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ABSTRACT

An important research direction in machine learning has centered around develop-
ing meta-learning algorithms to tackle few-shot learning. An especially successful
algorithm has been Model Agnostic Meta-Learning (MAML), a method that con-
sists of two optimization loops, with the outer loop finding a meta-initialization,
from which the inner loop can efficiently learn new tasks. Despite MAML’s popu-
larity, a fundamental open question remains – is the effectiveness of MAML due
to the meta-initialization being primed for rapid learning (large, efficient changes
in the representations) or due to feature reuse, with the meta initialization already
containing high quality features? We investigate this question, via ablation studies
and analysis of the latent representations, finding that feature reuse is the dominant
factor. This leads to the ANIL (Almost No Inner Loop) algorithm, a simplification
of MAML where we remove the inner loop for all but the (task-specific) head of the
underlying neural network. ANIL matches MAML’s performance on benchmark
few-shot image classification and RL and offers computational improvements over
MAML. We further study the precise contributions of the head and body of the
network, showing that performance on the test tasks is entirely determined by the
quality of the learned features, and we can remove even the head of the network
(the NIL algorithm). We conclude with a discussion of the rapid learning vs feature
reuse question for meta-learning algorithms more broadly.

1 INTRODUCTION

A central problem in machine learning is few-shot learning, where new tasks must be learned with
a very limited number of labelled datapoints. A significant body of work has looked at tackling
this challenge using meta-learning approaches (16; 37; 32; 6; 30; 28; 24). Broadly speaking, these
approaches define a family of tasks, some of which are used for training and others solely for
evaluation. A proposed meta-learning algorithm then looks at learning properties that generalize
across the different training tasks, and result in fast and efficient learning of the evaluation tasks.

One highly successful meta-learning algorithm has been Model Agnostic Meta-Learning (MAML) (6).
At a high level, the MAML algorithm is comprised of two optimization loops. The outer loop (in
the spirit of meta-learning) aims to find an effective meta-initialization, from which the inner loop
can perform efficient adaptation – optimize parameters to solve new tasks with very few labelled
examples. This algorithm, with deep neural networks as the underlying model, has been highly
influential, with significant follow on work, such as first order variants (24), probabilistic extensions
(8), augmentation with generative modelling (29), and many others (15; 7; 12; 35).

Despite the popularity of MAML, and the numerous followups and extensions, there remains a
fundamental open question on the basic algorithm. Does the meta-initialization learned by the
outer loop result in rapid learning on unseen test tasks (efficient but significant changes in the
representations) or is the success primarily due to feature reuse (with the meta-initialization already
providing high quality representations)? In this paper, we explore this question and its many surprising
consequences. Our main contributions are:

• We perform layer freezing experiments and latent representational analysis of MAML,
finding that feature reuse is the predominant reason for efficient learning.

• Based on these results, we propose the ANIL (Almost No Inner Loop) algorithm, a significant
simplification to MAML that removes the inner loop updates for all but the head (final layer)
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of a neural network during training and inference. ANIL performs identically to MAML on
standard benchmark few-shot classification and RL tasks and offers computational benefits
over MAML.

• We study the effect of the head of the network, finding that once training is complete, the
head can be removed, and the representations can be used without adaptation to perform
unseen tasks, which we call the No Inner Loop (NIL) algorithm.

• We study different training regimes, e.g. multiclass classification, multitask learning, etc,
and find that the task specificity of MAML/ANIL at training facilitate the learning of better
features. We also find that multitask training, a popular baseline with no task specificity,
performs worse than random features.

• We discuss rapid learning and feature reuse in the context of other meta-learning approaches.

2 RELATED WORK

MAML (6) is a highly popular meta-learning algorithm for few-shot learning, achieving competitive
performance on several benchmark few-shot learning problems (16; 37; 32; 30; 28; 24). It is part
of the family of optimization-based meta-learning algorithms, with other members of this family
presenting variations around how to learn the weights of the task-specific classifier. For example
(19; 10; 4; 18; 39), first learn functions to embed the support set and target examples of a few-shot
learning task, before using the test support set to learn task specific weights to use on the embedded
target examples. (14) also proceeds similarly, using a Bayesian approach.

Of these optimization-based meta-learning algorithms, MAML has been especially influential, inspir-
ing numerous direct extensions in recent literature (1; 8; 12; 29). Most of these extensions critically
rely on the core structure of the MAML algorithm, incorporating an outer loop (for meta-training),
and an inner loop (for task-specific adaptation), and there is little prior work analyzing why this
central part of the MAML algorithm is practically successful. In this work, we focus on this foun-
dational question, examining how and why MAML leads to effective few-shot learning. To do this,
we utilize analytical tools such as Canonical Correlation Analysis (CCA) (26; 23) and Centered
Kernel Alignment (CKA) (17) to study the neural network representations learned with the MAML
algorithm, which also demonstrates MAML’s ability to learn effective features for few-shot learning.

Insights from this analysis lead to a simplification that almost completely removes the inner opti-
mization loop (the ANIL algorithm) with no reduction in performance. Other work has looked at
having outer/inner loop specific parameters (40), but does this in a more complex fashion, partitioning
parameters within each layer, and for specific layers, contrasting with the simple head/body separation
in ANIL. Our work is complementary to methods extending MAML, and our simplification and
insights could be applied to such extensions also.

3 MAML, RAPID LEARNING, AND FEATURE REUSE

Our goal is to understand whether the MAML algorithm efficiently solves new tasks due to rapid
learning or feature reuse. In rapid learning, large representational and parameter changes occur during
adaptation to each new task as a result of favorable weight conditioning from the meta-initialization.
In feature reuse, the meta-initialization already contains highly useful features that can mostly be
reused as is for new tasks, so little task-specific adaptation occurs. Figure 1 shows a schematic of
these two hypotheses.

We start off by overviewing the details of the MAML algorithm, and then we study the rapid learning
vs feature reuse questions via layer freezing experiments and analyzing latent representations of
models trained with MAML. The results strongly support feature reuse as the predominant factor
behind MAML’s success. In Section 4, we explore the consequences of this, providing a significant
simplification of MAML – the ANIL algorithm, and in Section 6, we outline the connections to
meta-learning more broadly.

2



Under review as a conference paper at ICLR 2020

Figure 1: Rapid learning and feature reuse paradigms. In Rapid Learning, outer loop training leads to a
parameter setting that is well-conditioned for fast learning, and inner loop updates result in significant task
specialization. In Feature Reuse, the outer loop leads to parameter values corresponding to reusable features,
from which the parameters do not move significantly in the inner loop. Images from (13; 9; 36; 2; 22; 34).

3.1 OVERVIEW OF MAML

The MAML algorithm finds an initialization for a neural network so that new tasks can be learnt with
very few examples (k examples from each class for k-shot learning) via two optimization loops:

• Outer Loop: Updates the initialization of the neural network parameters (often called the
meta-initialization) to a setting that enables fast adaptation to new tasks.
• Inner Loop: Performs adaptation: takes the outer loop initialization, and, separately for

each task, performs a few gradient updates over the k labelled examples (the support set)
provided for adaptation.

More formally, we first define our base model to be neural network with meta-initialization parameters
θ; let this be represented by fθ. We have have a distribution D over tasks, and draw a batch
{T1, ..., TB} of B tasks from D. For each task Tb, we have a support set of examples STb

, which are
used for inner loop updates, and a target set of examples ZTb

, which are used for outer loop updates.
Let θ(b)i signify θ after i gradient updates for task Tb, and let θ(b)0 = θ. In the inner loop, during each
update, we compute

θ(b)m = θ
(b)
m−1 − α∇θ(b)m−1

LSTb
(f
θ
(b)
m−1(θ)

) (1)

for m fixed across all tasks, where LSTb
(f
θ
(b)
m−1(θ)

) is the loss on the support set of Tb after m− 1

inner loop updates.

We then define the meta loss as

Lmeta(θ) =
B∑
b=1

LZTb
(f
θ
(b)
m (θ)

)

where LZTb
(f
θ
(b)
m (θ)

) is the loss on the target set of Tb after m inner loop updates, making clear the
dependence of f

θ
(b)
m

on θ. The outer optimization loop then updates θ as

θ = θ − η∇θLmeta(θ)

At test time, we draw unseen tasks {T (test)
1 , ..., T

(test)
n } from the task distribution, and evalu-

ate the loss and accuracy on Z
T

(test)
i

after inner loop adaptation using S
T

(test)
i

(e.g. loss is

LZ
T

(test)
i

(
f
θ
(i)
m (θ)

)
).

3.2 RAPID LEARNING OR FEATURE REUSE?

We now turn our attention to the key question: Is MAML’s efficacy predominantly due to rapid
learning or feature reuse? In investigating this question, there is an important distinction between the
head (final layer) of the network and the earlier layers (the body of the network). In each few-shot
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Freeze layers MiniImageNet-5way-1shot MiniImageNet-5way-5shot

None 44.5 ± 0.8 61.7 ± 0.6
1 44.8 ± 0.7 61.7 ± 0.7

1,2 44.8 ± 0.8 61.4 ± 0.7
1,2,3 44.7 ± 0.8 60.2 ± 0.7

1,2,3,4 44.7 ± 0.8 60.2 ± 0.7

Table 1: Freezing successive layers (preventing inner loop adaptation) does not affect accuracy, support-
ing feature reuse. To test the amount of feature reuse happening in the inner loop adaptation, we test the
accuracy of the model when we freeze (prevent inner loop adaptation) a contiguous block of layers at test time.
We find that freezing even all four convolutional layers of the network (all layers except the network head) hardly
affects accuracy. This strongly supports the feature reuse hypothesis: layers don’t have to change rapidly at
adaptation time; they already contain good features from the meta-initialization.

learning task, there is a different alignment between the output neurons and classes. For instance,
in task T1, the (wlog) five output neurons might correspond, in order, to the classes (dog, cat, frog,
cupcake, phone), while for a different task, T2, they might correspond, in order, to (airplane, frog,
boat, car, pumpkin). This means that the head must necessarily change for each task to learn the new
alignment, and for the rapid learning vs feature reuse question, we are primarily interested in the
behavior of the body of the network. We return to this in more detail in Section 5, where we present
an algorithm (NIL) that does not use a head at test time.

To study rapid learning vs feature reuse in the network body, we perform two sets of experiments:
(1) We evaluate few-shot learning performance when freezing parameters after MAML training,
without test time inner loop adaptation; (2) We use representational similarity tools to directly analyze
how much the network features and representations change through the inner loop. We use the
MiniImageNet dataset, a popular standard benchmark for few-shot learning, and with the standard
convolutional architecture in (6). Results are averaged over three random seeds. Full implementation
details are in Appendix B.

3.2.1 FREEZING LAYER REPRESENTATIONS

To study the impact of the inner loop adaptation, we freeze a contiguous subset of layers of the
network, during the inner loop at test time (after using the standard MAML algorithm, incorporating
both optimization loops, for training). In particular, the frozen layers are not updated at all to the test
time task, and must reuse the features learned by the meta-initialization that the outer loop converges
to. We compare the few-shot learning accuracy when freezing to the accuracy when allowing inner
loop adaptation.

Results are shown in Table 1. We observe that even when freezing all layers in the network body,
performance hardly changes. This suggests that the meta-initialization has already learned good
enough features that can be reused as is, without needing to perform any rapid learning for each test
time task.

3.2.2 REPRESENTATIONAL SIMILARITY EXPERIMENTS

We next study how much the latent representations (the latent functions) learned by the neural network
change during the inner loop adaptation phase. Following several recent works (26; 31; 23; 21; 27; 11;
3) we measure this by applying Canonical Correlation Analysis (CCA) to the latent representations
of the network. CCA provides a way to the compare representations of two (latent) layers L1, L2 of a
neural network, outputting a similarity score between 0 (not similar at all) and 1 (identical). For full
details, see (26; 23). In our analysis, we take L1 to be a layer before the inner loop adaptation steps,
and L2 after the inner loop adaptation steps. We compute CCA similarity between L1, L2, averaging
the similarity score across different random seeds of the model and different test time tasks. Full
details are in Appendix B.2

The result is shown in Figure 2, left pane. Representations in the body of the network (the convo-
lutional layers) are highly similar, with CCA similarity scores of > 0.9, indicating that the inner
loop induces little to no functional change. By contrast, the head of the network, which does change
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significantly in the inner loop, has a CCA similarity of less than 0.5. To further validate this, we
also compute CKA (Centered Kernel Alignment) (17) (Figure 2 right), another similarity metric for
neural network representations, which illustrates the same pattern. These representational analysis
results strongly support the feature reuse hypothesis, with further results in Appendix Section B.4,
B.3 providing yet more evidence.
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Figure 2: High CCA/CKA similarity between representations before and after adaptation for all layers
except the head. We compute CCA/CKA similarity between the representation of a layer before the inner loop
adaptation and after adaptation. We observe that for all layers except the head, the CCA/CKA similarity is
almost 1, indicating perfect similarity. This suggests that these layers do not change much during adaptation, but
mostly perform feature reuse. Note that there is a slight dip in similarity in the higher conv layers (e.g. conv3,
conv4); this is likely because the slight representational differences in conv1, conv2 have a compounding effect
on the representations of conv3, conv4. The head of the network must change significantly during adaptation,
and this is reflected in the much lower CCA/CKA similarity.

3.2.3 FEATURE REUSE HAPPENS EARLY IN LEARNING

Having observed that the inner loop does not significantly affect the learned representations with
a fully trained model, we extend our analysis to see whether the inner loop affects representations
and features earlier on in training. We take MAML models at 10000, 20000, and 30000 iterations
into training, perform freezing experiments (as in Section 3.2.1) and representational similarity
experiments (as in Section 3.2.2).
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Figure 3: Inner loop updates have little effect on learned representations from early on in learning. Left
pane: we freeze contiguous blocks of layers (no adaptation at test time), on MiniImageNet-5way-5shot and
see almost identical performance. Right pane: representations of all layers except the head are highly similar
pre/post adaptation – i.e. features are being reused. This is true from very early (iteration 10000) in training.

Results in Figure 3 show the same patterns from early in training, with CCA similarity between
activations pre and post inner loop update on MiniImageNet-5way-5shot being very high for the
body (just like Figure 2), and similar to Table 1, test accuracy remaining approximately the same
when freezing contiguous subsets of layers, even when freezing all layers of the network body. This
shows that even early on in training, significant feature reuse is taking place, with the inner loop
having minimal effect on learned representations and features. Results for 1shot MiniImageNet are in
Appendix B.5, and show very similar trends.
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Figure 4: Schematic of MAML and ANIL algorithms. The difference between the MAML and ANIL
algorithms: in MAML (left), the inner loop (task-specific) gradient updates are applied to all parameters θ,
which are initialized with the meta-initialization from the outer loop. In ANIL (right), only the parameters
corresponding to the network head θhead are updated by the inner loop, during training and testing.

Method Omniglot-20way-1shot Omniglot-20way-5shot MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML 93.7 ± 0.7 96.4 ± 0.1 46.9 ± 0.2 63.1 ± 0.4
ANIL 96.2 ± 0.5 98.0 ± 0.3 46.7 ± 0.4 61.5 ± 0.5

Method HalfCheetah-Direction HalfCheetah-Velocity 2D-Navigation

MAML 170.4 ± 21.0 -139.0 ± 18.9 -20.3 ± 3.2
ANIL 363.2 ± 14.8 -120.9 ± 6.3 -20.1 ± 2.3

Table 2: ANIL matches the performance of MAML on few-shot image classification and RL. On bench-
mark few-shot classification tasks MAML and ANIL have comparable accuracy, and also comparable average
return (the higher the better) on standard RL tasks (6).

4 THE ANIL (ALMOST NO INNER LOOP) ALGORITHM

In the previous section we saw that for all layers except the head of the neural network, the meta-
initialization learned by the outer loop of MAML results in very good features that can be reused
as is on new tasks. Inner loop adaptation does not significantly change the representations of these
layers, even from early on in training. This suggests a natural simplification of the MAML algorithm:
the ANIL (Almost No Inner Loop) algorithm.

In ANIL, during training and testing, we remove the inner loop updates for the network body, and
apply inner loop adaptation only to the head. The head requires the inner loop to allow it to align to
the different classes in each task. In Section 5.1 we consider another variant, the NIL (No Inner Loop)
algorithm, that removes the head entirely at test time, and uses learned features and cosine similarity
to perform effective classification, thus avoiding inner loop updates altogether.

For the ANIL algorithm, mathematically, let θ = (θ1, ..., θl) be the (meta-initialization) parameters
for the l layers of the network. Following the notation of Section 3.1, let θ(b)m be the parameters after
m inner gradient updates for task Tb. In ANIL, we have that:

θ(b)m =
(
θ1, . . . , (θl)

(b)
m−1 − α∇(θl)

(b)
m−1
LSb

(f
θ
(b)
m−1

)
)

i.e. only the final layer gets the inner loop updates. As before, we then define the meta-loss, and
compute the outer loop gradient update. The intuition for ANIL arises from Figure 3, where we
observe that inner loop updates have little effect on the network body even early in training, suggesting
the possibility of removing them entirely. Note that this is distinct to the freezing experiments, where
we only removed the inner loop at inference time. Figure 4 presents the difference between MAML
and ANIL, and Appendix C.1 considers a simple example of the gradient update in ANIL, showing
how the ANIL update differs from MAML.

Computational benefit of ANIL: As ANIL almost has no inner loop, it significantly speeds up
both training and inference. We found an average speedup of 1.7x per training iteration over MAML
and an average speedup of 4.1x per inference iteration. In Appendix C.5 we provide the full results.
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Figure 5: MAML and ANIL learn very similarly. Loss and accuracy curves for MAML and ANIL
on MiniImageNet-5way-5shot, illustrating how MAML and ANIL behave similarly through the
training process.

Model Pair CCA Similarity CKA Similarity

MAML-MAML 0.51 0.83
ANIL-ANIL 0.51 0.86

ANIL-MAML 0.50 0.83

Table 3: MAML and ANIL models learn comparable representations. Comparing CCA/CKA similarity
scores of the of MAML-ANIL representations (averaged over network body), and MAML-MAML and ANIL-
ANIL similarity scores (across different random seeds) shows algorithmic differences between MAML/ANIL
does not result in vastly different types of features learned.

Results of ANIL on Standard Benchmarks: We evaluate ANIL on few-shot image classification
and RL benchmarks, using the same model architectures as the original MAML authors, for both
supervised learning and RL. Further implementation details are in Appendix C.4. The results in Table
2 (mean and standard deviation of performance over three random initializations) show that ANIL
matches the performance of MAML on both few-shot classification (accuracy) and RL (average
return, the higher the better), demonstrating that the inner loop adaptation of the body is unnecessary
for learning good features.

MAML and ANIL Models Show Similar Behavior: MAML and ANIL perform equally well
on few-shot learning benchmarks, illustrating that removing the inner loop during training does
not hinder performance. To study the behavior of MAML and ANIL models further, we plot
learning curves for both algorithms on MiniImageNet-5way-5shot, Figure 5. We see that loss and
accuracy for both algorithms look very similar throughout training. We also look at CCA and
CKA scores of the representations learned by both algorithms, Table 3. We observe that MAML-
ANIL representations have the same average similarity scores as MAML-MAML and ANIL-ANIL
representations, suggesting both algorithms learn comparable features (removing the inner loop
doesn’t change the kinds of features learned.) Further learning curves and representational similarity
results are presented in Appendices C.2 and C.3.

5 CONTRIBUTIONS OF THE NETWORK HEAD AND BODY

So far, we have seen that MAML predominantly relies on feature reuse, with the network body (all
layers except the last layer) already containing good features at meta-initialization. We also observe
that such features can be learned even without inner loop adaptation during training (ANIL algorithm).
The head, however, requires inner loop adaptation to enable task specificity.

In this section, we explore the contributions of the network head and body. We first ask: How
important is the head at test time, when good features have already been learned? Motivating this
question is that these features needed no adaptation at inference time, so perhaps they are themselves
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Method Omniglot-20way-1shot Omniglot-20way-5shot MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML 93.7 ± 0.7 96.4 ± 0.1 46.9 ± 0.2 63.1 ± 0.4
ANIL 96.2 ± 0.5 98.0 ± 0.3 46.7 ± 0.4 61.5 ± 0.5
NIL 96.7 ± 0.3 98.0 ± 0.04 48.0 ± 0.7 62.2 ± 0.5

Table 4: NIL algorithm performs as well as MAML and ANIL on few-shot image classification. Perfor-
mance of MAML, ANIL, and NIL on few-shot image classification benchmarks. We see that with no test-time
inner loop, and just learned features, NIL performs comparably to MAML and ANIL, indicating the strength of
the learned features, and the relative lack of importance of the head at test time.

sufficient to perform classification, with no head. In Section 5.1, we find that test time performance is
entirely determined by the quality of these representations, and we can use similarity of the frozen
meta-initialization representations to perform unseen tasks, removing the head entirely. We call this
the NIL (No Inner Loop) algorithm.

Given this result, we next study how useful the head is at training (in ensuring the network body
learns good features). We look at multiple different training regimes (some without the head) for the
network body, and evaluate the quality of the representations. We find that MAML/ANIL result in the
best representations, demonstrating the importance of the head during training for feature learning.

5.1 THE HEAD AT TEST TIME AND THE NIL (NO INNER LOOP) ALGORITHM

Here, we study how important the head (and task specific alignment) are, when good features have
already been learned (through training) by the meta-initialization. At test time, we find that the
representations can be used directly, with no adaptation, which leads to the No Inner Loop (NIL)
algorithm:

1 Train a few-shot learning model with ANIL/MAML algorithm as standard. We use ANIL
training.

2 At test time, remove the head of the trained model. For each task, first pass the k labelled
examples (support set) through the body of the network, to get their penultimate layer repre-
sentations. Then, for a test example, compute cosine similarities between its penultimate
layer representation and those of the support set, using these similarities to weight the
support set labels, as in (37).

The results for the NIL algorithm, following ANIL training, on few-shot classification benchmarks
are given in Table 4. Despite having no network head and no task specific adaptation, NIL performs
comparably to MAML and ANIL. This demonstrates that the features learned by the network body
when training with MAML/ANIL (and reused at test time) are the critical component in tackling
these benchmarks.

5.2 TRAINING REGIMES FOR THE NETWORK BODY

The NIL algorithm and results of Section 5.1, lead to the question of how important task alignment
and the head are during training to ensure good features. Here, we study this question by examining
the quality of features arising from different training regimes for the body. We look at (i) MAML
and ANIL training; (ii) multiclass classification, where all of the training data and classes (from
which training tasks are drawn) are used to perform standard classification; (iii) multitask training, a
standard baseline, where no inner loop or task specific head is used, but the network is trained on all
the tasks at the same time; (iv) random features, where the network is not trained at all, and features
are frozen after random initialization; (v) NIL at training time, where there is no head and cosine
distance on the representations is used to get the label.

After training, we apply the NIL algorithm to evaluate test performance, and quality of features
learned at training. The results are shown in Table 5. MAML and ANIL training performs best.
Multitask training, which has no task specific head, performs the worst, even worse than random
features (adding evidence for the need for task specificity at training to facilitate feature learning.)
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Method MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML training-NIL head 48.4 ± 0.3 61.5 ± 0.8
ANIL training-NIL head 48.0 ± 0.7 62.2 ± 0.5

Multiclass training-NIL head 39.7 ± 0.3 54.4 ± 0.5
Multitask training-NIL head 26.5 ± 1.1 34.2 ± 3.5

Random features-NIL head 32.9 ± 0.6 43.2 ± 0.5

NIL training-NIL head 38.3 ± 0.6 43.0 ± 0.2

Table 5: MAML/ANIL training leads to superior features learned, supporting importance of head at
training. Training with MAML/ANIL leads to superior performance over other methods which do not have task
specific heads, supporting the importance of the head at training.

Using NIL during training performs worse than MAML/ANIL. These results demonstrate that the
head is important at training to learn good features in the network body.

In Appendix D.1, we study test time performance variations from using a MAML/ANIL head instead
of NIL, finding (as suggested by Section 5.1) very little performance difference. Additional results
on similarity between the representations of different training regimes is given in Appendix D.2.

6 FEATURE REUSE IN OTHER META-LEARNING ALGORITHMS

Up till now, we have closely examined the MAML algorithm, and have demonstrated empirically
that the algorithm’s success is primarily due to feature reuse, rather than rapid learning. We now
discuss rapid learning vs feature reuse more broadly in meta-learning. By combining our results with
an analysis of evidence reported in prior work, we find support for many meta-learning algorithms
succeeding via feature reuse, identifying a common theme characterizing the operating regime of
much of current meta-learning.

6.1 OPTIMIZATION AND MODEL BASED META-LEARNING

MAML falls within the broader class of optimization based meta-learning algorithms, which at
inference time, directly optimize model parameters for a new task using the support set. MAML
has inspired many other optimization-based algorithms, which utilize the same two-loop structure
(19; 29; 8). Our analysis so far has thus yielded insights into the feature reuse vs rapid learning
question for this class of algorithms. Another broad class of meta-learning consists of model based
algorithms, which also have notions of rapid learning and feature reuse.

In the model-based setting, the meta-learning model’s parameters are not directly optimized for
the specific task on the support set. Instead, the model typically conditions its output on some
representation of the task definition. One way to achieve this conditioning is to jointly encode the
entire support set in the model’s latent representation (37; 33), enabling it to adapt to the characteristics
of each task. This constitutes rapid learning for model based meta-learning algorithms.

An alternative to joint encoding would be to encode each member of the support set independently,
and apply a cosine similarity rule (as in (37)) to classify an unlabelled example. This mode of
operation is purely feature reuse – we do not use information defining the task to directly influence
the decision function.

If joint encoding gave significant test-time improvement over non-joint encoding, then this would
suggest that rapid learning of the test-time task is taking place, as task specific information is being
utilized to influence the model’s decision function. However, on analyzing results in prior literature,
this improvement appears to be minimal. Indeed, in e.g. Matching Networks (37), using joint
encoding one reaches 44.2% accuracy on MiniImageNet-5way-1shot, whereas with independent
encoding one obtains 41.2%: a small difference. More refined models suggest the gap is even smaller.
For instance, in (5), many methods for one shot learning were re-implemented and studied, and
baselines without joint encoding achieved 48.24% accuracy in MiniImageNet-5way-1shot, whilst
other models using joint encoding such as Relation Net (33) achieves very similar accuracy of 49.31%
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(they also report MAML, at 46.47%). As a result, we believe that the dominant mode of “feature
reuse” rather than “rapid learning” is what has currently dominated both MAML-styled optimization
based meta-learning and model based meta-learning.

7 CONCLUSION

In this paper, we studied a fundamental question on whether the highly successful MAML algorithm
relies on rapid learning or feature reuse. Through a series of experiments, we found that feature reuse
is the dominant component in MAML’s efficacy. This insight led to the ANIL (Almost No Inner Loop)
algorithm, a simplification of MAML that has identical performance on standard image classification
and reinforcement learning benchmarks, and provides computational benefits. We further study the
importance of the head (final layer) of a neural network trained with MAML, discovering that the
body (lower layers) of a network is sufficient for few-shot classification at test time, allowing us to
remove the network head for testing (NIL) and still match performance. We connected our results to
the broader literature in meta-learning, identifying feature reuse to be a common mode of operation
for other meta-learning algorithms also. Based off of our conclusions, future work could look at
developing and analyzing new meta-learning algorithms that perform more rapid learning, which
may expand the datasets and problems amenable to these techniques.
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A FEW-SHOT IMAGE CLASSIFICATION DATASETS AND EXPERIMENTAL
SETUPS

We consider the few-shot learning paradigm for image classification to evaluate MAML and ANIL.
We evaluate using two datasets often used for few-shot multiclass classification – the Omniglot
dataset and the MiniImageNet dataset.

Omniglot: The Omniglot dataset consists of over 1600 different handwritten character classes from
23 alphabets. The dataset is split on a character-level, so that certain characters are in the training
set, and others in the validation set. We consider the 20-way 1-shot and 20-way 5-shot tasks on
this dataset, where at test time, we wish our classifier to discriminate between 20 randomly chosen
character classes from the held-out set, given only 1 or 5 labelled example(s) from each class from
this set of 20 testing classes respectively. The model architecture used is identical to that in the
original MAML paper, namely: 4 modules with a 3 x 3 convolutions and 64 filters with a stride of 2,
followed by batch normalization, and a ReLU nonlinearity. The Omniglot images are downsampled
to 28 x 28, so the dimensionality of the last hidden layer is 64. The last layer is fed into a 20-way
softmax. Our models are trained using a batch size of 16, 5 inner loop updates, and an inner learning
rate of 0.1.

MiniImageNet: The MiniImagenet dataset was proposed by (28), and consists of 64 training
classes, 12 validation classes, and 24 test classes. We consider the 5-way 1-shot and 5-way 5-shot
tasks on this dataset, where the test-time task is to classify among 5 different randomly chosen
validation classes, given only 1 and 5 labelled examples respectively. The model architecture is again
identical to that in the original paper: 4 modules with a 3 x 3 convolutions and 32 filters, followed by
batch normalization, ReLU nonlinearity, and 2 x 2 max pooling. Our models are trained using a batch
size of 4. 5 inner loop update steps, and an inner learning rate of 0.01 are used. 10 inner gradient
steps are used for evaluation at test time.

B ADDITIONAL FREEZING AND REPRESENTATIONAL SIMILARITY DETAILS

In this section, we provide further experimental details and results from freezing and representational
similarity experiments.

B.1 EXPERIMENTAL DETAILS

We concentrate on MiniImageNet for our freezing and representational similarity experiments in
Section 3.2, as it is more complex than Omniglot.

The model architecture used for our experiments is identical to that in the original paper: 4 modules
with a 3 x 3 convolutions and 32 filters, followed by batch normalization, ReLU nonlinearity, and 2 x
2 max pooling. Our models are trained using a batch size of 4, 5 inner loop update steps, and an inner
learning rate of 0.01. 10 inner gradient steps are used for evaluation at test time. We train models 3
times with different random seeds. Models were trained for 30000 iterations.

B.2 DETAILS OF REPRESENTATIONAL SIMILARITY

CCA takes in as inputs L1 = {z(1)1 , z
(1)
2 , ..., z

(1)
m } and L2 = {z(2)1 , z

(1)
2 , ..., z

(2)
n }, where L1, L2 are

layers, and z(j)i is a neuron activation vector: the vector of outputs of neuron i (of layer Lj) over
a set of inputs X . It then finds linear combinations of the neurons in L1 and neurons in L2 so that
the resulting activation vectors are maximally correlated, which is summarized in the canonical
correlation coefficient. Iteratively repeating this process gives a similarity score (in [0, 1] with 1
identical and 0 completely different) between the representations of L1 and L2.

We apply this to compare corresponding layers of two networks, net1 and net2, where net1 and net2
might differ due to training step, training method (ANIL vs MAML) or the random seed. When
comparing convolutional layers, as described in (25), we perform the comparison over channels,
flattening out over all of the spatial dimensions, and then taking the mean CCA coefficient. We
average over three random repeats.
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B.3 SIMILARITY BEFORE AND AFTER INNER LOOP WITH EUCLIDEAN DISTANCE

In addition to assessing representational similarity with CCA/CKA, we also consider the simpler
measure of Euclidean distance, capturing how much weights of the network change during the
inner loop update (task-specific finetuning). We note that this experiment does not assess functional
changes on inner loop updates as well as the CCA experiments do; however, they serve to provide
useful intuition.

We plot the per-layer average Euclidean distance between the initialization θ and the finetuned
weights θ(b)m across different tasks Tb, i.e.

1

N

N∑
b=1

||(θl)− (θl)
(b)
m ||

across different layers l, for MiniImageNet in Figure 6. We observe that very quickly after the start of
training, all layers except for the last layer have small Euclidean distance difference before and after
finetuning, suggesting significant feature reuse. (Note that this is despite the fact that these layers
have more parameters than the final layer.)
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Figure 6: Euclidean distance before and after finetuning for MiniImageNet. We compute the average
(across tasks) Euclidean distance between the weights before and after inner loop adaptation, separately for
different layers. We observe that all layers except for the final layer show very little difference before and after
inner loop adaptation, suggesting significant feature reuse.

B.4 CCA SIMILARITY ACROSS RANDOM SEEDS

The experiment in Section 3.2.2 compared representational similarity of L1 and L2 at different points
in training (before/after inner loop adaptation) but corresponding to the same random seed. To
complete the picture, it is useful to study whether representational similarity across different random
seeds is also mostly unaffected by the inner loop adaptation. This motivates four natural comparisons:
assume layer L1 is from the first seed, and layer L2 is from the second seed. Then we can compute
the representational similarity between (L1 pre, L2 pre), (L1 pre, L2 post), (L1 post, L2 pre) and (L1

post, L2 post), where pre/post signify whether we take the representation before or after adaptation.

Prior work has shown that neural network representations may vary across different random seeds
(26; 23; 20; 38), organically resulting in CCA similarity scores much less than 1. So to identify the
effect of the inner loop on the representation, we plot the CCA similarities of (i) (L1 pre, L2 pre)
against (L1 pre, L2 post) and (ii) (L1 pre, L2 pre) against (L1 post, L2 pre) and (iii) (L1 pre, L2 pre)
against (L1 post, L2 post) separately across the different random seeds and different layers. We then
compute the line of best fit for each plot. If the line of best fit fits the data and is close to y = x,
this suggests that the inner loop adaptation doesn’t affect the features much – the similarity before
adaptation is very close to the similarity after adaptation.

The results are shown in Figure 7. In all of the plots, we see that the line of best fit is almost exactly
y = x (even for the pre/pre vs post/post plot, which could conceivably be more different as both
seeds change) and a computation of the coefficient of determination R2 gives R2 ≈ 1 for all three
plots. Putting this together with Figure 2, we can conclude that the inner loop adaptation step doesn’t
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Figure 7: Computing CCA similarity pre/post adaptation across different random seeds further demon-
strates that the inner loop doesn’t change representations significantly. We compute CCA similarity of L1

from seed 1 and L2 from seed 2, varying whether we take the representation pre (before) adaptation or post
(after) adaptation. To isolate the effect of adaptation from inherent variation in the network representation across
seeds, we plot CCA similarity of of the representations before adaptation against representations after adaptation
in three different combinations: (i) (L1 pre, L2 pre) against (L1 pre, L1 post), (ii) (L1 pre, L2 pre) against (L1

pre, L1 post) (iii) (L1 pre, L2 pre) against (L1 post, L2 post). We do this separately across different random
seeds and different layers. Then, we compute a line of best fit, finding that in all three plots, it is almost identical
to y = x, demonstrating that the representation does not change significantly pre/post adaptation. Furthermore a
computation of the coefficient of determination R2 gives R2 ≈ 1, illustrating that the data is well explained by
this relation. In Figure 8, we perform this comparison with CKA, observing the same high level conclusions.
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Figure 8: We perform the same comparison as in Figure 7, but with CKA instead. There is more variation in the
similarity scores, but we still see a strong correlation between (Pre, Pre) and (Post, Post) comparisons, showing
that representations do not change significantly over the inner loop.
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Figure 9: Inner loop updates have little effect on learned representations from early on in learning.
We consider freezing and representational similarity experiments for MiniImageNet-5way-1shot. We see that
early on in training (from as few as 10k iterations in), the inner loop updates have little effect on the learned
representations and features, and that removing the inner loop updates for all layers but the head have little-to-no
impact on the validation set accuracy.

affect the representation learned by any layer except the head, and that the learned representations
and features are mostly reused as is for the different tasks.

B.5 MINIIMAGENET-5WAY-1SHOT FREEZING AND CCA OVER TRAINING

Figure 9 shows that from early on in training, on MiniImageNet-5way-1shot, that the CCA similarity
between activations pre and post inner loop update is very high for all layers but the head. We further
see that the validation set accuracy suffers almost no decrease if we remove the inner loop updates
and freeze all layers but the head. This shows that even early on in training, the inner loop appears to
have minimal effect on learned representations and features. This supplements the results seen in
Figure 3 on MiniImageNet-5way-5shot.

C ANIL ALGORITHM: MORE DETAILS

In this section, we provide more details about the ANIL algorithm, including an example of the ANIL
update, implementation details, and further experimental results.

C.1 AN EXAMPLE OF THE ANIL UPDATE

Consider a simple, two layer linear network with a single hidden unit in each layer: ŷ(x;θ) = θ2(θ1x).
In this example, θ2 is the head. Consider the 1-shot regression problem, where we have access to
examples

{
(x

(t)
1 , y

(t)
1 ), (x

(t)
2 , y

(t)
2 )
}

for tasks t = 1, . . . , T . Note that (x(t)1 , y
(t)
1 ) is the (example,

label) pair in the meta-training set (used for inner loop adaptation – support set), and (x
(t)
2 , y

(t)
2 ) is

the pair in the meta-validation set (used for the outer loop update – target set).

In the few-shot learning setting, we firstly draw a set of N tasks and labelled examples from our
meta-training set:

{
(x

(1)
1 , y

(1)
1 ), . . . , (x

(N)
1 , y

(N)
1 )

}
. Assume for simplicity that we only apply one

gradient step in the inner loop. The inner loop updates for each task are thus defined as follows:

θ
(t)
1 ← θ1 −

∂L(ŷ(x
(t)
1 ;θ), y

(t)
1 )

∂θ1
(1)

θ
(t)
2 ← θ2 −

∂L(ŷ(x
(t)
1 ;θ), y

(t)
1 )

∂θ2
(2)

where L(·, ·) is the loss function, (e.g. mean squared error) and θ(t)i refers to a parameter after inner
loop update for task t.
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The task-adapted parameters for MAML and ANIL are as follows. Note how only the head parameters
change per-task in ANIL:

θ
(t)
MAML =

[
θ
(t)
1 , θ

(t)
2

]
(3)

θ
(t)
ANIL =

[
θ1, θ

(t)
2

]
(4)

In the outer loop update, we then perform the following operations using the data from the meta-
validation set:

θ1 ← θ1 −
N∑
t=1

∂L(ŷ(x
(t)
2 ;θ(t)), y

(t)
2 )

∂θ1
(5)

θ2 ← θ2 −
N∑
t=1

∂L(ŷ(x
(t)
2 ;θ(t)), y

(t)
2 )

∂θ2
(6)

Considering the update for θ1 in more detail for our simple, two layer, linear network (the case for θ2
is analogous), we have the following update for MAML:

θ1 ← θ1 −
N∑
t=1

∂L(ŷ(x
(t)
2 ;θ

(t)
MAML), y

(t)
2 )

∂θ1
(7)

ŷ(x
(t)
2 ;θ

(t)
MAML) =

([
θ2 −

∂L(ŷ(x
(t)
1 ;θ), y

(t)
1 )

∂θ2

]
·

[
θ1 −

∂L(ŷ(x
(t)
1 ;θ), y

(t)
1 )

∂θ1

]
· x2

)
(8)

For ANIL, on the other hand, the update will be:

θ1 ← θ1 −
N∑
t=1

∂L(ŷ(x
(t)
2 ;θ

(t)
ANIL), y

(t)
2 )

∂θ1
(9)

ŷ(x
(t)
2 ;θ

(t)
ANIL) =

([
θ2 −

∂L(ŷ(x
(t)
1 ;θ), y

(t)
1 )

∂θ2

]
· θ1 · x2

)
(10)

Note the lack of inner loop update for θ1, and how we do not remove second order terms in ANIL
(unlike in first-order MAML); second order terms still persist through the derivative of the inner loop
update for the head parameters.

C.2 ANIL LEARNS ALMOST IDENTICALLY TO MAML

We implement ANIL on MiniImageNet and Omniglot, and generate learning curves for both algo-
rithms in Figure 10. We find that learning proceeds almost identically for ANIL and MAML, showing
that removing the inner loop has little effect on the learning dynamics.

C.3 ANIL AND MAML LEARN SIMILAR REPRESENTATIONS

We compute CCA similarities across representations in a MAML seed and an ANIL seed, and then plot
these against the same MAML seed representation compared to a different MAML seed (and similarly
for ANIL). We find a strong correlation between these similarities (Figure 11), which suggests that
MAML and ANIL are learning similar representations, despite their algorithmic differences. (ANIL
and MAML are about as similar to each other as two ANILs are to each other, or two MAMLs are to
each other.)
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Figure 10: ANIL and MAML on MiniImageNet and Omniglot. Loss and accuracy curves for ANIL and
MAML on (i) MiniImageNet-5way-1shot (ii) MiniImageNet-5way-5shot (iii) Omniglot-20way-1shot. These
illustrate how both algorithms learn very similarly over training.

C.4 ANIL IMPLEMENTATION DETAILS

Supervised Learning Implementation: We used the TensorFlow MAML implementation open-
sourced by the original authors (6). We used the same model architectures as in the original MAML
paper for our experiments, and train models 3 times with different random seeds. All models were
trained for 30000 iterations, with a batch size of 4, 5 inner loop update steps, and an inner learning
rate of 0.01. 10 inner gradient steps were used for evaluation at test time.

Reinforcement Learning Implementation: We used the open source PyTorch implementation
of MAML for RL 1, due to challenges encountered when running the open-sourced TensorFlow
implementation from the original authors. We note that the results for MAML in these RL domains do

1https://github.com/tristandeleu/pytorch-maml-rl
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Figure 11: Computing CCA similarity across different seeds of MAML and ANIL networks suggests
these representations are similar. We plot the CCA similarity between an ANIL seed and a MAML seed,
plotted against (i) the MAML seed compared to a different MAML seed (ii) the ANIL seed compared to a
different ANIL seed. We observe a strong correlation of similarity scores in both (i) and (ii). This tells us
that (i) two MAML representations vary about as much as MAML and ANIL representations (ii) two ANIL
representations vary about as much as MAML and ANIL representations. In particular, this suggests that MAML
and ANIL learn similar features, despite having significant algorithmic differences.

Training: 5way-1shot Training: 5way-5shot
Mean (s) Median (s) Speedup Mean (s) Median (s) Speedup

MAML 0.15 0.13 1 0.68 0.67 1
First Order MAML 0.089 0.083 1.69 0.40 0.39 1.7

ANIL 0.084 0.072 1.79 0.37 0.36 1.84

Inference: 5way-1shot Inference: 5way-5shot
Mean (s) Median (s) Speedup Mean (s) Median (s) Speedup

MAML 0.083 0.078 1 0.37 0.36 1
ANIL 0.020 0.017 4.15 0.076 0.071 4.87

Table 6: ANIL offers significant computational speedup over MAML, during both training and inference.
Table comparing execution times and speedups of MAML, First Order MAML, and ANIL during training
(above) and inference (below) on MiniImageNet domains. Speedup is calculated relative to MAML’s execution
time. We see that ANIL offers noticeable speedup over MAML, as a result of removing the inner loop almost
completely. This permits faster training and inference.

not exactly match those in the original paper; this may be due to large variance in results, depending
on the random initialization. We used the same model architecture as the original paper (two layer
MLP with 100 hidden units in each layer), a batch size of 40, 1 inner loop update step with an inner
learning rate of 0.1 and 20 trajectories for inner loop adaptation. We trained three MAML and ANIL
models with different random initialization, and quote the mean and standard deviation of the results.
As in the original MAML paper, for RL experiments, we select the best performing model over 500
iterations of training and evaluate this model at test time on a new set of tasks.

C.5 ANIL IS COMPUTATIONALLY SIMPLER THAN MAML

Table 6 shows results from a comparison of the computation time for MAML, First Order MAML,
and ANIL, during training and inference, with the TensorFlow implementation described previously,
on both MiniImageNet domains. These results are average time for executing forward and backward
passes during training (above) and a forward pass during inference (bottom), for a task batch size
of 1, and a target set size of 1. Results are averaged over 2000 such batches. Speedup is calculated
relative to MAML’s execution time. Each batches’ images were loaded into memory before running
the TensorFlow computation graph, to ensure that data loading time was not captured in the timing.
Experiments were run on a single NVIDIA Titan-Xp GPU.
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Method MiniImageNet-5way-1shot MiniImageNet-5way-5shot

MAML training-MAML head 46.9 ± 0.2 63.1 ± 0.4
MAML training-NIL head 48.4 ± 0.3 61.5 ± 0.8
ANIL training-ANIL head 46.7 ± 0.4 61.5 ± 0.5
ANIL training-NIL head 48.0 ± 0.7 62.2 ± 0.5

Multiclass pretrain-MAML head 38.4 ± 0.8 54.6 ± 0.4
Multiclass pretrain-NIL head 39.7 ± 0.3 54.4 ± 0.5
Multitask pretrain-MAML head 26.5 ± 0.8 32.8 ± 0.6
Multitask pretrain-NIL head 26.5 ± 1.1 34.2 ± 3.5

Random features-MAML head 32.1 ± 0.5 43.1 ± 0.3
Random features-NIL head 32.9 ± 0.6 43.2 ± 0.5

Table 7: Test time performance is dominated by features learned, with no difference between
NIL/MAML heads. We see identical performances of MAML/NIL heads at test time, indicating
that MAML/ANIL training leads to better learned features.

During training, we see that ANIL is as fast as First Order MAML (which does not compute second
order terms during training), and about 1.7x as fast as MAML. This leads to a significant overall
training speedup, especially when coupled with the fact that the rate of learning for these ANIL and
MAML is very similar; see learning curves in Appendix C.2. Note that unlike First Order MAML,
ANIL also performs very comparably to MAML on benchmark tasks (on some tasks, First Order
MAML performs worse (6)). During inference, ANIL achieves over a 4x speedup over MAML (and
thus also 4x over First Order MAML, which is identical to MAML at inference time). Both training
and inference speedups illustrate the significant computational benefit of ANIL over MAML.

D FURTHER RESULTS ON THE NETWORK HEAD AND BODY

D.1 TRAINING REGIMES FOR THE NETWORK BODY

We add to the results of Section 5.2 in the main text by seeing if training a head and applying that to
the representations at test time (instead of the NIL algorithm) gives in any change in the results. As
might be predicted by Section 5.1, we find no change the results.

More specifically, we do the following:

• We train MAML/ANIL networks as standard, and do standard test time adaptation.

• For multiclass training, we first (pre)train with multiclass classification, then throw away the
head and freeze the body. We initialize a new e.g. 5-class head, and train that (on top of
the frozen multiclass pretrained features) with MAML. At test time we perform standard
adaptation.

• The same process is applied to multitask training.

• A similar process is applied to random features, except the network is initialized and then
frozen.

The results of this, along with the results from Table 5 in the main text is shown in Table 7. We
observe very little performance difference between using a MAML/ANIL head and a NIL head
for each training regime. Specifically, task performance is purely determined by the quality of the
features and representations learned during training, with task-specific alignment at test time being
(i) unnecessary (ii) unable to influence the final performance of the model (e.g. multitask training
performance is equally with a MAML head as it is with a NIL-head.)

D.2 REPRESENTATIONAL ANALYSIS OF DIFFERENT TRAINING REGIMES

Here we include results on using CCA and CKA on the representations learned by the different
training methods. Specifically, we studied how similar representations of different training methods
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were to MAML training, finding a direct correlation with performance – training schemes learning
representations most similar to MAML also performed the best. We computed similarity scores by
averaging the scores over the first three conv layers in the body of the network.

Feature pair CCA Similarity CKA Similarity

(MAML, MAML) 0.51 0.83

(Multiclass pretrain, MAML) 0.48 0.79
(Random features, MAML) 0.40 0.72
(Multitask pretrain, MAML) 0.28 0.65

Table 8: MAML training most closely resembles multiclass pretraining, as illustrated by CCA and CKA
similarities. On analyzing the CCA and CKA similarities between different baseline models and MAML
(comparing across different tasks and seeds), we see that multiclass pretraining results in features most similar to
MAML training. Multitask pretraining differs quite significantly from MAML-learned features, potentially due
to the alignment problem.
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