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ABSTRACT

The monotonous routine of medical image analysis under tight time constraints
has always led to work fatigue for many medical practitioners. Medical image
interpretation can be error-prone and this can increase the risk of an incorrect pro-
cedure being recommended. While the advancement of complex deep learning
models has achieved performance beyond human capability in some computer vi-
sion tasks, widespread adoption in the medical field has been held back, among
other factors, by poor model interpretability and a lack of high-quality labelled
data. This paper introduces a model interpretation and visualisation framework
for the analysis of the feature extraction process of a deep convolutional neural
network and applies it to abnormality detection using the musculoskeletal radio-
graph dataset (MURA, Stanford). The proposed framework provides a mechanism
for interpreting DenseNet deep learning architectures. It aims to provide a deeper
insight about the paths of feature generation and reasoning within a DenseNet ar-
chitecture. When evaluated on MURA at abnormality detection tasks, the model
interpretation framework has been shown capable of identifying limitations in the
reasoning of a DenseNet architecture applied to radiography, which can in turn be
ameliorated through model interpretation and visualization.

1 INTRODUCTION

Radiography is a medical imaging technique that uses X-rays to generate images of human anatomy.
The rays penetrate the object of interest, say a wrist or an elbow, and are attenuated according to the
density of the material they travel through. Thus denser materials, such as bones, present a higher
attenuation than softer materials, such as muscles or organs. The density is normally indicated in
images as various levels brightness (dense) or darkness (soft), although in some cases the scale
is reversed. It is important to notice that X-ray images are two dimensional projections of three
dimensional bodies, and thus in some cases two or more images are acquired with different angles
of view like posterior-anterior (e.g. Figure 1(a)) or lateral views (e.g. Figure 1(b)). Metallic objects
are denser than bones and appear much brighter than bones.

Radiographic images are generally analyzed by certified radiologists or specialist reporting radi-
ologists. On a typical day, a single analysis is performed under a tight time constraint alongside
other heavy workloads. It has been reported that work fatigue can lead to errors in interpretation
(Waite et al., 2016). Therefore, it is attractive to explore computational approaches that can support
radiologists in the analysis of X-ray images.

Recent advances in the areas of machine learning, computer vision and especially deep learning
model development have reported results where the computational models have surpassed human
performance on many predictive tasks. In 2012, the Alexnet (Krizhevsky et al., 2012) won the
ImageNet Large Scale Visual Recognition Competition (ILSVRC) by a large margin against the
runner-up. More sophisticated approaches have since improved the accuracy obtained with Alexnet.
ResNet (He et al., 2015) developed by Microsoft, has outperformed human prediction in the same
competition by 2015.

Despite their superior performance, widespread adoption of these complex deep learning models has
been held back primarily due to poor model interpretability, the requirement of a very large number
of annotated cases to train the models and of sophisticated computational resources. The lack of
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model transparency of its predictions, in particular, has led to challenges in obtaining regulatory
approval to deploy in life-critical applications for healthcare.

Previous work has described the association between key features and the predicted classes (Tan
et al., 2018; Singh et al., 2018; Oramas et al., 2018). While it is important to learn about these
attributing features, it is equally important to understand the feature extraction mechanism of a deep
learning model when our goal is to optimise the model design and its training regime. Being able to
understand and describe the feature extraction process will also facilitate reasoning about the model
and model explanation to other stakeholders (e.g. clinicians or radiologists) who might be more
interested in the attributes of the original data rather than the models themselves.

This paper introduces a systematic framework to explore the feature extraction mechanism in a deep
learning model applied to images. The framework is evaluated on a DenseNet model (Rajpurkar
et al., 2017; Huang et al., 2016) by producing a combination of model visualisation and reasoning
from layer-wise and class activations. An initial analysis from expert radiologists has also been
carried out.

The contribution of this paper is two-fold: (1) The proposed framework allows a systematic approach
for analysing the feature extraction mechanism in the DenseNet model; (2) The effectiveness of
the approach is evaluated using MURA, showing that the framework is capable of identifying and
mitigating certain hidden feature extraction failures through a visually explainable manner.

The rest of the paper is organised as follows. Section 2 reviews the relevant literature that has shaped
the framework, from the choice of dataset and network architecture to the methods of visualisation.
Section 3 introduces the model interpretation framework with emphasis on how the model is trained
and then used for layer-wise interpretation and reasoning about its predictions. Experimental results
are reported in Section 4) and further discussed from a clinical perspective in Section 5. Section 6
concludes and discusses directions for future work.

2 BACKGROUND AND RELATED WORK

The architecture of Dense Convolution Networks (DenseNet) was developed by Huang et al. (2016).
It has incorporated several promising improvements over previous deep learning models such as the
alleviation of vanishing gradient, strengthening of feature propagation and better feature reuse while
substantially reducing the total number of model parameters in comparison with similar models like
ResNet (He et al., 2015). Figure 2 presents a schematic representation of the DenseNet architecture
for an end-to-end prediction using input from a medical image.

In a DenseNet architecture, a common composite function was applied in blocks for non-linear
transformation. This composite function was made up of a series of consecutive operations includ-
ing Batch Normalisation (BN), Activation with Rectified Linear Unit (ReLU) and a 3x3 convolution
(Conv). To enhance computational efficiency, a bottleneck layer of 1x1 convolution was also intro-
duced in the original work to reduce the number of feature maps generated. Concatenating layers
were applied to capture information from feature maps of all preceding layers within each dense
block. Transition layers were implemented between blocks to consolidate the feature maps from
the previous block and transpose them into down-scaled feature maps for the next block. The num-
ber of feature maps (i.e. the amount of new information allowed for extraction) is regulated by a
user-defined global parameter (i.e. growth rate).

Rajpurkar et al. (2017) compiled one of the largest public collections (MURA) for de-identified,
Health Insurance Portability and Accountability Act (HIPAA)-compliant musculoskeletal radio-
graphic images. The images are sourced from 12,173 patients with 14,863 studies (a total of 40,561
images captured from multiple angles). These images are categorised into seven extremity types
(elbow, finger, forearm, hand, humerus, shoulder and wrist). The dataset has been split into train-
ing and validation by the data maintainers. Each study is labelled by certified radiologists with an
average of 8.83 years of experience. The studies can either be classified as negative (normal) or
positive (abnormal) according to the presence of abnormalities such as fracture, hardware implant,
degenerative joint diseases or other causes (e.g. lesions and subluxations). Figure 1 presents sample
images from the dataset that will be used in this work.
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Figure 1: Representative images from the MURA dataset (Rajpurkar et al., 2017). (a) Normal wrist.
(b) Foreign objects at the wrist. (c) Foreign objects in thumb. (d) Wrist fracture. (e) Degenerated
wrist joint. (f) Degenerated finger joint.

In the original work of Rajpurkar et al. (2017), a 169-layered DenseNet architecture was used as a
model for performance evaluation. It was reported that the performance of the model varied signif-
icantly across different extremity types. On wrist cases the model performed well, even exceeding
human prediction. On other studies the model had failed to achieve similar accuracy. In the case of
fingers, both human and model were unable to predict well against the ground truth.

Figure 2: A schematic representation of the 169-layered DenseNet architecture (Huang et al., 2016)
with four dense blocks. The transition layers between blocks formed by convolution and pooling are
used for down-scaling the feature maps.

In the work of Huang et al. (2016) and Rajpurkar et al. (2017), their models were pre-trained using
the ImageNet dataset and the model weights were refined during a transfer learning stage. ImageNet
(Deng et al., 2009) is a large hierarchical database of human-annotated images intended for general-
purpose computer vision research. At present, it consists of approximately 14 million images in
more than 21 thousand classes (synsets). Huh et al. (2016) has conducted an empirical investigation
on the performance of applying ImageNet in transfer learning. It was reported that the pre-trained
weights from the ImageNet dataset could significantly enhance feature extraction even when the
model was trained from images unrelated to the target task. Huh’s work (Huh et al., 2016) had also
demonstrated the impact from image quantity, class size and level of visual similarity among images
on transfer learning providing suggestions to some of our investigations presented in this work.

The performance of deep learning models has been evaluated extensively through various statistical
measures. The interpretation of these models has however only begun in recent years through model
visualisation (Zeiler & Fergus, 2013; Zhou et al., 2016) and feature association with prediction
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(Singh et al., 2018; Oramas et al., 2018). In particular, the layer-wise activations shown in Zeiler
& Fergus (2013) and class activation maps from Zhou et al. (2016) have inspired our proposed
framework to understand how relevant features are extracted across a deep learning network and a
mean for human explanation.

3 PROPOSED FRAMEWORK

This work applied a 169-layered DenseNet architecture as a trained model for model visualisation
and interpretation. The model was constructed using Keras/Tensorflow under a Linux based environ-
ment. The initial weights of the network were either randomly assigned or loaded with weights pre-
trained using the ImageNet dataset. In both cases, transfer learning was completed by an end-to-end
re-training of the models with 32 epochs using training data from the MURA dataset. The associated
code and data have been made available in BitBucket (https://bitbucket.org/cityunilondon/iclr2020).

During model re-training, four sets of model weights had been generated, namely, (1) a pre-trained
model with training data of all extremity types (2) a pre-trained model with training data of wrist-
specific images (3) a randomly initialised model with training data of wrist-specific images, and (4)
a pre-trained model with training data of finger-specific images.

Most of the model hyper-parameters used in this work followed closely to the defined setup in
both Rajpurkar et al. (2017) and Huang et al. (2016)’s work. Some minor variations had been
implemented for simpler execution. The model was trained end-to-end in mini-batches of size 8.
An initial learning rate of 0.0001 was used with a decay factor of 10, 50 and 100 respectively
when 25%, 50% and 75% of training epochs have lapsed. A sigmoid function was used in the last
layer for binary classification. During inference, a final prediction value above 0.5 was regarded as
positive (i.e. abnormal) and negative (normal) otherwise. A loss function of binary cross-entropy
was optimised using Adam with default parameters β1 being 0.9 and β2 being 0.999 (Kingma &
Ba, 2014). The best model in each model set was selected among all training epochs for which the
difference between training and validation accuracy was the least to avoid over-fitting. All the best
models were then used for model evaluation and interpretation throughout this work.

Input images for the models were pre-processed by scaling to a standard size of 320 x 320. As the
original DenseNet model was trained with an input size of 224 x 224 (Huang et al., 2016), the pre-
trained weights had to be modified through Keras’ built-in conversion function. Images were also
randomly augmented during training with random lateral inversions and rotations up to 30 degrees.

The models were evaluated using standard classification accuracy and Cohen’s Kappa statistics at the
individual image level. This differs from the Cohen’s Kappa statistics at the study level presented
in Rajpurkar et al. (2017) which measures an aggregated prediction based on the majority vote
from the classification of multiple images in the same study. Thus, Table 1 should not be a direct
comparison with the results of Rajpurkar et al. (2017). The authors believe that the performance
metrics at image level provides better model interpretation comparison. It would also permit a more
consistent performance comparison for using a similar setup of the DenseNet architecture on other
image datasets in the future.

In order to interpret the model feature representations, visualisation of layer-wise activations was
plotted using Matplotlib with a ’bwr’ colour map (blue, white, red). The range of activation values
was represented by the colour of blue for the low spectrum (i.e. near-zero activations) and red for the
significant features that would be passed on to the subsequent layers. Class activation map (CAM)
(Zhou et al., 2016) was also applied to the final convolution layer before the sigmoid function. This
class activation map used a jet colour map (blue to brown through the rainbow colours). The map
was upscaled and overlayed over the original input image to visualise the final extracted features
contributing to the abnormality detection. A schematic representation for the proposed framework
during prediction is shown in Figure 3.

4 EXPERIMENTAL RESULTS

The first model evaluation was conducted through the performance comparison from the best se-
lected models on validation data of the corresponding extremity types (e.g. wrist-only, finger-only,
etc.). From the values presented in Table 1, all models have acquired relevant learning during model
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Figure 3: Schematic representation of an X-ray image abnormality detection and model interpreta-
tion using layer-wise and class activation maps across different dense blocks. At each level, a series
of feature maps are generated, the resolution decreases with the progress through the blocks. Colours
are mapped to represent the range of activation values with blue in the lower spectrum for near-zero
activation and red for the highly activated features. The final output, labelled here as CAM, is a
feature map that highlights the area(s) where abnormalities can be located. The regions with warm
colours indicate higher probability than the areas with cool colours.

training to a varying degree. All models achieved an accuracy of approximately 80% without any
attempt of model optimization. Interestingly, the wrist-only model appears to detect abnormality on
wrist better than a finger-only model on cases of fingers.

Table 1: Performance metrics for the different model sets
Model Set Validation Accuracy Cohen’s Kappa Statistics

All Extremity Types (pre-trained) 0.830 0.658
Wrist-Only (pre-trained) 0.862 0.717

Wrist-Only (random initialised) 0.778 0.539
Finger-Only (pre-trained) 0.766 0.622

In order to investigate the contributing factors for the model performance, layer-wise and class acti-
vations were applied on selected images to understand the feature extraction mechanism performed
by the DenseNet architecture. Figure 4 presents an example of activation visualisations that will be
used throughout this work for analysis and comparison. All other selected cases can be found in Ap-
pendix A.2. It should be noted that the presented cases in this work may not capture all scenarios in
the dataset. However, the authors believe these cases are representative and sufficient to demonstrate
the effectiveness of the proposed framework for the model interpretation purpose.

Figure 4 shows a case of wrist fracture as highlighted by the red arrow in Figure 4a. When an aug-
mented image was inputted into the model, the top 16 most activated feature maps were generated
for the chosen activation layers at the end of each stage across different dense blocks. The final
feature maps (Figure 4g) presented the same features that made up the class activation map.
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Figure 4: Case 1: Feature extraction for a case of wrist fracture using a wrist-only pre-trained model
for the radiograph shown in Fig. 1(d). The arrow indicates a fracture. The extraction began with an
augmented input image (a). High-level features (e.g. foreground extraction and regions of the wrist)
were extracted in the earlier blocks and can be seen from the corresponding activation maps (c, d, e).
Fine details (e.g. location of fracture) were extracted in block 3 and 4 (f, g). A class activation map
at the last layer is presented in (b) where the final attributing features were identified, highlighting
the area of interest.

From the figure, it can be found that the feature mechanism followed an intuitive hierarchical path.
The model began by identifying the foreground in the initial convolution (Figure 4c). The region of
the wrist could be outlined by the end of block 2 (Figure 4e), and fine-grained features were extracted
in block 3 and 4 with increasing precision. At the end of the network, most of the feature maps were
activated close to where the fracture was located. It should however be noted that the resolution at
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the final activation layer was significantly coarser than the input image. These visualisations should
therefore be regarded as a mean for understanding the path of feature extraction. Precise localisation
of abnormality will be beyond the scope of this work.

Among the cases studied in Appendix A.2, hardware implants were found to be more easily de-
tectable as abnormality while degenerative joints appeared misclassified as normal by the model.
For example in Figure 5, the screw fixation and the text legends were detected before the end of
block 1. Within block 3 and 4 (Figures 5f, 5g), the model attempted to refine the separation between
the fixation and the text legends. Although many final feature maps in block 4 captured only the
fixation, the text legend remained a more significant feature in the class activation map making the
prediction being biased to the wrong feature. In fact, the prediction of this image should be regarded
as misclassified given the incorrect attributing features for abnormality. This is a type of error that
is very difficult to detect without performing a similar framework of model visualisation presented
in this work.

Degenerative joint diseases are complicated to analyse even from human eyes. Figure 6 presents
a false negative case where there is a shifted scaphoid bone at the wrist joint. This image was
classified by the model as normal with a blue region around the wrist in class activation. All other
regions are regarded as abnormal in relative terms. By looking at the layer-wise activations, the
feature extraction mechanism remained the same. Nevertheless, it seemed that the model did not
have the capacity in block 3 and 4 to differentiate this abnormality from the bone alignment of a
normal wrist.

This framework of model interpretation was also extended to investigate the effect of training image
quantity. It can be observed in Figure 7 that the use of pre-trained weight from ImageNet was highly
valuable. Without it, the overall structure of the wrist could not be identified in the earlier layers.
This had led to challenges in breaking down the image into relevant regions and forced the model to
identify abnormality from within the entire middle region (i.e. the blue region in Figure 7f) of the
image. It is also interesting to note that the extraction of the text legend remained highly effective.
This may be somewhat expected given that the text legends were present in most of the training
images within the MURA dataset. Furthermore, a pre-trained model with training data from all
extremity types (i.e. even more images with text legends) was found to minimise the bias of text
legend in the case of screw fixation (Figure 8). The final features at the end of Block 4 (Figure 8g)
were primarily pixels around the fixation.

The investigations made in cases of fingers had found similar success. Nails implanted in a thumb
could be identified by the end of Block 1 (Figure 9d). Sufficient capacity within the subsequent lay-
ers allowed for excellent refinement of the key features extracted. In Figure 10, a highly challenging
case was presented where there was an extra rectangular frame commonly found in images of the
MURA dataset. The challenge was also coupled with a task to predict a misaligned fingertip. From
the layer-wise activations, it can be noticed that the model was not able to identify the hand and
fingers in the early layers (i.e. before the end of block 1). The influence of the frame had propagated
across the entire network. The border of the frame eventually formed a significant portion of the
final extracted features by the end of block 4 (Figure 10g).

The issue of image frame could easily be mitigated with simple image cropping. A case using the
cropped image is presented in Figure 11. The identification of the hand and finger had been sig-
nificantly improved. The only remaining issue was the insufficient learning within the model to
differentiate a degenerated joint or deformation. Improving the learning in this aspect will poten-
tially improve the accuracy in cases of fingers as degenerated joint disease and deformation are more
commonly found as abnormality in X-ray images of fingers.

5 DISCUSSION

The experimental findings presented in this work have been insightful to the authors. This framework
of model visualisations has enabled us with a clear representation of the feature extraction process
in a trained DenseNet architecture for abnormality detection. The underlying mechanism has been
found intuitive with high similarity to the approach a human would have performed. To take the
example from Case 2 in Appendix A.2, the model will first try to separate the object of focus (i.e.
the hand and wrist) from any background and text legends. It will then zoomed into the trained region
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(i.e. wrist) for relevant features and subsequently went deeper into individual bone structures. It is
worth mentioning that the actual operation for abnormality detection will require two projections of
the same case from a clinical perspective.

By utilising this framework of visualisations, key information about the capability of the 169-layered
DenseNet model can be revealed. For example, it can be made clear that a potential shallower
network can be applied for easier detection (i.e. hardware implants) with better computational
efficiency. Huang et al. (2016) were able to obtain excellent performance in a relatively simple
CIFAR-10 classification task using a DenseNet architecture of only 100 layers.

The value of using ImageNet for transfer learning as pre-trained weights has been clearly demon-
strated to be crucial for better object identification. It has also proven that knowledge imparted from
a source of unrelated images can still be highly beneficial for this target abnormality detection. This
finding is consistent with observations made from other literature (Yosinski et al., 2014; Shie et al.,
2015; Huh et al., 2016). The issue with poor detection of degenerative joint diseases can be at-
tributed to the lack of relevant knowledge for fine-grained feature extraction. This may be resolved
by utilising more visually similar images for training Huh et al. (2016).

This work has also presented how background noise (e.g. extra image frame) can have a long-lasting
effect across the network impacting the model predictability. The model has to find the correct object
of focus before any fine-grained feature can be extracted. With the use of our proposed framework,
the root cause can be identified and the mitigating effect can be immediately visualised.

Finally, it has also drawn to our attention that an accurate model by statistical metrics may not
actually perform as expected. Abnormality can be detected based on wrongly chosen features. This
can typically be left unnoticed without the use of appropriate model visualisations. The consequence
can be detrimental especially in the medical field. As such, it is recommended to use this framework
to support any decision-making process from a predictive model with an explanation on how the
outcome is generated.

6 CONCLUSION

The investigations carried out in this paper have created a new perspective for understanding the
feature extraction mechanism within a deep convolution neural network (e.g. DenseNet). Such
understanding can be achieved through the proposed framework of model visualisation using layer-
wise activation and class activation maps.

This work has revealed a close resemblance of a trained DenseNet model for interpreting X-ray
abnormality to the approach of a human. This resemblance should promote a more natural model
explanation of the feature extraction process in complex deep learning models. Communication
between deep learning model architects and medical practitioners can therefore be improved. It is
expected that the framework can be applied almost directly to other networks and data sets, with
potential to become a practical toolkit for future deep learning model development and application
in radiology.

With the highly visual activation maps, model optimization issues otherwise hidden can be identified
(e.g. a need for image pre-processing or further model training/fine-tuning). At the same time, the
features extracted from an optimized model will allow medical practitioners to focus on specific
regions of analysis with high confidence, as domains experts has indicated. This will streamline
workflow e.g. in hospital A&Es under strict time constraint.

This work is being extended to model interpretation and visualization in other use cases and will be
evaluated extensively next in the context of radiology in collaboration with hospital experts. The
incorporation of attention (Bello et al., 2019) to help interpretation of areas of interest is a promising
next step in the research. In many applications of deep learning, interpretation and explanation
techniques will accelerate the development and deployment of deep learning architectures which
can be trained with high precision and trusted at accomplishing a target task.
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A APPENDIX

A.1 DISTRIBUTION OF MURA DATASET

Table 2: The distribution of studies in the MURA dataset with 9,045 normal and 5,818 abnormal
cases (Rajpurkar et al., 2017)

Study Train Validation Total

Normal Abnormal Normal Abnormal

Elbow 1094 660 92 66 1912
Finger 1280 655 92 83 2110
Hand 1497 521 101 66 2185

Humerus 321 271 68 67 727
Forearm 590 287 69 64 1010
Shoulder 1364 1457 99 95 3015

Wrist 2134 1326 140 97 3697

Total No. of Studies 8280 5177 661 538 14656
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A.2 SUPPLEMENTARY ACTIVATION MAPPINGS

A.2.1 CASE 2: CASE OF SCREW FIXATION AT WRIST USING A PRE-TRAINED WRIST-ONLY
MODEL

Figure 5: Feature extraction from an image with screw fixation at the wrist. The fixation could be
identified as early as the initial convolution (c). However, the fixation was always coupled with the
text legend in all feature maps. Separation of these two objects was attempted in subsequent blocks
(d - g). It can be observed that only the screw fixation was found in some feature map by the end
of block 4 (g). Nevertheless, the text legend remained a key feature contributing to the abnormality
detection in the class activation map (b).
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A.2.2 CASE 3: CASE OF DEGENERATIVE WRIST JOINT DISEASE USING A PRE-TRAINED
WRIST-ONLY MODEL (FALSE NEGATIVE)

Figure 6: Feature extraction from an image with shifted scaphoid bone at the wrist joint. The
foreground and the region of wrist were extracted in the earlier blocks (c, d & e). Fine-grained
feature extraction were attempted in block 3 and 4 (f & g). However, the model capacity in these
blocks might not be sufficient to capture the details of the bone shift.
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A.2.3 CASE 4: CASE OF SCREW FIXATION AT WRIST USING A RANDOM INITIALISED
WRIST-ONLY MODEL

Figure 7: Feature extraction from an image with screw fixation at the wrist with a randomly ini-
tialised model. Poor foreground separation can be seen in (c). Only the text legend could be iden-
tified. The poor extraction reduced the capacity of the model for extracting finer features across the
subsequent blocks(d - g). The final features were primarily spanning across the entire middle range
of the image (g). With poor identification of the wrist, the class activation map (b) could only show
the identified feature from the text legend.
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A.2.4 CASE 5: CASE OF SCREW FIXATION AT WRIST USING A PRE-TRAINED ALL
EXTREMITY MODEL

Figure 8: Feature extraction from an image with screw fixation at the wrist using a model trained
with all extremity types. The additional trained image allowed better learning from the model to
ignore the text legend as abnormality. After the foreground was identified in the initial convolution
layers (c), the model tried to separate the fixation (in blue) from the text legend (in red) by the end
of block 1 (d). The refinement of the key feature (screw fixation) was made from block 2 onwards
(e-g). By the end of block 4, almost all the feature maps were showing only where the fixation is
located (g). This had also been reflected in the class activation map (b).
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A.2.5 CASE 6: CASE OF NAILS IN THE THUMB USING A PRE-TRAINED FINGER-ONLY
MODEL

Figure 9: Feature extraction from an image with nails implanted in a thumb. The nails could be
easily detected in a finger-only model by the end of block 1 (c & d). Refinement of key features
(nails) was observed across subsequent blocks (e-g) until the thumb was the key feature extracted at
the end of block 4.
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A.2.6 CASE 7: CASE OF MISALIGNED FINGERTIP USING A PRE-TRAINED FINGER-ONLY
MODEL

Figure 10: Feature extraction from an image where there is a misalignment of a fingertip. The
model had taken up some capacity to separate the image frame since the initial convolution (c-g).
The elimination of the frame had not been successful (e.g. blue rectangles in red background can
still be seen in feature maps in block 1 & 2). This left the final attributing feature coming from the
borders of the frame (g).
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A.2.7 CASE 8: CASE OF A CROPPED VERSION OF THE MISALIGNED FINGERTIP USING A
PRE-TRAINED ALL EXTREMITY MODEL

Figure 11: Feature extraction from a cropped image in Case 7. With the removal of the rectangular
frame, the hand and finger could be identified by the end of block 1 (c & d). However, it appeared
that fine-grained features (i.e. bone structures of the fingertip) remained a challenge and irrelevant
features were identified across the feature maps in block 3 and 4 (f & g).
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