣∣|Jρ−1| − 1

∣∣ ≤ 4|∇τ |∞, (41)

and,

|Jρ| ,
∣∣Jρ−1∣∣ ≤ 2. (42)

Proof of Proposition 2. Just like Proposition 1(a), the proof of Proposition 2(a) for the case l = 1 is
similar to Lemma 3.2 of Qiu et al. (2018) after the change of variable (30). We thus focus only on
the proof for the case l > 1. To simplify the notation, we denote x(l)[x(l−1)] as y[x], and replace
x
(l−1)
c , W (l), b(l), Ml−1, and Ml, respectively, by xc, W , b, M ′, and M . By the definition of the

deformation Dτ (10), we have

Dτy[x](u, α, λ) = σ

(∑
λ′

∫
R2

∫
R
x(ρ(u) + u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(λ)

)
,

y[Dτx](u, α, λ) = σ

(∑
λ′

∫
R2

∫
R
x(ρ(u+ u′), α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(λ)

)
.

Thus

|(Dτy[x]− y[Dτx])(u, α, λ)|2

=

∣∣∣∣∣σ
(∑

λ′

∫
R2

∫
R
x(ρ(u) + u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(λ)

)

− σ

(∑
λ′

∫
R2

∫
R
x(ρ(u+ u′), α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′ + b(λ)

)∣∣∣∣∣
2

≤

∣∣∣∣∣∑
λ′

∫
R2

∫
R

(x(ρ(u) + u′, α+ α′, λ′)− x(ρ(u) + u′, α+ α′, λ′))Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
λ′

∫
R2

∫
R

(xc(ρ(u) + u′, α+ α′, λ′)− xc(ρ(u) + u′, α+ α′, λ′))Wλ′,λ

(
2−αu′, α′

)
2−2αdα′du′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
λ′

∑
m

∫
R2

∫
R

(xc(ρ(u) + u′, α+ α′, λ′)− xc(ρ(u) + u′, α+ α′, λ′)) ·

Wλ′,λ,m

(
2−αu′

)
ϕm (α′) 2−2αdα′du′

∣∣2 ,
18

Under review as a conference paper at ICLR 2020

where the second equality results from the fact that x(u, α, λ)− xc(u, α, λ) = x0(λ) depends only
on λ (Proposition 1(b).) Just like the proof of Proposition 1(a), we take the integral of α′ first, and
define

Gm(u, α, λ′) :=

∫
R
xc(u, α+ α′, λ′)ϕm(α′)dα′. (43)

Thus

|(Dτy[x]− y[Dτx])(u, α, λ)|2

≤

∣∣∣∣∣∑
λ′

∑
m

∫
R2

(Gm(ρ(u) + u′, α, λ′)−Gm(ρ(u+ u′), α, λ′))Wλ′,λ,m

(
2−αu′

)
2−2αdu′

∣∣∣∣∣
2

=

∣∣∣∣∣∑
λ′

∑
m

∫
R2

Gm(v, α, λ′)Wλ′,λ,m

(
2−α(v − ρ(u))

)
2−2αdv

−
∑
λ′

∑
m

∫
R2

Gm(v, α, λ′)Wλ′,λ,m

(
2−α(ρ−1(v)− u)

)
2−2α|Jρ−1(v)|dv

∣∣∣∣∣
2

= |E1(u, α, λ) + E2(u, α, λ)|2 ,
where

E1(u, α, λ) =
∑
λ′

∑
m

∫
R2

[
Wλ′,λ,m

(
2−α(v − ρ(u))

)
−Wλ′,λ,m

(
2−α(ρ−1(v)− u)

)]
·

2−2αGm(v, α, λ′)dv,

E2(u, α, λ) =
∑
λ′

∑
m

∫
R2

Wλ′,λ,m

(
2−α(ρ−1(v)− u)

) [
1−

∣∣Jρ−1(v)
∣∣] ·

2−2αGm(v, α, λ′)dv.

Therefore

M ‖Dτy[x]− y[Dτx]‖2 = sup
α

∑
λ

∫
R2

|(Dτy[x]− y[Dτx])(u, α, λ)|2 du

≤ sup
α

∑
λ

∫
R2

|E1(u, α, λ) + E2(u, α, λ)|2 du

=M‖E1 + E2‖2

Hence

‖Dτy[x]− y[Dτx]‖ ≤ ‖E1 + E2‖. (44)

We thus seek to estimate ‖E1‖ and ‖E2‖ individually.

To bound ‖E2‖, we let

k
(2)
λ′,λ,m(v, u, α) := Wλ′,λ,m

(
2−α(ρ−1(v)− u)

) [
1− |Jρ−1(v)|

]
2−2α.

Then

E2(u, α, λ) =
∑
λ′

∑
m

∫
R2

Gm(v, α, λ′)k
(2)
λ′,λ,m(v, u, α)dv,

and, for any given v and α∫
R2

∣∣∣k(2)λ′,λ,m(v, u, α)
∣∣∣ du =

∫
R2

∣∣Wλ′,λ,m

(
2−α(ρ−1(v)− u)

)∣∣ ∣∣1− |Jρ−1(v)|
∣∣ 2−2αdu

=
∣∣1− |Jρ−1(v)|

∣∣ ∫
R2

|Wλ′,λ,m(ũ)| dũ

≤4|∇τ |∞B(l)
λ′,λ,m,

19

Under review as a conference paper at ICLR 2020

where the last inequality comes from (41). Moreover, for any given u and α,∫
R2

∣∣∣k(2)λ′,λ,m(v, u, α)
∣∣∣ dv =

∫
R2

∣∣Wλ′,λ,m

(
2−α(ρ−1(v)− u)

)∣∣ ∣∣1− |Jρ−1(v)|
∣∣ 2−2αdv

=

∫
R2

∣∣Wλ′,λ,m(ṽ − 2−αu)
∣∣ · ||Jρ(2αṽ)| − 1| dṽ

≤4|∇τ |∞B(l)
λ′,λ,m,

where the last inequality is again because of (41). Thus, for any given α,

∑
λ

∫
R2

|E2(u, α, λ)|2 du =
∑
λ

∫
R2

∣∣∣∣∣∑
λ′

∑
m

∫
R2

Gm(v, α, λ′)k
(2)
λ′,λ,m(v, u, α)dv

∣∣∣∣∣
2

du

≤
∑
λ

∫
R2

(∑
λ′

∑
m

∫
R2

|Gm(v, α, λ)|2
∣∣∣k(2)λ′,λ,m(v, u, α)

∣∣∣ dv) ·(∑
λ′

∑
m

∫
R2

∣∣∣k(2)λ′,λ,m(v, u, α)
∣∣∣ dv) du

≤
∑
λ

∫
R2

(∑
λ′

∑
m

∫
R2

|Gm(v, α, λ)|2
∣∣∣k(2)λ′,λ,m(v, u, α)

∣∣∣ dv)(∑
λ′

∑
m

4|∇τ |∞B(l)
λ′,λ,m

)
du

≤4|∇τ |∞Bl
∑
m

∑
λ′

∫
R2

|Gm(v, α, λ)|2
(∑

λ

∫
R2

∣∣∣k(2)λ′,λ,m(v, u, α)
∣∣∣ du) dv

≤4|∇τ |∞Bl
∑
m

∑
λ′

∫
R2

|Gm(v, α, λ)|2
(∑

λ

4|∇τ |∞B(l)
λ′,λ,m

)
dv

≤16|∇τ |2∞Bl
∑
m

(∑
λ′

∫
R2

|Gm(v, α, λ)|2 dv

)
Bl,m

≤16|∇τ |2∞Bl
∑
m

M ′‖Gm‖2Bl,m

Since ‖Gm‖2 ≤ 2‖xc‖2 (by Lemma 3), and
∑
mBl,m ≤

M
2M ′Bl by definition (29), we thus have∑

λ

∫
R2

|E2(u, α, λ)|2 du ≤ 16|∇τ |2∞Bl
M

2M ′
Bl · 2M ′‖xc‖2 = M(4|∇τ |∞Bl‖xc‖)2, ∀α.

(45)

Taking supα on both sides gives us

‖E2‖ ≤ 4|∇τ |∞Bl‖xc‖. (46)

Similarly, to bound ‖E1‖, we introduce

k
(1)
λ′,λ,m(v, u, α) :=

[
Wλ′,λ,m

(
2−α(v − ρ(u))

)
−Wλ′,λ,m

(
2−α(ρ−1(v)− u)

)]
2−2α.

Then

E1(u, α, λ) =
∑
λ′

∑
m

∫
R2

Gm(v, α, λ′)k
(1)
λ′,λ,m(v, u, α)dv,

and, for any given v and α, we have∫
R2

∣∣∣k(1)λ′,λ,m(v, u, α)
∣∣∣ du, ∫

R2

∣∣∣k(1)λ′,λ,m(v, u, α)
∣∣∣ dv ≤ 4|∇τ |∞C(l)

λ′,λ,m. (47)

The proof of (47) is exactly the same as that of Lemma 3.2 in Qiu et al. (2018) after a change of
variable, and we thus omit the detail. Similar to the procedure we take to bound ‖E2‖, (47) leads to

‖E1‖ ≤ 4|∇τ |∞Cl‖xc‖. (48)

20

Under review as a conference paper at ICLR 2020

Putting together (44), (46), and (48), we thus have

‖Dτy[x]− y[Dτx]‖ ≤ ‖E1 + E2‖ ≤ ‖E1‖+ ‖E2‖ ≤ 4(Bl + Cl)|∇τ |∞‖xc‖.
This concludes the proof of (a).

To prove (b), given any β ∈ R, and v ∈ R2, we have

‖Tβ,vx(l)‖2 = sup
α

1

Ml

∑
λ

∫
R2

∣∣∣Tβ,vx(l)(u, α, λ)
∣∣∣2 du

= sup
α

1

Ml

∑
λ

∫
R2

∣∣∣x(l)(2−β(u− v), α− β, λ)
∣∣∣2 du

= sup
α

1

Ml

∑
λ

∫
R2

∣∣∣x(l)(ũ, α− β, λ)
∣∣∣2 22βdũ

= 22β‖x(l)‖2

Thus (35) holds true. As for (36), we have∥∥∥x(l)[Tβ,v ◦Dτx
(l−1)]− Tβ,vDτx

(l)[x(l−1)]
∥∥∥

=
∥∥∥Tβ,vx(l)[Dτx

(l−1)]− Tβ,vDτx
(l)[x(l−1)]

∥∥∥
=2β

∥∥∥x(l)[Dτx
(l−1)]−Dτx

(l)[x(l−1)]
∥∥∥

≤2β+2(Bl + Cl)|∇τ |∞‖x(l−1)c ‖,
where the first equality holds valid because of Theorem 1, and the second equality comes from (35).

To prove (c), for any 0 ≤ j ≤ l, define yj as

yj = x(l) ◦ x(l−1) ◦ · · · ◦ Tβ,v ◦Dτx
(j) ◦ · · · ◦ x(0).

We thus have∥∥∥x(l)[Dβ,v ◦Dτx
(0)]− Tβ,vDτx

(l)[x(0)]
∥∥∥ = ‖yl − y0‖ ≤

l∑
j=1

‖yj − yj−1‖

=

l∑
j=1

∥∥∥x(l) ◦ · · · ◦ Tβ,v ◦Dτx
(j) ◦ · · · ◦ x(0) − x(l) ◦ · · · ◦ x(j) ◦ Tβ,v ◦Dτx

(j−1) ◦ · · · ◦ x(0)
∥∥∥

≤
l∑

j=1

∥∥∥Tβ,v ◦Dτx
(j)[x(j−1)]− x(j)[Tβ,v ◦Dτx

(j−1)]
∥∥∥

≤
l∑

j=1

2β+2(Bj + Cj)|∇τ |∞‖x(j−1)c ‖

≤
l∑

k=1

2β+2 · 2|∇τ |∞‖x(0)‖ = 2β+3l|∇τ |∞‖x(0)‖,

where the second inequality is because of Proposition 1(a), the third inequality is due to (36), and the
last inequality holds true because Bl, Cl ≤ Al ≤ 1 under (A2) (Lemma 2.) This concludes the proof
of Proposition 2.

Proof of Proposition 3. The second inequality in (38) is due to Proposition 1(c). Because of (35),
the first inequality in (38) is equivalent to∥∥∥Dτx

(l) − x(l)
∥∥∥ ≤ 2|τ |∞Dl‖x(l−1)c ‖ (49)

Just like Proposition 2(a), the proof of (49) for the case l = 1 is similar to Proposition 3.4 of Qiu et al.
(2018) after the change of variable (30). A similar strategy as that of Proposition 2(a) can be used to

21

Under review as a conference paper at ICLR 2020

extend the proof to the case l > 1. More specifically, denote x(l−1), x(l−1)c ,W (l), b(l), respectively,
as x, xc,W, and b to simplify the notation. We have∣∣∣(Dτx

(l)[x]− x(l)[x]
)

(u, α, λ)
∣∣∣2

=

∣∣∣∣∣σ
(∑

λ′

∫
R2

∫
R
x (ρ(u) + u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdu′dα′ + b(λ)

)

− σ

(∑
λ′

∫
R2

∫
R
x (u+ u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdu′dα′ + b(λ)

)∣∣∣∣∣
≤

∣∣∣∣∣∑
λ′

∫
R2

∫
R
x (ρ(u) + u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdu′dα′

−
∑
λ′

∫
R2

∫
R
x (u+ u′, α+ α′, λ′)Wλ′,λ

(
2−αu′, α′

)
2−2αdu′dα′

∣∣∣∣∣
=

∣∣∣∣∣∑
λ′

∫
R2

∫
R
xc (ρ(u) + u′, α+ α′, λ′)

∑
m

Wλ′,λ,m

(
2−αu′

)
ϕm (α′) 2−2αdu′dα′

−
∑
λ′

∫
R2

∫
R
xc (u+ u′, α+ α′, λ′)

∑
m

Wλ′,λ,m

(
2−αu′

)
ϕm (α′) 2−2αdu′dα′

∣∣∣∣∣
=

∣∣∣∣∣∑
λ′

∑
m

∫
R2

Gm(v, α, λ′)kλ′,λ,m(v, u, α)du′

∣∣∣∣∣ ,
where

Gm(u, α, λ′) :=

∫
R
xc(u, α+ α′, λ′)ϕm(α′)dα′,

kλ′,λ,m(v, u, α) := 2−2α
[
Wλ′,λ,m

(
2−α(v − ρ(u))

)
−Wλ′,λ,m

(
2−α(v − u)

)]
.

Similar to (47), we have the following bound∫
R2

|kλ′,λ,m(v, u, α)| du,
∫
R2

|kλ′,λ,m(v, u, α)| dv ≤ 2|∇τ |∞D(l)
λ′,λ,m. (50)

Again, the proof of (50) is the same as that of Proposition 3.4 in Qiu et al. (2018) after a change of
variable. The rest of the proof follows from a similar argument as in (45) and (46).

B EXPERIMENTAL DETAILS IN SECTION 5

B.1 VERIFICATION OF SCALE-EQUIVARIANCE

The ScDCFNet used in this experiment has two convolutional layers, each of which is composed
of a scale-equivariant convolution (4) or (5), a batch-normalization, and a 2 × 2 scale-equivariant
average-pooling. The expansion coefficients a(1)λ′,λ(k) and a(2)λ′,λ(k,m) are sampled from a Gaussian
distribution and truncated to K = 8 and Kα = 3 leading coefficients for u and α respectively.
Similarly, a regular CNN with two convolutional layers and randomly generated 5× 5 convolutional
kernels is used as a baseline for comparison.

B.2 MULTISCALE IMAGE CLASSIFICATION

In the experiments on multiscale image classification on the SMNIST and SFashion dataaset, the
network architectures for the ScDCFNet and the regular CNN are shown in Table 2. Stochastic
gradient descent (SGD) with decreasing learning rate from 10−2(10−1) to 10−4(10−3) is used to
train all networks without (with) batch-normalization for 160 epochs.

22

Under review as a conference paper at ICLR 2020

Layer (Regular) CNN ScDCFNet

1 c3x3x1xM ReLU ap2x2 sc(9)9x9x1xM ReLU sap2x2

2 c3x3xMx2M ReLU ap2x2 sc(9)9x9xLαxMx2M ReLU sap2x2

3 c3x3x2Mx4M ReLU ap2x2 sc(9)9x9xLαx2Mx4M ReLU sap2x2

4 fc64 ReLU fc10 softmax-loss fc64 ReLU fc10 softmax-loss

Table 2: Network architectures used for the experiments in Section 5.2. cLxLxM’xM: a regular convolutional
layer with M’ input channels, M output channels, and LxL spatial kernels. sc(Nα)LxLxM’xM: the first-layer
convolution operation (4) in ScDCFNet, where Nα is the number of the uniform grid points to discretize the
scale interval [−1.6, 0], and LxL is the spatial kernel size on the largest scale α = 0. sc(Nα)LxLxLαxM’xM:
the l-th layer (l > 1) convolution operation (5) in ScDCFNet, where the extra symbol Lα stands for the filter
size in α. apLxL(sapLxL): the regular(scale-equivariant) LxL average-pooling. fcM: a fully connected layer
with M output channels. Batch-normalization layers are added to each convolutional layer if adopted during
training.

B.3 IMAGE RECONSTRUCTION

The network architectures for the SDCFNet and regular CNN auto-encoders are shown in Table 3.
The filter expansion in the SDCFNet auto-encoder is truncated to K = 8 and Kα = 3. SGD with
decreasing learning rate from 10−2 to 10−4 is used to train both networks for 20 epochs.

Layer Regular auto-encoder ScDCF auto-encoder

1 c7x7x1x8 ReLU ap2x2 sc(15)13x13x1x4 ReLU sap2x2

2 c7x7x8x16 ReLU ap2x2 sc(15)13x13x3x4x8 ReLU sap2x2

3 fc128 ReLU fc4096 ReLU fc128 ReLU fc4096 ReLU

4 ct7x7x16x8 ReLU us2x2 ct7x7x16x8 ReLU us2x2

5 ct7x7x8x1 ReLU us2x2 ct7x7x8x1 ReLU us2x2

Table 3: Architectures of the auto-encoders used for the experiment in Section 5.3. The encoded representation
is the output of the second layer. ctLxLxM’xM: transposed-convolutional layers with M’ input channels, M
output channels, and LxL spatial kernels. us2x2: 2x2 spatial upsampling. See the caption of Table 2 for the
definitions of other symbols. Batch-normalization (not shown in the table) is used after each convolutional layer.

23

	Introduction
	Related Work
	Scale-Equivariant CNN and Filter Decomposition
	Scale-Equivariant CNNs
	Separable Basis Decomposition

	Representation Stability of ScDCFNet to Input Deformation
	Numerical Experiments
	Verification of Scale Equivariance
	Multiscale Image Classification
	Image Reconstruction

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Theorem 3

	Experimental Details in Section 5
	Verification of scale-equivariance
	Multiscale Image Classification
	Image Reconstruction

