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ABSTRACT

The use of adequate feature representations is essential for achieving high perfor-
mance in high-level human cognitive tasks in computational modeling. Recent
developments in deep convolutional and recurrent neural networks architectures
enable learning powerful feature representations from both images and natural
language text. Besides, other types of networks such as Relational Networks (RN)
can learn relations between objects and Generative Adversarial Networks (GAN)
have shown to generate realistic images. In this paper, we combine these four
techniques to acquire a shared feature representation of the relation between objects
in an input image and an object manipulation action description in the form of
human language encodings to generate an image that shows the resulting end-effect
the action would have on a computer-generated scene. The system is trained and
evaluated on a simulated dataset and experimentally used on real-world photos.

1 INTRODUCTION

For many human-robot interaction scenarios, a long-term vision has been to develop systems where
humans can simply instruct robots using natural language commands. This aim encompasses several
sub-challenges in robotics and artificial intelligence, including natural language understanding,
symbol grounding, task and motion planning, to name only a few. However, a first step for solving
these challenging tasks is to study how to best combine the data representations from different
domains, which is still a topic of research.

This paper studies whether a perceptual system can via simulation train a computational model to
predict the output of actions. The aim is to generate an output image that shows the effect of a certain
action on objects when the instruction to change an object is given in natural language. Figure|T]
shows a simplified visualization of the main idea where the input image contains several objects of
different shape, size, and color, and the input instruction is to manipulate one of the objects in some
way (move, remove, add, replace). The output of the model is a synthetic generated image that shows
the effect that the action had on the scene.

To successfully solve the task of depicting the effect of a certain action, the model must further
address a number of different sub-challenges, including; 1) image encoding, 2) language learning, 3)
relational learning, and 4) image generation. The key requirement for implementing these human
cognitive processes in computational modeling is the data representation for each of the different
required domains and how to combine and use their shared representations.

There are several works in the literature that combines some of the aforementioned sub-challenges
for solving problems such as image captioning You et al.| (2016), image editing Chen et al.| (2018)),
image generation from text descriptions Reed et al.| (2016a), visual question answering [Santoro
et al.| (2017); Yang et al.|(2016), 3D reconstructed object conditioned on a 2D image |Girdhar et al.
(2016); [Weber et al.| (2018)), paired robot action and linguistic translation | Yamada et al.|(2018), and
Vision-and-Language Navigation (VLN) Anderson et al.|(2018). However, the challenge of how to
combine all the four sub-challenges and learn their shared representations still requires more research.

In this work, we propose a system that combines an image encoder, language encoder, relational
network, and image decoder and train it in a GAN setting that conditions on both a source image and
the action text description to generate a target image of the scene after the action has been performed.
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Figure 1: Overview of the proposed method. The input is an initial image and an action in the form
of language instruction. The output is a generated image that depicts the effect of the performed
action. The model needs to, first of all, correctly identify the object that should be manipulated and,
thereupon, place the object in the correct location by understanding relational concepts.

The system is implemented in PyTorch and trained on a synthetic data-set and evaluated on synthetic
and real-world images. The dataset and source code can be downloaded from [link to appear].

2 RELATED WORK

The task of generating a target image given a source image and text description has been studied in
previous works found in the literature. In work on Language-Based object detection and Segmentation
(LBS) Hu et al.[(2016b{a)), the goal was to identify the regions of the image that correspond to the
visual entities described in the natural language description. In the publication on Language-Based
Image Editing (LBIE)|Chen et al.|(2018)), the source image was edited according to the text description,
where recurrent attentive models are used to fuse image and language features for the subtasks of
image segmentation and colorization. The work by|Shinagawa et al.|(2017) used language instructions
(move, expand, or compress) to manipulate 2D images of digits from the MNIST data-set and avatar
images to generate the resulting target output image. Our approach builds on the idea of LBIE by
extending the input to multiple objects in a 3D space for an object manipulation task (instead of
an image editing task). This approach requires, however, also the learning of relations between the
different objects.

Generative Adversarial Networks (GAN)|Goodfellow et al.|(2014) have recently been used extensively
to generate realistic images; for example, the works presented by |[Radford et al.| (2015)); [Dosovitskiy:
et al.|(2015);|Yang et al.|(2015). In addition, the work by [Isola et al.|(2017) uses a conditional GAN
for pre-defined image-to-image translations. The use of GANs have further been extended to be
conditioned on text descriptions to generate images with specific properties |Reed et al.| (2016a); Nam
et al. (2018)) or photo manipulation Wang et al.| (2018); Bau et al.| (2019). As proposed by |[Zhang
et al|(2017), a refinement process that rectifies defects in the first stage, resulting in more realistic
synthesized images, can further be achieved by the stacking of GANSs.

There are, in addition, works that condition the GAN with additional information (besides the text
description) to generate images. The work by Reed et al.|(2016b)) give control over the location of
where the object, or object parts, should be located by providing additional bounding boxes. The work
by |Dash et al.|(2017)) also conditioned on the class information to diversify the generated samples.
The work by [EI-Nouby et al.[|(2018) uses a recurrent GAN to generate iterative output images based
on the language instruction.

Moreover, there have been presented works that integrate a recurrent neural network for the image
generation. For example, a recurrent variational autoencoder with an alignment model over words
and attention mechanisms have been used to generate images from text captions [Mansimov et al.
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(2016), while a GAN conditioned on an LSTM was, similarly, used for image sequence generation
for each word, as presented by (Ouyang et al.[(2018)).

While related works generate output images from text descriptions, they differ from our work in
several ways. Firstly, our method conditions on both the input image and the text description for
generating the target image. Secondly, we integrate a relational network in the shared representation
for learning relations between objects in a 3D simulated space. Thirdly, we perform image object
manipulation instead of image editing, and there is only one correct solution for each pair of the
source image and text description, which is typically not the case for other works using GANSs.

3 DATA AND METHOD

3.1 DATA GENERATION
The data consists of a generated synthetic data-set consisting of objects that are randomly placed on a

table and contains the before state image, the after state image, and an action sentence, as exemplified
in Figure[2]

remove the red big cube

replace the blue small cube
with a red big pyramid

add a green big cube right of
the red small cube

move the red big pyramid
behind the green big sphere

Figure 2: Examples of input (left) and output (right) image for each of the four actions remove,
replace, add, and move.

The actions are chosen from a set of 4 possible actions: 2 non-relational {remove, replace}, and
2 relational {move, add}. A summary of the structure of the actions can be seen in Table The
non-relational actions choose one object and either removes it or replaces it with another object with
a specified shape, color, and size. These instructions are non-relational since they do not require to
learn the relation between the manipulated object and the referential object in the scene.

Table 1: The four action commands that are explored in this work.

Action Type
REMOVE {objectl } non-relational
REPLACE {objectl } WITH {object2} non-relational

MOVE {object1} {on top, left, right, behind, in front} OF {object2} | relational
ADD {objectl} {on top, left, right, behind, in front} OF {object2} | relational

The synthesized images are of size 128 x 128 x 3, and each image contains 2 to 6 objects which
(each) is either a box, sphere, or pyramid, with the color red, green, or blue, and with the size small



Under review as a conference paper at ICLR 2020

or big. There are no duplicate objects in the same scene that have the same shape, color, and size in
order to avoid ambiguities. For the training data, 1000 input images were generated with 10 action
sentences for each image. The validation and test data each consisted of 200 images with 10 actions
per image.

3.2 OVERVIEW OF METHOD

The proposed method, called CAE+LSTM+RN, can be seen in Figure [3|and consists of an image
encoder, language encoder, relational network, and an image decoder.

Input image, X

Output image, G(X, s)

13podou3

]

RN

128 x128x3

i Decoder E

] »(X,s)
| “remove the green big sphere” l—» LSTM 128 x 128 x 3

Input sentence, s

Figure 3: Detailed overview of the proposed method. A CNN-based encoder is used to represent the
input image X and the last output from a LSTM is used as representation of the input sentence s. A
relational network combines these two representations into a shared representation, ¢(X, s). The
generated output image is obtained with an image decoder.

3.2.1 IMAGE ENCODER

The image encoder follows a similar structure as DCGAN Radford et al.[(2015)), with 4 convolutional
layers with stride 2, padding 1, and filter size 4 in each layer and numbers of filters 64, 128, 256, and
512 in each layer. Each convolutional layer is followed by batch normalization and relu-activation.
The input images are of size 128 x 128 x 3, and the output of the image encoder is of size 8 X 8 x 512.

3.2.2 LANGUAGE ENCODER

The last output of a 2-layered bi-directional LSTM, with 24 hidden units, was used for the sentence
embedding, g(s). A word embedding with dimension 30 was learned from a vocabulary of size
17, consisting of the following words: “move, remove, replace, add, small, big, pyramid, sphere,
cube, red, green, blue, front, behind, left, right, and top”. Each sentence was also initially parsed
and pre-processed such that articles and prepositions (e.g., words such as ”in, on, of, the”), could be
removed in an early stage. The sentences were presented in reverse word order.

3.2.3 RELATIONAL NETWORK

A Relational Network (RN) Santoro et al.| (2017) is used to both learn relations between object-
pairs, as well as merging image and language representations. The output of the image encoder,
J(X), is of size 8 x 8 x 512, where each filter response at position i and j in f(X)(, ;) is con-
sidered one object, resulting in a total of 8 x 8 = 64 objects. An object-pair vector is made by
concatenating two object vectors, with their spatial coordinates, and with the sentence representation
[f(X)%’;yj’:)ijf(X)%’;c,lﬁ)klg(s)], resulting in 64 x 64 = 4096 object-pairs. Each object-pair vector is
feed through a three-layered fully-connected network with 256 hidden units and relu-activation. The
output of the last layer for each object-pair is summed up and reshaped to size 8 X 8 X nzy Where
ngrn is set to 32.
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3.2.4 IMAGE DECODER

The image decoder first performs a convolution with 512 filters and stride 1, padding 1, and filter size
3 then follows a similar structure as the image encoder with the same stride, padding, and filter size
but with reversed number of filters in each transposed convolutional layer. The output of the image
decoder is 128 x 128 x 3.

3.3 INTEGRATION OF GENERATIVE ADVERSARIAL NETWORK (GAN)

The integration of the proposed model with a GAN, called CAE+LSTM+RN+GAN, can be seen in
Figure[d] The generator has the same structure as the proposed model from Section[3.2} Since there
is only one correct solution for each image-sentence pair, the generator does not use any random
number as input. The loss function for the generator is:

Lg =log(1 = D(Y, o(X,5)) + ax [[H(Y) = h(V)|3 + B+ [[Y = Y[+ v+ [ X =Y (1)

where the first term is the generator loss, the second is the feature matching loss, the third is L1-loss
between fake and real image and the fourth is the L2-loss between the input image and the output
real image. The last term is to focus on the pixels that have been changed in order to avoid getting
stuck in a pure reconstruction. The trade-off parameters «, 3, and gamma are set to 100, 100, and
1000 respectively.

The discriminator first uses an image encoder on either the generated image Y, the ground truth image
Y, or a randomly sampled wrong output image Y. The encoder uses the same structure as the image
encoder in the generator except with leaky relu-activation instead of relu. The output from the encoder
is concatenated with the shared representation (X, s) from the generator. A classifier consisting
of a convolutional layer with stride 2, padding 1, filter size 4 and 256 filters, batch norm, leaky relu
followed by a convolutional layer with stride 1, padding O, filter size 4 and 1 filter and sigmoid is
used to classify if the output image is real or fake/wrong. The loss function for the discriminator is:

Lp = log(D(Y, ¢(X, ) +log(1 — D(V, p(X, 5)) +log(1 - D(V,¢(X,5))

. - <p(X‘ S)
v
Input image, X .
RN ¥ =G&s) Fake LON== | Real/Fake
o(X,s) ]
“remove the
green big sphere” Ls™ Y “Real
Input sentence, s
Generator Discriminator

Figure 4: Integration of the model with a GAN. The discriminator is conditioned on the shared
representation of the input image and sentence.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

The two models CAE+LSTM+RN and CAE+LSTM+RN+GAN are trained on the training set of
10000 image input-output pairs using the Adam optimizer with a learning rate of 2¢~4, 31 0.5, >
0.999, and minibatch size of 25 on a machine with GeForce GTX 1070 8 GB, Intel i7-8700K @3.7GHz,
and 32 GB RAM. The model was evaluated visually and by calculating the root-mean-square-error
(RMSE) on a test set of 200 images.
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(a) Task: remove (b) Task: replace
(c) Task: add (d) Task: move

Figure 5: Results from two models. Five input images (columns) for each of the four actions
(a-d). The first row in each sub-figure is the input image data and the fourth row is the target
output image. The second and third row is the generated output from the CAE+LSTM+RN and
CAE+LSTM+RN+GAN model, respectively. The action sentence can be inferred by comparing the
difference between the first and fourth column.

4.2 IMAGE OUTPUT GENERATION

The generated output from the two models can be seen in Figure[5] Here, the rows represent the input
image, generated output from CAE+LSTM+RN, generated output from CAE+LSTM+RN+GAN,
and the target output image, respectively.

The GAN model is able to reduce the noise for all four tasks and the copies of objects sometimes
generated with the add and remove task. Some colors that are not present in the training set where
corrected with GAN, e.g., a purple object in the task replace. However, the shape of the object are
sometimes not clear, especially for cubes that looked liked large spheres and all small objects look
like small cube.

A summary of the root-mean-square-error (RMSE) between the generated and target images on the
200 test images can be seen in Table[2] The first row is a baseline model that only uses the image
data but no action sentence information. The tasks with the lowest RMSE are the non-relational tasks
remove and replace.

Table 2: Comparison of the RMSE between the generated image and the target image on the test data
between different models.

Model | remove | replace | add | move || Overall
CAE 0.0407 | 0.0482 | 0.0441 | 0.0519 || 0.0457
CAE+LSTM+RN 0.0144 | 0.0222 | 0.0281 | 0.0264 || 0.0229
CAE+LSTM+RN+GAN | 0.0134 | 0.0208 | 0.0272 | 0.0249 || 0.0221
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4.3 EXPERIMENTS ON REAL-WORLD DATA

The pre-trained CAE-LSTM-RN-GAN model on simulated data was used on a sequence of five
real-world images with four action sentences and six objects, see Figure[7]

Figure 6: Real-world images with four action sentences. The action sentences where: “move the red
9 9

small cube left of red big sphere”, “remove the blue big pyramid”, "replace the green small cube with
a blue big pyramid”, and add a green small cube on top of red big sphere”.

For pre-processing, a manual segmentation on each object and the background is performed on the
first image to get an average color. A color-based segmentation based on the average color for each
object is performed on all five real-world images. Each image is converted to a HSV representation.
The hue values for pixels segmented as object 1,3,6 are changed to 0 (red), object 2 and 4 to 1/3
(green), object 5 to 2/3 (blue), and the background as 0.09, which is the average hue value for the
training images. The saturation is set to 1 for the objects and 0.3894 for the background, which is also
taken from training images. The value (in HSV) for each pixel is multiplied by a factor so that the
average value for each real-world image is the same as the average of the training images, which was
0.4389. The new HSV representation is then converted back to RGB representation. This minimal
pre-processing step made the real-world images look more like the training images.

Figure 7: Pre-processing of real-world images. (left) Original real-world image with 6 objects.
(middle) manual segmentation of the 6 objects and the background. (right) Adjustment of HSV-values
based on automatic color-based segmentation.

The results can be seen in Figure@ For the first action (column 1) to ”move the red small cube left of
red big sphere”, the model attempts to remove the red small cube and generates an object with the
right color and size, but with the wrong shape and arguable the location. An explanation to the faulty
location might be that the sphere is much larger than the large sphere in the training data. The second
action (column 2) is to “remove the blue big pyramid”, which in reality is an upside-down coffee cup.
The model partly removes the correct object. The third action (column 3) to “replace the green small
cube with a blue big pyramid” replaces the correct object with an object of correct color but with the
wrong shape. The last action (column 4) is to ”add a green small cube on top of red big sphere”.

5 CONCLUSIONS

This work has combined an image encoder, language encoder, relational network, and image generator
to visualize the effect an action would have on a simulated scene. The model was used in a GAN
learning setting to improve the generated images. The focus in this work has been on learning
meaningful shared image and text representations for relational learning and object manipulation.
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Figure 8: Results on real-world images with pretrained CAE-LSTM-RN-GAN model on simulated
images. First row show the pre-processed input image, second row show the generate output image,
and third row show the target image.

Directions for future work include generating sequenced images, training on real-world images, adapt
the system to arbitrarily text instructions, recognising objects from a pre-trained image encoder, using
different image sizes, and implementing the system on a real robot. An initial step in any of these
directions for future work could alternatively be to train a shared image and text representations on
a similar synthetic data-set, but with more realistic objects (e.g., the CLEVR dataset Johnson et al |
(2017)), and, subsequently, transfer and fine-tune the model to a real-world setting.
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