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ABSTRACT

Despite achieving excellent benchmark performance, state-of-the-art NLP models
can still be easily fooled by adversarial perturbations such as typos. Previous
heuristic defenses cannot guard against the exponentially large number of possible
perturbations, and previous certified defenses only work with limited model sizes
and simple architectures. In this paper, we construct task-agnostic robust encodings
(TARE): sentence representations that improve the robustness of any model for
multiple downstream tasks at once, and enable efficient exact computation of robust
accuracy (accuracy on worst-case perturbations) for a fixed family of perturbations.
The core idea behind TARE is to map sentences through a discrete bottleneck
before feeding them to a downstream model. To create robust encodings, we
must optimize for two competing goals: the encoding of a sentence must retain
enough information about the sentence, but should also map all perturbations of
the sentence to the same encoding to ensure invariance to perturbations. Averaged
across six tasks from GLUE, a standard suite of NLP tasks, the same encoding
leads to robust accuracy of 71.2% when defending against a large family of typos,
while a strong baseline that uses a typo corrector achieves only 38.5% accuracy,
and training on random typos achieves only 9.9% accuracy.

1 INTRODUCTION

Recent work has revealed the brittleness of NLP systems to perturbations (Belinkov & Bisk, 2017;
Ebrahimi et al., 2017; Ribeiro et al., 2018; Alzantot et al., 2018). In particular, adversarial typos
have fooled systems for hate speech detection (Hosseini et al., 2017), machine translation (Ebrahimi
et al., 2018), and spam filtering (Lee & Ng, 2005), among others. In order to build more robust NLP
systems, we typically define a set of allowable perturbations, such as a list of plausible typos for each
word (Jia et al., 2019; Huang et al., 2019). Then, we attempt to train models that have high robust
accuracy, the worst-case accuracy across all perturbations of each example. An ideal defense against
perturbations would produce a single representation that works across different tasks and models,
while giving guarantees on the ability of any adversary to hurt model performance.

Previous work does not address all of these goals at once. Some prior work tries to recover the
original sentence given a perturbed input (Pruthi et al., 2019; Gong et al., 2019). Pruthi et al. (2019)
apply a typo corrector to inputs before passing them to a model, but do not achieve high robust
accuracy on large families of typos. Other prior work confers robustness by changing the training
procedure. Adversarial training, which adds adversarial perturbations to the training set, can be
applied to any model. However, it only provides limited robustness, due to heuristics used to compute
adversarial attacks for text inputs (Ebrahimi et al., 2017). Certifiably robust training with interval
bound propagation (Huang et al., 2019) confers guaranteed robustness, but can only currently be
applied to limited model architectures of small size. Neither of these training methods produces a
single defense that works across multiple tasks.

Our proposed method simultaneously overcomes the task-specificity or model-specificity of prior
approaches, while providing robustness against worst-case perturbations. We construct task-agnostic
robust encodings (TAREs): discrete representations of sentences that can be used across many
tasks to improve robustness of any downstream model. TAREs are model-agnostic, reusable across
tasks, and confer guaranteed robustness via standard training of downstream models, avoiding the
computational overhead typically associated with adversarial training. By introducing a discrete
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Figure 1: Task-agnostic robust encodings confer robustness to adversarial perturbations. Clean inputs
xa and xb (blue) can be perturbed to many different sentences, denoted by the sets B(xa) and B(xb).
We optimize an encoding function α such that for many sentences x, every perturbation of x maps to
α(x), providing robustness to perturbations. The same encoding function can be used for multiple
tasks, and any model using our encodings as input makes robust predictions.

bottleneck, our robust encodings enable tractable computation of robust accuracy, even when the set
of allowed perturbations is combinatorially large. See Figure 1 for an overview of our approach.

The key idea of TARE is to have an encoding function α(x) that maps each token of an input sentence
x to an encoding such that each token has the same encoding as all of its possible perturbations.
This property, which we term stability, ensures that any model that makes predictions using only the
encoding will give the same prediction on all perturbed versions of an input. We also need to ensure
that the encodings contain enough information about the input to do the task, which we term fidelity.
We choose α by optimizing a weighted combination of these two objectives. We cast this search over
possible encoding functions as a clustering problem over tokens, where each cluster contains tokens
that are mapped to the same encoding. We perform this clustering in an unsupervised, task-agnostic
fashion, and use the same encoding function for various downstream tasks.

In our experiments, we consider attacks that are allowed to add an edit distance one typo to each word
in an input sentence, without changing the first and last character of each word, following prior work
(Pruthi et al., 2019). Using TARE, we significantly improve robust accuracy across six classification
tasks from the GLUE benchmark (Wang et al., 2019). Our best system, which combines TARE with
a BERT classifier (Devlin et al., 2018), achieves robust accuracy of 71.2% on average across the six
tasks. In contrast, a state-of-the-art defense that combines BERT with a typo corrector (Pruthi et al.,
2019) gets 38.5% accuracy, and a standard defense that trains BERT on random perturbations gets
only 9.9% accuracy in the presence of heuristically generated adversarial typos.

2 SETUP

Tasks. We consider NLP tasks that require classifying textual input x ∈ X to a class y ∈ Y . For
simplicity, we refer to inputs as sentences. Each sentence x consists of tokens x1, . . . , xL where each
xi ∈ T , the set of all possible tokens, which includes valid perturbations (e.g., typos) of vocabulary
words. Let ptask denote the distribution over inputs and labels for a particular task of interest. The goal
is to learn a model f : X → Y that maps sentences to labels, given training examples (x, y) ∼ ptask.

Attack model. We consider an attack model in which the attacker can perturb each token xi of a
sentence to some token x̃i ∈ B(xi), where B(xi) is the set of valid perturbations of xi. For example,
B(xi) could be a set of allowed typos of xi (e.g., tokens that are edit distance one from xi). We define
B(x) as the set of all valid perturbations of sentence x. Each token can be perturbed independently,
so

B(x) = {(x̃1, . . . , x̃L | x̃i ∈ B(xi)∀i = 1, . . . , L}. (1)

Model evaluation. In this work, we use three evaluation metrics for a given task.
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First, we evaluate a model on its standard accuracy on the task:
accstd(f) = E(x,y)∼ptask1[f(x) = y]. (2)

Next, we are interested in models that also have high robust accuracy, the fraction of examples (x, y)
for which the model is correct on all valid perturbations x̃ ∈ B(x) allowed in the attack model:

accrobust(f) = E(x,y)∼ptask min
x̃∈B(x)

1 [f(x̃) = y] . (3)

For many models, computing robust accuracy is intractable. It is customary to instead compute
accuracy against a heuristic attack a that maps clean sentences x to perturbed sentences a(x) ∈ B(x).

accattack(f ; a) = E(x,y)∼ptask1[f(a(x)) = y]. (4)

Typically, we compute a(x) via a heuristic search over B(x) for a sentence that f misclassifies. Note
that accattack ≥ accrobust because there could be perturbations that the model misclassifies but are
missed by the heuristic search. In general, a high accattack does not guarantee that the model has high
accrobust, which is the actual quantity of interest (Athalye et al., 2018).

3 TASK-AGNOSTIC ROBUST ENCODINGS

In this work, we construct task-agnostic robust encodings (TAREs). Informally, TARE enables
arbitrary model architectures to achieve high robust accuracy on many standard tasks. We define
an encoding function to be a function α : X → Z , where X is the set of sentences and Z ⊆ X .
We refer to α(x) as the encoded sentence, or encoding, corresponding to x. A downstream model
fdown : Z → Y makes predictions using the encoded sentence α(x). We denote fdown(α(x)) by
fTARE. Because Z ⊆ X , fdown can be any model that takes sentences as inputs.

3.1 ROBUSTNESS OF ENCODINGS

We are interested in obtaining models that are robust, i.e., accurate on all valid perturbations of an
input. For some model fTARE that uses our robust encodings, we can guarantee high accrobust(fTARE)
if accstd(fTARE) is high and fTARE usually makes the same prediction on all x̃ ∈ B(x):

accrobust(fTARE) ≥ accstd(fTARE)− E(x,y)∼ptask max
x̃∈B(x)

1 [fTARE(x̃) 6= fTARE(x)] . (5)

Based on Equation 5, we define two desiderata of α that enable fTARE to achieve high robust accuracy.
First, high fidelity of an encoding ensures that it is possible for fTARE to get high standard accuracy.
Second, high stability of an encoding upper bounds the second term in (5), ensuring that any model
that has high standard accuracy also has high robust accuracy.

Fidelity. First, we must ensure that α(x) contains enough information to perform the task. We
say that α has high fidelity if there exists some f?down for which f?TARE(x)

def
= f?down(α(x)) has high

standard accuracy. Fidelity is maximized by having α(x) = x, since this preserves all information
about x.

Stability. We now focus on the second term of Equation 5. Consider the simple case where
α(x) is constant for all x, i.e. all sentences share the same encoding. Here, trivially fTARE(x) =
fTARE(x̃)∀ x̃ ∈ B(x) and the second term is 0. For the more general case, we bound the second term
of (5) by the stability of an encoding, which we define as the probability over x drawn from ptask that
all perturbations of x are encoded to the same α(x). Formally, we have

Bα(x) = {α(x̃) | x̃ ∈ B(x)}, (6)
Stability(α) = Ex∼ptask1[|Bα(x)| = 1] (7)

E(x,y)∼ptask max
x̃∈B(x)

1 [fTARE(x̃) 6= fTARE(x)] ≤ 1− Stability(α) (8)

When |Bα(x)| = 1, fTARE outputs the same prediction for all perturbations of x. As |Bα(x)| increases,
perturbations get mapped to different possible encodings, which may be classified differently by
fdown. However, even when |Bα(x)| > 1, keeping |Bα(x)| small enables efficient computation of
accrobust(fTARE) by exhaustively enumerating Bα(x). Without using α to collapse B(x) to a small
number of encoded sentences, computing robust accuracy is intractable for arbitrary models.
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Figure 2: Visualization of three different encodings. Vocabulary words (large font, blue) share an
edge if they share a common perturbation (small font, red). We show three different encodings: the
bold line corresponds to the encoding with maximal stability (connected component encoding), the
dotted lines correspond to maximizing fidelity, and the thin solid lines balance stability and fidelity
(agglomerative clusters).

Tradeoff. Note that fidelity and stability are often opposing goals. Fidelity tries to map tokens to
themselves while stability tries to map tokens and their perturbations together.

3.2 TASK-AGNOSTIC ROBUST ENCODINGS

Finally, a robust encoding is task-agnostic if it can be constructed without knowledge of any down-
stream task, but is still a robust encoding for many downstream tasks. This is challenging, as stability
and fidelity are both defined with respect to a task. Stability only depends on the distribution of inputs
x, and hence can be approximated using a large, unlabeled text corpus. Fidelity requires labels, and
hence is more difficult to approximate. Nonetheless, in the next section, we show how to construct
α in an unsupervised, task-agnostic fashion such that for many natural tasks, we can train a model
f̂TARE that achieves high standard accuracy.

4 TASK-AGNOSTIC CONSTRUCTION OF ROBUST TOKEN-LEVEL ENCODINGS

Now, we describe how to construct robust encodings in a task-agnostic fashion. We focus on token-
level encodings, where the encoding of a sentence is the concatenation of the encoding of individual
tokens. Formally, we extend α to map tokens w ∈ T to some set ZTok ⊆ T of encoded tokens. The
encoding α(x) for input sentence x can then be written as

α(x) = [α(x1), α(x2), . . . , α(xL)]. (9)

We now focus on how to choose α(w) for all w ∈ T , in a task-agnostic fashion.

4.1 ROBUSTNESS OF TOKEN-LEVEL ENCODINGS

How can we choose a robust token-level encoding α, balancing the competing goals of stability and
fidelity? As a running example, consider the five words (large font, blue) in Figure 2, along with
typos of those words (small font, red). We illustrate three different choices of α; for each, we draw
a box around tokens that α maps to the same encoded token. α could map all five words to the
same encoded token (thick box), map each word to a different encoded token (dashed boxes), or do
something in between (thin solid boxes).

First, consider trying to maximize stability. Note that for a sentence x, |Bα(x)| = 1 if and only if
|Bα(xi)| = 1 for all words xi in x, so maximizing stability requires |Bα(w)| = 1 for all words w
that might appear in x. Consider two words w1 and w2 (e.g., “aunt” and “abet” for which there
exists a token w̃ ∈ T that could be a perturbation of both (e.g., “auet” is edit distance one from
both words). We draw edges between all such word pairs in Figure 2, and place an example of a
typo in Bα(w1) ∩Bα(w2) next to each edge. For any such w1 and w2, maximizing stability requires
that α(w1) = α(w2), since if they were not equal, α must either map w1 and w̃ to different encoded
tokens (hence, |Bα(w1)| > 1), or map w2 and w̃ to different encoded tokens (hence, |Bα(w2)| > 1).
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In Figure 2, we would therefore have to map all five words to the same encoded token (thick box), as
they are in the same connected component in this graph.

However, this mapping clearly has low fidelity, since these five words are all identically encoded.
Fidelity is maximized when all information about x is retained, so each word is mapped to a different
encoded token (dashed green boxes). Unfortunately, this choice of α has low stability. For the words

“art”, “abet”, and “abrupt”, |Bα(w)| > 1, since these words and their typos map to at least two
different encoded tokens (e.g., “aut”, a typo of “aunt”, maps to the encoding of “at”).

The encoding represented by the thin solid boxes in Figure 2 balances stability and fidelity. Compared
to encoding all words identically, it has higher fidelity, since it distinguishes between some of the
words (e.g., “at” and “about” are encoded differently). It also has reasonably high stability, since
only “abet” has |Bα(w)| > 1. Since the word “abet” occurs infrequently in normal English text, the
fact that |Bα(w)| > 1 for that word will only affect |Bα(x)| for a very small fraction of x ∼ ptask,
for most natural task distributions ptask.

With this intuition, we now define two ways to construct α. Our first method will focus on maximizing
stability, at the cost of fidelity. Our second method allows us to trade off stability for fidelity, improving
both standard and robust accuracy of downstream models. Both methods will construct α in a task-
agnostic fashion: we will not reference any task distribution ptask, but instead only assume access to
a large, unlabeled corpus of English text. Implicitly, we assume that the distribution of sentences
x ∼ ptask will not differ too much from the distribution of text in our corpus.

4.2 BASELINE: CONNECTED COMPONENT ENCODINGS

Our first method, connected component encodings, focuses on maximizing stability. Ideally, we
would have |Bα(w)| = 1 for all w ∈ T , but this is very restrictive, and would lead to very low fidelity.
Note that in order to have small Bα(x) for most x ∼ ptask, it suffices to ensure |Bα(w)| = 1 for all
tokens that are actually likely to appear in x. Therefore, we define a set of frequent words V ⊆ T ,
and then make sure that |Bα(w)| = 1 for all w ∈ V .

We first create a vocabulary V = {w1, . . . , wN} ⊆ T by taking the N most frequent words in a
large, unlabeled text corpus. For a word w ∈ V , let ρ(w) denote the fraction of times w occurs in
this corpus. Next, we construct the graph G = (V,E) shown in Figure 2, whose vertex set is our
vocabulary V , and its edge set E contains all pairs of vertices that share a common perturbation:

E = {(wi, wj) | wi, wj ∈ V,B(wi) ∩B(wj) 6= ∅} (10)
Let K be the number of connected components of G, and let C1, . . . , CK denote these connected
components. For each Cj , we define its representative rj to be the word w ∈ Cj with largest ρ(w),
and set α(w) = rj for all w ∈ Cj . Using connected components guarantees that every pair of words
wi, wj ∈ V that shares a perturbation will be encoded identically. Mapping to representative words
helps us leverage the inductive biases of pre-trained models like BERT (Devlin et al., 2018).

Extending connected component encodings to out-of-vocabulary tokens. We have defined α
for all w ∈ V ; now we must define it for other w̃ ∈ T \ V , such as typos (e.g., “aboupt”). There are
two cases. First, suppose there exists w ∈ V such that w̃ ∈ B(w). Then, we define α(w̃) = α(w).
Note that this is well-defined, as we constructed the Cj’s to ensure if multiple such w exist, they map
to the same encoded token. This choice guarantees |Bα(w)| = 1 for all w ∈ V . It may also be the
case that w̃ /∈ B(w)∀w ∈ V . In this case, we set α(w̃) = OOV, a special out-of-vocabulary token.

Connected component encodings and full sentences. We now return to the question of stability
at the sentence-level—for which sentences x does |Bα(x)| = 1? Connected component encodings
ensure that |Bα(x)| = 1 as long as xi ∈ V for all words xi in x. However, some task distributions
ptask may include rare words that are not in our vocabulary V . When x contains a word w′ /∈ V ,
it is possible that |Bα(w′)| > 1, and hence |Bα(x)| > 1. Note that |Bα(w′)| will still be 1 if all
perturbations of w′ also map to OOV.

4.3 AGGLOMERATIVE CLUSTER ENCODINGS

Connected component encodings focus on stability at the cost of fidelity. WhenG has large connected
components, the resulting α may not be very useful for downstream tasks, since too many tokens
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share the same encoding. In particular, two frequent words that do not share a common perturbation
will still have the same encoding if there is a path connecting them. In Figure 2, “at” and “about”
are in the same connected component, even though no token is a plausible typo of both words. Since
both words are very frequent in general, mapping them to the same encoding creates ambiguity in
a large proportion of frequent sentences. Therefore, encoding “at” and “about” differently would
significantly improve fidelity. The thin solid boxes in Figure 2 accomplish this goal, at a small cost to
stability: recall that only the infrequent word “abet” has |Bα(w)| > 1, which is unlikely to affect
|Bα(x)| for most sentences x.

To take advantage of cases like this, we formally define two task-agnostic objectives on α: one that
encourages stability, and one that encourages fidelity. Recall that stability and fidelity are dependent
on a particular task distribution ptask; our objectives are task-agnostic approximations of stability and
fidelity that empirically generalize to many natural tasks. We then use an agglomerative clustering
algorithm to approximately optimize a weighted sum of these objectives, where we view a cluster
Cj ⊆ V as a set of vocabulary words that share the same encoding under α.

Stability objective. As mentioned previously, it is more important that |Bα(w)| = 1 when w is
a frequent word, as opposed to an infrequent word, as frequent words are more likely to occur in
sentences x ∼ ptask. Moreover, even when |Bα(w)| > 1, we prefer |Bα(w)| to be small to enable
efficient computation of robust accuracy, and to aid robustness of fTARE under some assumptions
on fdown (see Appendix A.3). While we do not know what words are frequent in ptask, we can
approximate this with the corpus word frequencies ρ. We define the stability objective Φstability as:

Φstability(α) =

N∑
i=1

ρ(wi)|Bα(wi)| (11)

Φstability is minimized when |Bα(w)| = 1 for every w ∈ V . Therefore, connected component
encodings achieve optimal Φstability.

Fidelity objective. In addition to stability, we also want to maximize fidelity. Intuitively, α has
high fidelity when the ambiguity induced by encoding tokens does not appreciably decrease the
accuracy f∗. To formalize this intuition, we approximate the accuracy drop due to ambiguity with
a loss that measures the distance between each word and its cluster in some vector space, inspired
by k-means clustering. Let ~vi be the N -dimensional indicator vector that is 1 at index i and 0 at all
other indices. We represent the cluster Cj by a cluster centroid ~µj defined as the average of word
embeddings in Cj , weighted by word frequency:

~µj =

∑
wi∈Cj ρ(wi)~vi∑
wi∈Cj ρ(wi)

(12)

This definition is motivated by our expectation that downstream models will roughly use such a
weighted average to represent each encoded token, similarly to how multiple word senses are known
to be encoded in word vectors (Arora et al., 2018). In general, ~vi could be any vector, such as
a pre-trained word vector for word wi. We choose ~vi to be an indicator vector to avoid making
assumptions about the downstream task.

Now, let c(i) denote the j for which wi ∈ Cj . We define the ambiguity objective Φfidelity as

Φfidelity(α) =

N∑
i=1

ρ(wi)‖~vi − ~µc(i)‖2. (13)

Note that if each word is in its own cluster, Φfidelity is zero. Φfidelity increases by a small amount if
a frequent word and rare word are in the same cluster, and increases more when multiple frequent
words are in the same cluster.

Final clustering objective. We introduce a hyperparameter γ ∈ [0, 1] that balances our two
objectives. The final objective Φ becomes:

Φ(α) = γΦfidelity(α) + (1− γ)Φstability(α) (14)
Note that when γ = 1, we maximize fidelity, so each vocabulary word is assigned to its own cluster.
As γ approaches 0, we get the connected component clusters from our baseline, which were designed
to be maximize stability.
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Defining agglomerative cluster encodings on out-of-vocabulary words. Since Φ involves
|Bα(w)|, it not only depends on the action of α on all vocabulary words, but also on all pertur-
bations of vocabulary words. We simplify the optimization problem by imposing some constraints on
α. In particular, similarly to the connected component encoding, we define α(w̃) for w̃ /∈ V in terms
of α’s action on words in V . Thus, optimizing Φ reduces to choosing α(w) for all w ∈ V .

First, if w̃ /∈ B(w) for all w ∈ V , we set α(w̃) = OOV, as before. Otherwise, note that unlike for
the connected component clusters, w̃ could now be a perturbation of multiple words with different
encodings. We use the simple rule of mapping w̃ to the same encoded token as the most frequent
word it could be the perturbation of. Given w̃ /∈ V , we compute

w? = arg max
w∈V

{ρ(w) | w̃ ∈ B(w)}, (15)

and define α(w̃) = α(w?). This ensures that our choice of α(w̃) does not cause |Bα(w?)| to increase,
but it will cause |Bα(w)| > 1 for all w where w̃ ∈ B(w) but α(w) 6= α(w?). In Figure 2, we see
that for the solid green boxes, we map “abot” to the same encoding as the frequent word “about”
rather than the infrequent word “abet”, so that Bα still has size 1 for “about”.

Agglomerative clustering. Now, we have reduced the problem of minimizing Φ to choosing α(w)
for each w ∈ V . Recall that any α induces a clustering of V , where each cluster contains a set of
words mapped by α to the same encoded token. We use an agglomerative clustering algorithm to
approximately minimize Φ. We initialize α by setting α(w) = w for each w ∈ V , which corresponds
to placing each word in its own cluster. We then examine each pair of clusters Ci, Cj such that there
exists an edge between a node in Ci and a node in Cj , in the graph from Section 4.2. For each
such pair, we compute the value of Φ if we were to combine them into a single cluster. If no merge
operation causes Φ to decrease, we return the current α. Otherwise, we merge the pair that leads to
the greatest reduction in Φ, and repeat. To merge two clusters Ci and Cj , we first compute a new
representative r as the w ∈ Ci ∪ Cj with largest ρ(w). We then set α(w) = r for all w ∈ Ci ∪ Cj .
Our algorithm is formally defined in appendix A.1.

Agglomerative clustering is fairly slow, as each iteration considers merging O(|E|) pairs of clusters,
each of which takes O(N) time to evaluate. The algorithm can run for up to N iterations. As an
optimization, we note that we can run the algorithm in parallel on each connected component of G,
as we only consider merges involving nodes in the same connected component.

5 EXPERIMENTS

5.1 SETUP

Attack surface. The primary attack surface we study is edit distance one (ED1) perturbations.
For each token in the input, the adversary is allowed to insert a lowercase letter, delete a character,
substitute a character for any lowercase letter, or swap any two adjacent characters, so long as the
first and last characters remain the same as the original token. The constraint on the outer characters
is motivated by psycholinguistic studies (Rawlinson, 1976; Davis, 2003), and was also used in Pruthi
et al. (2019). For example, “the movie was miserable” can be perturbed to “thae mvie wjs misreable”
but not “th movie as miserable”. Since each token can be independently perturbed, the number of
perturbations of a sentence grows exponentially with its length; even “the movie was miserable” has
431,842,320 possible perturbations. Our attack surface encompasses the attack surface used by Pruthi
et al. (2019), and we also allow all substitutions instead of only substitutions of adjacent letters on a
QWERTY keyboard, and we perturb every input token as opposed to at most two.

Attack algorithms. We consider two attack algorithms: a brute-force attack and a heuristic attack.
The brute-force attack exhaustively searches through all perturbations for an x̃ ∈ B(x) that fools the
model, so it exactly computes robust accuracy. Since |Bα(x)| is small for many x, the brute-force
attack can efficiently compute robust accuracy for models that use TARE by enumerating Bα(x).
When |Bα(x)| > 10000, which holds for 0.009% of our test examples, we assume the adversary can
successfully perturb x. For other models, however, the brute-force attack is intractable, as B(x) is too
large to enumerate, so we cannot compute robust accuracy. Instead, we use a heuristic beam search
attack with beam size 5. This is still prohibitively expensive as B(xi) can be large for each token xi,
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so the attack only tries at most len(xi) perturbations in each B(xi). Even against this limited attack,
we find that baseline models have low accuracy. Details are provided in Appendix A.6.

Datasets. We use six of the nine tasks from GLUE (Wang et al., 2019): SST-2, MRPC, QQP, MNLI,
QNLI, and RTE. SST-2 (Socher et al., 2013) is a sentiment analysis classification task, MRPC and
QQP1 are paraphrase detection tasks (Dolan & Brockett, 2005), and MNLI, QNLI, and RTE are
entailment tasks (Williams et al., 2018; Rajpurkar et al., 2016). We do not use STS-B and CoLA as
they are evaluated on correlation, which does not decompose as an example-level loss. We do not use
WNLI, as most submitted GLUE models cannot outperform the majority baseline, and state-of-the-art
models are rely on external training data (Kocijan et al., 2019). We evaluate on the test sets for SST-2
and MRPC, and the publicly available development sets for the remaining tasks. For all datasets, we
use 20% of the training set as a validation set. More details are provided in Appendix A.5.

Baseline models. We consider three baseline systems. First, we use a standard BERT model
(Devlin et al., 2018) fine-tuned on the training data for each task.2 Second, we augment the training
dataset with a single3 random perturbation of each example, and train another BERT model on
this augmented data. Data augmentation has been shown to increase robustness to some types of
adversarial perturbations (Ribeiro et al., 2018; Jia et al., 2019; Liu et al., 2019).

Finally, we apply an scRNN (Sakaguchi et al., 2017) typo corrector to the input, as in Pruthi et al.
(2019). Following Pruthi et al. (2019), we train a task-specific typo corrector on random perturbations
to the training set. At test time, inputs are fed through the typo corrector, then to the downstream
model. We map out-of-vocabulary words, as defined by the typo corrector’s vocabulary, to a neutral
word and use BERT as our downstream model, which was the best method from Pruthi et al. (2019).

Models using TAREs. We run experiments using encoding functions defined using connected com-
ponents and agglomerative clusters. To form clusters, we use the 100,000 most frequent words from
the Corpus of Contemporary American English (Davies, 2008) that are also in GloVe (Pennington
et al., 2014). We form agglomerative clusters using γ = 0.3 which maximizes robust accuracy on
SST-2 development set. For both encodings, we train a BERT model on the training data, using α(x)
as input. Further details and hyperparameters are provided in Appendix A.2.

5.2 ROBUSTNESS GAINS FROM TASK-AGNOSTIC ROBUST ENCODINGS

Our main results are shown in Table 1. We show all three baselines, as well as models using
both TAREs: connected component encodings (CONNCOMP) and agglomerative cluster encodings
(AGGCLUST). The attack accuracy we report is an upper bound on robust accuracy obtained by
running the heuristic attack, which we report since robust accuracy is only computable with TAREs.

Attacking BERT and BERT + Data Augmentation using the heuristic attack results in dramatic
performance drops. Even the best performing baseline, Typo Corrector + BERT, can only achieve
38.5% accuracy on average against the heuristic attack, compared to its standard accuracy of 79.5%.
In contrast, TARE provides much greater robustness. AGGCLUST achieve average robust accuracy of
71.2%, 32.7 points higher than the attack accuracy of the best baseline, the typo corrector approach.
Moreover, since the heuristic attack covers a tiny fraction of the full perturbation space, the actual
gap in robust accuracy is likely higher. AGGCLUST also outperform CONNCOMP in terms of both
robust accuracy (by 1.5 points) and standard accuracy (by 3.7 points).

Even though TAREs were constructed in a task-agnostic manner, they consistently have high stability
across our tasks. Figure 3(a) plots the distribution of |Bα(x)| across test examples in SST-2 and RTE.
Over AGGCLUST encodings, |Bα(x)| = 1 for 25% of examples in RTE and 66% in SST-2, with the
other four datasets falling between these extremes (see Appendix A.7). As expected, these numbers
are even higher for the connected component encodings. Even when |Bα(x)| > 1, it is often quite
small, which both helps robust accuracy and makes it efficient to compute.

The primary drawback to our representations is lower standard accuracy, which has also been observed
for defenses against adversarial examples in other domains (Madry et al., 2017; Zhang et al., 2019;

1data.quora.com/First-Quora-Dataset-Release-Question-Pairs
2https://github.com/huggingface/pytorch-transformers
3On smaller datasets, augmenting with 4 perturbations per input did not significantly change attack accuracy.
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Accuracy System SST-2 MRPC QQP MNLI QNLI RTE Avg

Standard

Baselines
BERT 93.8 87.7 91.2 84.3 88.9 71.1 86.2
Data Aug. + BERT 93.2 87.1 90.9 84.0 88.5 69.3 85.5
Typo Corr. + BERT 90.6 82.4 87.4 78.5 80.3 59.6 79.8

TAREs
Con. Comp. + BERT 80.6 79.9 84.2 65.7 73.3 52.7 72.7
Agg. Clust. + BERT 84.6 83.8 85.2 69.2 76.4 59.2 76.4

Attack

Baselines
BERT 8.4 10.8 18.8 0.3 0.8 1.4 6.9
Data Aug. + BERT 11.3 4.4 22.7 6.6 6.6 7.6 9.9
Typo Corr. + BERT 51.3 41.9 58.9 21.5 34.0 23.1 38.5

TAREs
Con. Comp. + BERT 80.2 79.4 82.7 62.3 71.4 47.7 70.3
Agg. Clust. + BERT 83.9 82.4 83.4 65.7 74.2 53.4 73.4

Robust
TAREs
Con. Comp. + BERT 80.1 79.4 82.1 61.4 70.5 46.6 69.7
Agg. Clust. + BERT 82.2 80.9 81.6 62.9 71.7 49.8 71.2

Table 1: Standard, robust, and attack accuracy on six GLUE tasks against ED1 perturbations. For
baseline models, robust accuracy cannot be tractably computed, so we only compute attack accuracy,
an upper bound on robust accuracy. Comparing these bounds, our agglomerative cluster encodings
outperform the bast baseline, the typo corrector defense proposed by Pruthi et al. (2019) by 34.9
points. Moreover, using TAREs we can compute the robust accuracy against the worst-case adversary,
which we find outperforms the typo corrector by at least 32.7 points.
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Figure 3: (a) Histogram of |Bα(x)| for SST-2 and RTE. SST-2 has the highest percentage of inputs x
where |Bα(x)| = 1, while RTE has the least. On both datasets, |Bα(x)| < 9 for most x, and is often
1. CONNCOMP encodings are more stable than the AGGCLUST encodings, at the cost of fidelity. (b)
Standard and robust accuracies on SST-2 with agglomerative cluster encodings using different values
of γ. While the gap between standard and robust accuracy increases monotonically, robust accuracy
increases before decreasing.

Jia et al., 2019). Compared with normally trained BERT, the agglomerative cluster encodings lead
to a 9.8 point reduction in standard accuracy. Huang et al. (2019), which defends against character
substitution typos using interval bound propagation (IBP), also saw a drop in standard accuracy when
building robust models. In fact, on the SST-2 test set, our agglomerative cluster model achieves
standard accuracy of 84.6%, 10.2 points higher than their SST-2 model, while being robust to a larger
class of typos. We attribute this improvement to our ability to use a stronger downstream model,
namely BERT, while IBP was constrained to shallower, less effective models. Despite our standard
accuracy drop from normal BERT, our encodings with BERT exceed the performance of even the
normally trained model (CNN) used in Huang et al. (2019) by 4.8 points.
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5.3 AGGLOMERATIVE CLUSTERING TRADEOFF

In Figure 3(b), we plot standard and robust accuracy on SST-2 for AGGCLUST encodings, using
different values of γ . Recall that γ = 0 corresponds to the stability maximizing CONNCOMP, and
γ = 1 maximizes fidelity by putting each vocabulary word in its own cluster (but still mapping
out-of-vocabulary words to OOV). At γ = 0, the gap between standard and robust accuracy is very
small, as the only difference is due to out-of-vocabulary words. As γ increases, the standard accuracy
increases, but so does the gap between standard and robust accuracy. As a result, robust accuracy
increases for a while, then decreases.

5.4 INTERNAL PERMUTATION ATTACKS

Other work (Belinkov & Bisk, 2017; Sakaguchi et al., 2017) investigates robustness to internal
permutations: reorderings of the characters in a word besides the first and last character. TARE can
also be used to defend against these perturbations. For the normally trained BERT model, a heuristic
beam search attack that uses internal permutations reduces average accuracy from 86.2% to 15.7%
across our six tasks. Using connected component clusters defined using the internal permutation attack
surface, we achieve robust accuracy of 81.4%. Full details and results are shown in Appendix A.8.

6 DISCUSSION

Adversarial typos can cause large drops in model performance in settings where correct predictions
are critical, such as hate-speech detection (Hosseini et al., 2017) and spam classification (Lee &
Ng, 2005). Ebrahimi et al. (2017) demonstrates that gradient-based attacks can be used to generate
adversarial typos, and evaluates on the AG News dataset.

Besides typos, other perturbations can also be applied to text. Prior work considers semantic
operations, such as replacing a word with a synonym (Alzantot et al., 2018; Ribeiro et al., 2018).
Our framework can be extended to these perturbations, as they merely define a different set of
perturbations B(xi) for each word xi. Other perturbations, such as syntactic rearrangements (Iyyer
et al., 2018) or insertion of distracting text (Jia & Liang, 2017), are more challenging to incorporate
into our framework, and are interesting directions for future work.

Most existing defenses to adversarial perturbations involve specialized training procedures, and
cannot be reused for multiple tasks. In computer vision, adversarial training with projected gradient
descent yields models that are robust to various types of perturbations(Goodfellow et al., 2015; Madry
et al., 2017). However, it is nontrivial to port these methods to NLP, where inputs and perturbations
are discrete. Adversarial training has been used to defend against heuristic attacks and random
perturbations (Ebrahimi et al., 2017; 2018; Cheng et al., 2019), but these models are often not robust
to adversarial perturbations generated by more involved search procedures (Ebrahimi et al., 2017).
Using our representations with adversarial training could resolve this issue, since the worst-case
attack is readily computable. Huang et al. (2019) and Jia et al. (2019) train NLP models that are
robust to worst-case perturbations, but must retrain their entire system for each task and and are
restricted to shallow models, as IBP bounds become loose for deep models.

Other defenses are based on various forms of preprocessing. Pruthi et al. (2019) use the typo-corrector
from Sakaguchi et al. (2017) to correct perturbed inputs, but only consider cases where one or two
tokens in the input are perturbed, and use heuristic search when perturbing two tokens. We consider
a much larger attack surface in which every token may be perturbed, and compute exact robust
accuracy. Gong et al. (2019) apply a spell-corrector to correct typos chosen to create ambiguity as to
the original word, but these typos are not adversarially chosen to fool a model. Edizel et al. (2019)
attempt to learn typo-resistant word embeddings, but focus on common typos, rather than worst-case
typos. In computer vision, Chen et al. (2019) discretizes pixels to compute exact robust accuracy on
MNIST, but their approach generalizes poorly to other tasks like CIFAR-10.

Many recent advances in NLP have been fueled by the rise of task-agnostic representations, such as
BERT, that facilitate the creation of accurate models for many tasks. Our work shows how to create
task-agnostic representations that instead optimize for robustness to perturbations, as many natural
tasks require robustness to the same perturbations, such as typos. We hope our work inspires new
task-agnostic robust encodings that lead to more robust and more accurate models.
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A APPENDIX

A.1 AGGLOEMRATIVE CLUSTERING

Recall the input to our agglomerative clusters is a vocabulary V , and our objective Φ takes in cluster
assignments C = {C1, ..., CK}, and Ci ⊆ V . Our algorithm this works as follows

12
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Algorithm 1 Objective-minimizing agglomerative clustering
1: C ← V
2: for i in range(|V |) do
3: Cnext ← Get Best Combination(C)
4: if C = Cnext then
5: return C
6: end if
7: C ← Cnext
8: end for
9: return C

Now, we simply have to define the procedure we use to get the best combination.

Algorithm 2 Get Best Combination(C)

1: Copt ← C
2: Φopt ← Φ(C)
3: for (Ci, Cj) ∈ Adjacent Pairs(C) do
4: Ccomb ← Ci ∪ Cj
5: Cnew ← C ∪ Ccomb \ {Ci, Cj} {New clusters}
6: Φnew ← Φ(Cnew)
7: if Φnew < Φopt then
8: Φopt ← Φnew
9: Copt ← Cnew

10: end if
11: end for
12: return Copt

Recall our graph G = (G,E) used to define the connected component clusters. We say two clusters
Ci and Cj are adjacent, and thus returned by Adjacent Pairs, if there exists a vi ∈ Ci and a vj ∈ Cj
such that (vi, vj) ∈ GE . The runtime of our algorithm is O(N2E) since at each of a possible N
total iterations, we compute the objective for one of at most E pairs of clusters. Computation of
the objective can be reframed as computing the difference between Φ and Φnew, where the latter is
computed using new clusters, which can be done in O(N) time.

A.2 EXPERIMENTAL DETAILS

For our methods using transformers, we start with the pretrained uncased BERT (Devlin et al., 2018),
using the same hyperparameters as the pytorch-transformers repo.4. In particular, we use the base
uncased version of BERT. We use a batch size of 8, and learning rate 2e−5. For examples where
|Bα(x)| > 10000, we assume the prediction is not robust to make computation tractible. Each typo
corrector uses the defaults for training from5; it is trained on a specific task using perturbations of the
training data as input and the true sentence (up to OOV) as output. The vocabulary size of the typo
correctors is 10000 including the unknown token, as in (Pruthi et al., 2019). The typo corrector is
chosen based on word-error rate on the validation set.

A.3 BOUNDING THE DIFFERENCE BETWEEN STANDARD AND ROBUST ACCURACY

In (6), we show how to ensure robust accuracy if |Bα(x)| = 1 for most x ∼ ptask. Intuitively, we
should be able to get high robust accuracy even if |Bα(x)| > 1 but is relatively small. Here, we
give a condition on fTARE under which having small average |Bα(x)|2 suffices. In this section, all
expectations are taken over (x, y) ∼ ptask.

4https://github.com/huggingface/pytorch-transformers
5https://github.com/danishpruthi/Adversarial-Misspellings
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For (x, y) ∼ ptask and for encodings e sampled uniformly from Bα(x), suppose that for some fdown

and fTARE(x)
def
= fdown(α(x)), it is unlikely that fTARE(x) = y but fdown(e) 6= y. More specifically,

E
[
Pe∼Unif(Bα(x)) (fTARE(x) = y ∧ fdown(e) 6= y)

2
]

(16)

should be small, where Unif(Bα(x)) denotes the uniform distribution over elements in Bα(x). The
inclusion of the square helps make our bounds below tighter.

If fdown satisfies this, then we can bound the robust accuracy of fTARE in terms of its standard accuracy,
its accuracy on random perturbations, and the size of Bα(x):

accrobust ≥ accstd −
√
E[|Bα(x)|2] · E

[
Pe∼Unif(Bα(x)) (fTARE(x) = y ∧ fdown(e) 6= y)

2
]
, (17)

Hence, if accstd(fTARE) is large, and |Bα(x)|2 to be small on average, then robust accuracy will be
high.

Now we prove (17), which we equivalently write as

accstd − accrobust ≤
√
E[|Bα(x)|2] · E

[
Pe∼Unif(Bα(x)) (fdown(α(x)) = y ∧ fdown(e) 6= y)

2
]
.

First, note that the difference between standard accuracy and robust accuracy can be written as

accstd − accrobust = E
[
1[fdown(α(x)) = y] · max

e∈Bα(x)
1[fdown(e) 6= y]

]
. (18)

In other words, standard accuracy and robust accuracy differ exactly on examples where the model is
correct on x, but is incorrect on some e ∈ Bα(x). We can upper-bound this by replacing the max
operator with a sum:

accstd − accrobust ≤ E

1[fdown(α(x)) = y] ·
∑

e∈Bα(x)

1[fdown(e) 6= y]

 . (19)

With some re-arranging, this expression becomes

accstd − accrobust ≤ E

|Bα(x)| ·
∑

e∈Bα(x)

1

|Bα(x)|
· 1[fdown(α(x)) = y] · 1[fdown(e) 6= y]

 . (20)

Applying the Cauchy-Schwarz Inequality, we can bound the right-hand side as:

≤

√√√√√√E[|Bα(x)|2] · E


 ∑
e∈Bα(x)

1

|Bα(x)|
· 1[fdown(α(x)) = y] · 1[fdown(e) 6= y]

2
. (21)

Note that the expression that is squared inside the second expectation is simply

Pe∼Unif(Bα(x)) (fdown(α(x)) = y ∧ fdown(e) 6= y) . (22)

This completes the proof.

A.4 CONSTRAINED ADVERSARIES

Using TARE, we can also consider adversaries that cannot perturb every input token. We may
assume that an attacker has a budget of b ≤ L words that they may perturb as in (Pruthi et al.,
2019). Exiting methods for certification (Jia et al., 2019; Huang et al., 2019) require attack to be
factorized over tokens, and cannot give tighter guarantees in the budget-constrained case compared to
the unconstrained setting explored in previous sections. However, our method lets us easily compute
robust accuracy exactly in this situation: we just enumerate the possible perturbations that satisfy the
budget constraint, and query the model.

Figure 4 plots average robust accuracy across the six tasks using AGGCLUST as a function of b.
Note that b = 0 is simply standard accuracy. Interestingly, for each dataset there is an attack only
perturbing 4 tokens with attack accuracy equal to robust accuracy.
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Figure 4: Robust accuracy averaged across all tasks based on different adversarial budgets b. b = 0
corresponds to clean performance, and robust performance is reached at b = 4

A.5 DATASETS

We use six out of the nine tasks from GLUE: SST, MRPC, QQP, MNLI, QNLI, and RTE, all of which
are classification tasks measured by accuracy. The Stanford Sentiment Treebank (SST-2) (Socher
et al., 2013) contains movie reviews that are classified as positive and negative. The Microsoft
Research Paraphrase Corpus (MRPC) (Dolan & Brockett, 2005) and the Quora Question Pairs
dataset6 contain pairs of input which are classified as semantically equivalent or not; QQP contains
question pairs from Quora, while MRPC contains pairs from online news sources. MNLI, and
RTE are entailment tasks, where the goal is to predict whether or not a premise sentence entails a
hypothesis (Williams et al., 2018). MNLI gathers premise sentences from ten different sources, while
RTE gathers premises from entailment challenges. QNLI gives pairs of sentences and questions
extracted from the Stanford Question Answering Dataset (Rajpurkar et al., 2016), and the task is to
predict whether or not the answer to the question is in the sentence.

We use the GLUE splits for the six datasets and evaluate on test labels when available (SST-2, MRPC),
and otherwise the publicly released development labels. We tune hyperparameters by training on 80%
of the original train set and using the remaining 20% as a development set. We then retrain using the
chosen hyperparameters on the full training set.

A.6 ATTACKS

We use two heuristic attacks to compute an upper bound for robust accuracy: one for ED1 per-
turbations and one for internal permutations. Each heuristic attack is a beam search, with beam
width 5. However, because |B(xi)| is very large for many tokens xi, even the beam search is in-
tractable. Instead, we run a beam search where the allowable perturbations are B′(xi) ⊆ B(xi),
where |B′(xi)| << |B(xi)|.
For our ED1 attack, we define B′(xi) to be four randomly sampled perturbations from B(xi) when
the length of xi is less than five, and all deletions when xi is greater than five. Thus, the number of
perturbations of each word is bounded above by min{4, len(xi)− 2}. For our internal permutations,
B′(xi) is obtained by sampling five permutations at random.

A.7 NUMBER OF REPRESENTATIONS

We include here histograms for the datasets we did not cover. The histograms for MRPC and QQP
are shown in Figure 5(a), while the histograms for MNLI and QNLI are shown in Figure 5(b). The
fraction of x such that |Bα(x)| = 1 for each dataset and each set of encodings is provided in Table
A.7.

6data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Figure 5: Histograms showing sizes of Bα for MRPC, QQP, MNLI, and QNLI.

Encodings SST-2 MRPC QQP MNLI QNLI RTE Avg
Con. Comp. 86.9 71.6 72.7 45.3 54.6 40.4 61.9
Agg. Clust. 65.6 50.0 62.7 35.4 36.6 25.2 45.9

Table 2: Percentage of test examples with |Bα(x)| = 1 for each dataset.

A.8 INTERNAL PERMUTATION RESULTS

We consider the internal permutation attack surface, where interior characters in a word can be
permuted, assuming the first and last characters are fixed. For example, “perturbation” can be
permuted to “peabreuottin” but not “repturbation”. Normally, context helps humans resolve these
typos. Interestingly, for internal permutations it is impossible for an adversary to change the cluster
assignment of both in-vocab and out of vocab tokens. Therefore, using CONNCOMP encodings,
robust, attack, and standard accuracy are all equal. We use the attack described in A.6 to attack the
clean model. The results are in .
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Accuracy System SST-2 MRPC QQP MNLI QNLI RTE Avg

Standard BERT 93.8 87.7 91.2 84.3 88.9 71.1 86.2
Con. Comp. + BERT 93.2 86.5 86.8 75.8 83.5 62.8 81.4

Attack BERT 28.1 15.9 33.0 4.9 6.2 5.8 15.7
Con. Comp. + BERT 93.2 86.5 86.8 75.8 83.5 62.8 81.4

Robust Con. Comp. + BERT 93.2 86.5 86.8 75.8 83.5 62.8 81.4

Table 3: Results from internal permutation attacks. Internal permutation attacks bring the average
performance for BERT across the six listed tasks from 86.2 to 15.7. Our CONNCOMP encodings,
generated using the internal permutation attack surface, achieve a robust accuracy of 81.4, which is
only 4.8 points below standard accuracy.
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