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ABSTRACT

We consider off-policy policy evaluation when the trajectory data are generated
by multiple behavior policies. Recent work has shown the key role played by
the state or state-action stationary distribution corrections in the infinite horizon
context for off-policy policy evaluation. We propose estimated mixture policy
(EMP), a novel class of partially policy-agnostic methods to accurately estimate
those quantities. With careful analysis, we show that EMP gives rise to estimates
with reduced variance for estimating the state stationary distribution correction
while it also offers a useful induction bias for estimating the state-action stationary
distribution correction. In extensive experiments with both continuous and discrete
environments, we demonstrate that our algorithm offers significantly improved
accuracy compared to the state-of-the-art methods.

1 INTRODUCTION

In many real-world decision-making scenarios, evaluating a novel policy by directly executing it in
the environment is generally costly and can even be downright risky. Examples include evaluating a
recommendation policy (Swaminathan et al., 2017; Zheng et al., 2018), a treatment policy (Hirano
et al., 2003; Murphy et al., 2001), and a traffic light control policy (Van der Pol & Oliehoek, 2016).
Off-policy policy evaluation methods (OPPE) utilize a set of previously-collected trajectories (for
example, website interaction logs, patient trajectories, or robot trajectories) to estimate the value of a
novel decision-making policy without interacting with the environment (Precup et al., 2001; Dudı́k
et al., 2011). For many reinforcement learning applications, the value of the decision is defined in a
long- or infinite-horizon, which makes OPPE more challenging.

The state-of-the-art methods for infinite-horizon off-policy policy evaluation rely on learning (dis-
counted) state stationary distribution corrections or ratios. In particular, for each state in the
environments, these methods estimate the likelihood ratio of the long-term probability measure for
the state to be visited in a trajectory generated by the target policy, normalized by the probability
measure generated by the behavior policy. This approach can effectively avoid the exponentially high
variance compared to the more classic importance sampling (IS) estimation methods (Precup, 2000;
Dudı́k et al., 2011; Hirano et al., 2003; Wang et al., 2017; Murphy et al., 2001), especially for infinite-
horizon policy evaluation (Liu et al., 2018; Nachum et al., 2019; Hallak & Mannor, 2017). However,
learning state stationary distribution requires detailed information on distributions of the behavior
policy, and we call them policy-aware methods. As a consequence, policy-aware methods are difficult
to apply when off-policy data are pre-generated by multiple behavior policies or when the behavior
policy’s form is unknown. To address this issue, Nachum et al. (2019) proposes a policy-agnostic
method, DualDice, which learns the joint state-action stationary distribution correction that is much
higher dimension, and therefore needs more model parameters than the state stationary distribution.
Besides, there is no theoretic comparison between policy-aware and policy-agnostic methods.

In this paper, we propose a partially policy-agnostic method, EMP (estimated mixture policy) for
infinite-horizon off-policy policy evaluation with multiple known or unknown behavior policies.
EMP is partially policy-agnostic in the since that it does not necessarily require knowledge of the
individual behavior policies. Instead, it involves a pre-estimation step to estimate a single mixed
policy that will be defined formally later. Like the method in Liu et al. (2018), EMP also learns
the state stationary distribution correction, so it remains computationally cheap and is scalable in
terms of the number of behavior policies. Inspired by Hanna et al. (2019), we construct a theoretical
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bound for the mean square error (MSE) of the stationary distribution corrections learned by EMP.
In particular, we show that in the single-behavior policy setting, EMP yields smaller MSE than the
policy-aware method. On the other hand, compared to DualDice, EMP learns the state stationary
distribution correction of smaller dimension, more importantly the estimation of the mixture policy
can be considered as an inductive bias as far as the stationary distribution correction is concerned,
and hence could achieve better performance when the pre-estimation is not expensive. In addition,
we propose an ad-hoc improvement of EMP, whose theoretical analysis is left for future studies. EMP
is compared with both policy-aware and policy-agnostic methods in a set of continuous and discrete
control tasks and shows significant improvement.

2 BACKGROUND AND RELATED WORK

2.1 INFINITE-HORIZON OFF-POLICY POLICY EVALUATION

We consider a Markov Decision Process (MDP) and our goal is to estimate the infinite-horizon
average reward. The environment is specified by a tupleM = 〈S,A,R, T 〉, consisting of a state
space, an action space, a reward function, and a transition probability function. A policy π interacts
with the environment iteratively, starting with an initial state s0. At step n = 0, 1, ... , the policy
produces a distribution π(·|sn) over the actions A, from which an action an is sampled and applied
to the environment. The environment stochastically produces a scalar reward r(sn, an) and a next
state sn+1 ∼ T (·|sn, an). The infinite-horizon average reward under policy π is

Rπ = lim
N→∞

1

N + 1

N∑
n=0

E [r(sn, an)] .

Without gathering new data, off-policy policy evaluation (OPPE) considers the problem of estimating
the expected reward of a target policy π via a pre-collected state-action-reward tuples from policies
that are different from π, which are called behavior policies. In our paper, we consider the general
setting that the data are generated by multiple behavior policies πj(j = 0, 1, ..,m). Most OPPE
literature has focused on the single-behavior-policy case where m = 1. In this case, we denote the
behavior policy by π0. Roughly speaking, most OPPE methods can be grouped into two categories:
importance-sampling(IS) based OPPE and stationary-distribution-correction based OPPE.

2.2 IMPORTANCE SAMPLING POLICY EVALUATION USING EXACT AND ESTIMATED
BEHAVIOR POLICY

As for short-horizon off-policy policy evaluation, importance sampling policy evaluation (IS) meth-
ods (Precup et al., 2001; Dudı́k et al., 2011; Swaminathan et al., 2017; Precup et al., 2000; Horvitz &
Thompson, 1952) have shown promising empirical results. The main idea of importance sampling
based OPPE is using importance weighting π/πj to correct the mismatch between the target policy π
and the behavior policy πj that generates the trajectory.

Li et al. (2015) and Hanna et al. (2019) show that using estimated behavior policy in the importance
weighting can obtain importance sampling estimation with smaller mean square error (MSE). EMP
also uses estimated policy, but there are two key difference between EMP and the previous works:
(1) EMP is not an IS-based method, it involves a min-max problem; (2) EMP focuses on multiple-
behavior-policy setting while previous works have focused on single-behavior setting.

2.3 POLICY EVALUATION VIA LEARNING STATIONARY DISTRIBUTION CORRECTION

The state-of-the-art methods for long-horizon off-policy policy evaluation are stationary-distribution-
correction based (Liu et al., 2018; Nachum et al., 2019; Hallak & Mannor, 2017). Let dπ0

(s)
and dπ(s) be the stationary distribution of state s under the behavior policy π0 and target policy
π respectively. The main idea is directly applying importance weighting by ω = dπ/dπ0 on the
stationary state-visitation distributions to avoid the exploding variance suffered from IS, and estimate
the average reward as

Rπ = E(s,a)∼dπ [r(s, a)] = E(s,a)∼dπ0

[
ω(s) · π(a|s)

π0(a|s)
r(s, a)

]
.
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For example, Liu et al. (2018) uses min-max approach to estimate ω directly from the data. This
class of methods require exact knowledge of behavior policy π0 and are not straightforward to
apply in multiple-behavior-policy setting. Recently, Nachum et al. (2019) proposes DualDice to
overcome such limitation by learning the state-action stationary distribution correction ω(s, a) =
dπ(s)π(a|s)/dπ0

(s)π0(a|s).

3 SINGLE BEHAVIOR POLICY

We first consider the task of stationary distribution correction learning in the simple case where the
data are generated by a single behavior policy as previous state stationary distribution correction
methods. To explain the min-max problem formulation of the learning task, we first breifly review
the method introduced by Liu et al. (2018) in Section 3.1, which we shall refer as the BCH method
in the rest of the paper. In Section 3.2, we show that it is beneficial to replace the exact values
of the behavior policy in the min-max problem by their estimated values in two folds. First, this
extends the method to application setting where the behavior policy is unknown. Second, even when
the behavior policy is known with exact values, we prove that the stationary distribution correction
learned by the min-max problem with estimated behavior policy has smaller MSE. We will deal with
multiple-behavior-policy cases in Section 4.

3.1 LEARNING STATIONARY DISTRIBUTION CORRECTION WITH EXACT BEHAVIOR POLICY

Assume the data, consisting of state-action-next-state tuples, are generated by a single behavior
policy π0, i.e. D = {(sn, an, s′n) : n = 1, 2, ..., N}. Recall that dπ0 and dπ are the stationary state
distribution under the behavior and target policy respectively, and ω = dπ/dπ0 is the stationary
distribution correction. In the rest of Section 3, by slight notation abusion, we also denote dπ(s, a) =
dπ(s)π(a|s), dπ0(s, a) = dπ0(s)π0(a|s) and dπ0(s, a, s′) = dπ0(s)π0(a|s)T (s′|a, s).

We briefly review the BCH method proposed by Liu et al. (2018). As dπ(s) is the stationary
distribution of sn as n→∞ under policy π, it follows that:

dπ(s′) =
∑
s,a

dπ(s)π(a|s)P (s′|s, a) =
∑
s,a

ω(s)
π(a|s)
π0(a|s)

dπ0
(s)π0(a|s)T (s′|a, s), ∀s′. (1)

Therefore, for any function f : S → R,∑
s′

ω(s′)dπ0
(s′)f(s′) =

∑
s,a,s′

ω(s)
π(a|s)
π0(a|s)

dπ0
(s)π(a|s)T (s′|a, s)f(s′).

Recall that dπ0(s, a, s′) = dπ0(s)π0(a|s)T (s′|a, s), so ω and the data sample satisfy the following
equation

E(s,a,s′)∼dπ0

[(
ω(s′)− ω(s)

π(a|s)
π0(a|s)

)
f(s′)

]
= 0, for all f.

BCH solves the above equation via the following min-max problem:

min
ω

max
f

E(s,a,s′)∼dπ0

[(
ω(s′)− ω(s)

π(a|s)
π0(a|s)

)
f(s′)

]2

, (2)

and use kernel method to solve ω. The derivation of kernel method are put in Appendix A.

3.2 LEARNING STATIONARY DISTRIBUTION CORRECTION WITH ESTIMATED BEHAVIOR
POLICY

The objective function in the min-max problem (2), evaluated by data sample, can be viewed as a
one-step importance sampling estimation. As shown in Hanna et al. (2019), importance sampling
with estimated behavior policy has smaller MSE. Motivated by this fact and the heuristic that better
objective function evaluation will lead to more accurate solution, we show that the BCH method can
also be improved by using estimated behavior policy and obtain smaller asymptotic MSE. We will
use this result to build theoretic guarantee for the performance of EMP method in Section 4.
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To formally state the theoretic result, we need introduce more notation. Assume that we are given
a class of stationary distribution correction Ω = {ω(η; s) : η ∈ Eη}, and there exists η0 ∈ Eη
such that the true distribution correction ω(s) = ω(η0; s). Let ω(η̃; s) be the stationary distribution
correction learned by the min-max problem (2) and ω(η̂; s) be that learned by a min-max problem
using estimated policy:

min
ω

max
f

E(s,a,s′)∼D

[(
ω(s′)− ω(s)

π(a|s)
π̂0(a|s)

)
f(s′)

]2

. (3)

The intuition is that the value of π̂0 is estimated from the data sample and appears in the denominator,
as a result, it could cancel out a certain amount of random error in data sample. We use a maximum
likelihood method to estimate the behavior policies for discrete and continuous control tasks. The
details are in Appendix E.2. Based on the proof techniques in Henmi et al. (2007), we establish
the following theoretic guarantee that using estimated behavior policy yields better estimates of the
stationary distribution correction.
Theorem 1. Under some mild conditions, we have, asymptotically

E[(η̂ − η0)2] ≤ E[(η̃ − η0)2].

As a direct consequence, we derive the finite-sample error bound for η̂.
Corollary 1. (informal) Let N be the number of (s, a, s′) tuples in the data,

E[(η̂ − η0)2] = O

(
1

N

)
.

The precise conditions for Theorem 1 and Corollary 1 to hold and their proofs are in Appendix B.

4 EMP FOR MULTIPLE BEHAVIOR POLICIES

In this section, we shall propose our EMP method for off-policy policy evaluation with multiple
known or unknown behavior policies and establish theoretic results on variance reduction of EMP.

Before that, we first give a detailed description on the data sample and its distribution. As-
sume the state-action-next-state tuples are generated by m different unknown behavior policies
πj , j = 1, 2, ...,m. Let dπj (s) be the stationary state distribution and Nj be the number of
state-action-next-state tuples by policy πj , for j = 1, 2, ...,m. Let N =

∑
j Nj and denote by

wj = Nj/N the proportion of data generated by policy πj . We use D to denote the data set and
D = {(sj,nj , aj,nj , s′j,nj ) : j = 1, 2, ..,m, nj = 1, 2, ..., Nj}. Note that the policy label j in the
subscript is only for notation clarity and it is not revealed in the data. Then, a single (s, a, s′) tuple
simply follows the marginal distribution d0(s, a, s′) :=

∑
j wjdπj (s)πj(a|s)T (s′|a, s). With slight

notation abusion, we write d0(s, a) =
∑
j wjdπj (s)π(a|s).

4.1 EMP METHOD

Now we derive the EMP method in the multiple-behavior-policy setting and explicitly explain what
is the mixed policy to be estimated in EMP.

Let d0 :=
∑
j wjdπj be the mixture of stationary distributions of the behavior policies. For each

state-action pair (a, s), define π0(a|s) as the weighted average of the behavior policies:

π0(a|s) :=
∑
j

wjdπj (s)

dπ0
(s)

πj(a|s),∀ (s, a). (4)

It is easy to check that for each s, π0(·|s) is a distribution on the action space and hence defines a
policy by itself. We call π0 the mixed policy. Let ω = dπ/d0, which is a state distribution ratio. Then,
d0, π0 and ω satisfy the following relation with the average reward Rπ .
Proposition 1.

Rπ = E(s,a)∼d0

[
ω(s)

π(a|s)
π0(a|s)

r(s, a)

]
. (5)
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Besides, the state distribution ratio ω can be characterized by the stationary equation.

Proposition 2. The function ω(s) = dπ(s)/dπ0
(s) (up to a constant) if and only if,

E(s,a,s′)∼d0

[(
ω(s′)− ω(s)

π(a|s)
π0(a|s)

)
f(s′)

]
= 0, for all f : S → R. (6)

In the special case when m = 1, i.e. the data are generated by a single behavior policy, Proposition 2
reduces to Theorem 1 of Liu et al. (2018). The above two Propositions indicate that, to certain extend,
the (s, a, s′) tuples generated by multiple behavior policies can be pooled together and treated as if
they are generated by a single behavior policy π0.

Note that expression of π0 (4) involves not only the behavior policies but also the state stationary
distributions. In EMP method, we shall use a pre-estimation step to generate an estimate π̂0 from
the data. Based on Proposition 2, the state distribution ratio ω can be estimated by the following
min-max problem

min
ω

max
f

E(s,a,s′)∼D

[(
ω(s′)− ω(s)

π(a|s)
π̂0(a|s)

)
f(s′)

]2

. (7)

Finally, EMP estimates the average reward according to (5) where d0 is approximate by data D.

Applying Theorem 1, we show that using the estimated π̂0 in EMP can actually reduce the MSE of
the learned stationary distribution ratio ω.

Proposition 3. Under the same conditions of Theorem 1, if ω(η̃; s) and ω(η̂; s) are the stationary
distribution correction learned from (7) and from the same min-max problem but with exact value of
π0, then, asymptotically

E[(η̂ − η0)2] ≤ E[(η̃ − η0)2].

As a result, E[(η̂ − η0)2] = O
(

1
N

)
.

4.2 WHY POOLING IS BENEFICIAL FOR EMP

One important feature of EMP is that it pools the data from different policy behaviors together and
treat them as if they are from a single mixed policy. Of course, pooling makes EMP applicable to
settings with minimal information on the behavior policies, for instance, EMP does not even require
the knowledge on the number of behavior policies. In this part, we show that, the pooling feature of
EMP is not just a compromise to the lack of behavior policy information, it also leads to variance
reduction in an intrinsic manner.

If instead, the data can be classified according to the behavior policies and treated separately, we
can still use EMP, which reduces to (3), or any other single-behavior-policy method, to obtain the
stationary distribution correction ωj = dπ/dπj for each behavior policy. Given ωj , a common
approach for variance reduction is to apply multiple importance sampling (MIS) (Tirinzoni et al.,
2019; Veach & Guibas, 1995) technique and the average reward estimator is of the form

R̂MIS =

m∑
j=1

1

Nj

Nj∑
n=1

hj(sj,n)ωj(sj,n)π(aj,n|sj,n)r(sj,n, aj,n), (8)

where the function h is often referred to as heuristics and must be a partition of unity, i.e.,
∑
j hj(s) =

1 for all s ∈ S. It has been proved by (Veach & Guibas, 1995) that MIS is unbiased, and, for given
wj = Nj/N , there is an optimal heuristic function to minimize the variance of R̂MIS .

Proposition 4. For MIS with fixed values of wj , j = 1, 2, ...,m, among all possible values of
heuristics h, the balanced heuristic

hj(s) =
wjdπj (s)∑m
j=1 wjdπj (s)

, ∀j = 1, 2, ...,m and s ∈ S,

reaches the minimal variance.
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Plug the optimal heuristic hj(s) into MIS estimator (8), and we will obtain that the optimal MIS
estimator coincides with the EMP estimator (5), i.e.

R̂MIS = E(s,a)∼D

[
dπ(s)

d0(s)
π(a|s)r(s, a)

]
. (9)

In this light, by pooling the data together and directly learning ω. EMP also learns the optimal MIS
weight inexplicitly.
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Figure 1: (a) shows that scatter plot of pairs (d̂πtrue , dπ) and pairs (d̂πesti , dπ). The diagonal line
indicates exact estimation. The default values of the number of trajectories is 200, and the length of
horizon is 200. (b) shows the weighted total variation distance (TV distance) between d̂πtrue and dπ,
d̂πesti and dπ respectively, along different number of trajectories and the length of horizons.

5 EXPERIMENT

In this section, we conduct experiments in three discrete-control tasks Taxi, Singlepath, Gridworld and
one continuous-control task Pendulum (see Appendix E.1 for the details), with following purposes:
(i) to compare the performance of distribution correction learning using policy-aware, policy-agnostic
and partially agnostic-policy methods (in Sec 5.1); (ii) to compare the performance of the proposed
EMP with existing OPPE methods (in Sec 5.1 and 5.2); (iii) to explore potential improvement of
EMP methods (in Sec 5.2). We will release the codes with the publication of this paper for relevant
study.

5.1 RESULTS FOR SINGLE BEHAVIOR POLICY

In this section, we compare the EMP method with the BCH method and step-wise importance
sampling (IS) in the setting of single-behavior policy, i.e. the data is generated from a single behavior
policy.

Experiment Set-up. A single behavior policy which is learned by a certain reinforcement learning
algorithm 1 for evaluating BCH and IS. This single behavior policy then generates a set of trajectories
consisting of s-a-s-r tuples. These tuples are used to estimate the behaviour policy for EMP methods
as well as estimating the stationary distribution corrections for estimating the average step reward of
the target policy.

Stationary Distribution Learning Performance. We choose the Taxi domain as an example to
compare the stationary distribution d̂πtrue and d̂πesti learned by BCH and EMP. Figure 1(a) shows
the scatter pairs (d̂πtrue , dπ) and (d̂πesti , dπ) estimated by 200 trajectories of 200 steps. It shows that
d̂πesti approximate dπ better than d̂πtrue . Figure 1(b) and Figure 1(b) compare the TV distance from
d̂πtrue and d̂πesti to dπ under different data sample sizes. The results indicate that both d̂πtrue and d̂πesti

converge, while d̂πesti converges faster and is significantly closer to dπ when the data size is small.
These observations are well consistent with Theorem 1.

Policy Evaluation Performance. Figure 2 reports the MSE of policy evaluation by EMP, BCH and
IS methods for the 4 different environments. We observe that, (i) EMP consistently obtains smaller

1We use Q-learning in discrete control tasks and Actor Critic in continuous control tasks.
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Figure 2: Single-behavior-policy results of BCH, EMP and WIS across continuous and discrete
environments with average reward. Each node indicates the mean value and the bars represents the
standard error of the mean.
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Figure 3: Comparison results among policy-aware (BCH), partially policy-agnostic (EMP) and
policy-agnostic (SADL) on continuous and discrete control tasks.

MSE than the other two methods for different sample scales and different environments. (ii) The
performance of EMP and BCH improves as the number of trajectories and length of horizons increase,
while the IS method suffers from growing variance. our method correctly estimates the true density
ratio over the state space.

Partially Policy-agnostic versus Policy-agnostic OPPE. Figure 3 reports the comparison results
for the policy-aware BCH, partially policy-agnostic EMP and a policy-agnostic method, which we
call it state-action distribution learning (SADL) and whose formal formulation is given in Appendix
D. The results show that all three methods obtain improvement as the number of length of trajectories
increase. Roughly speaking, both EMP and SADL outperform BCH. The policy-agnostic SADL is
better than EMP in the cases of small sample size. But when the sample size increases so that the
estimated behavior policy is more accurate, EMP gradually exceeds SADL.

Remark: In our implementation of SADL, we use the same min-max formulation and optimization
solver as EMP so that the comparison could shed more lights on the impact of behavior policy
information on the performance of off-policy policy evaluation. We will report the comparison result
between EMP and DualDice once the code is released.

5.2 RESULTS FOR MULTIPLE UNKNOWN BEHAVIOR POLICIES

As for multiple behavior policies, we conduct experiments in policy-aware and partially policy-
agnostic settings. We report the results of partially policy-agnostic setting in this section and
the policy-aware setting is described in Appendix E.4. Because partially policy-agnostic version
consistently achieves better performance.
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Figure 4: Multiple-behavior-policy results of EMP (single), EMP, KL-EMP and MIS across continu-
ous and discrete environments with average reward.

Experiment Set-up. We implement the following 4 methods: (1) the proposed EMP; (2) the multiple
importance sampling (MIS) method as in Tirinzoni et al. (2019) using balanced heuristics; (3) EMP
(single), in which we apply EMP for each subgroup of samples generated by a single behavior
policy to obtain one OPPE value and finally output their average; (4) KL-EMP, which is an ad-hoc
improvement of EMP using more information on the behavior policies and whose implementation
details are given in Appendix E.3.

Policy Evaluation Performance. Figure 4 reports the log MSE of the 4 methods in different
environments with different sample scales. It shows that the proposed EMP outperforms both MIS
and EMP (single). It is interesting to note that in EMP (single), actually more information on the
behavior policies is learned than in EMP, but the learned stationary distribution corrections are mixed
with naively equal weights. So, the advantage of EMP over EMP (single) can be probably attributed to
(1) the robustness due to less required information on behavior policies; (2) a near-optimal weighted
average that is automatically learned by pooling together the samples from different behavior policies.

On the other hand, we see that the performance of KL-EMP has greater improvement with the
increase of sample size and eventually outperform EMP in cases of large sample size. This is
because, KL-EMP replaces the fixed sample proportion (i.e. wj as defined in Section 4.2) with a KL
divergence-based proportion, which is better estimated with more data sample.

6 CONCLUSION

In this paper, we advocate the viewpoint of partial policy-awareness and the benefits of estimating a
mixture policy for off-policy policy evaluation. The theoretical results of reduced variance coupled
with experimental results illustrate the power of this class of methods. One key question that still
remains is the following: if we are willing to estimate the individual behavior policies, can we further
improve EMP by developing an efficient algorithm to compute the optimal weights? One other
question is a direct comparison of DualDice and EMP when the code of DualDice is released, this
will allow us to see the props and cons of inductive bias offered by the Bellman equation used by
DualDice and direct estimation of the mixture policy used by EMP.
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A KERNEL METHOD

We use the reproducing kernel Hilbert space to solve the mini-max problem of BCH (Liu et al.
(2018)). The key property of RKHS we leveraged is called reproducing property. The reproducing
property claims, for any function f ∈ H (H is a RKHS), the evaluation of f at point x equals its
inner product with another function in RKHS: f(s) = 〈f, k(s, ·)〉H.

Given the objective function of BCH L(w, f) = E(s,a,s′)∼dπ0 [(ω(s) π(a|s
π0(a|s)−ω )f(s′)]. We use the

reproducing property to obtain the closed form representation of maxf∈F L(w, f)2, which is shown
as follows:

max
f∈F

L(w, f)2 = E(s,a,s′)∼dπ0 ,(s̄,ā,s̄′)∼dπ0 [∆ (ω; s, a, s′) ∆ (w; s, a, s′) k (s′, s′)]

.

This equation has been proved in BCH Liu et al. (2018).

B PROOF OF THEOREM 1

B.1 ASSUMPTIONS

In this appendix, we provide the mathematical details and proof of Theorem 1. We first introduce
some notations and assumptions.

We assume the behavior policy π0(a|s) belongs to a class of policies Π = {π(θ; a, s) : θ ∈ Eθ},
where Fθ is the parameter space, i.e. there exists θ0 ∈ E1 such that π0(a|s) = π(θ0; a, s). The
estimated behavior policy π̂0 = πθ̂ is obtained via maximum likelihood method, i.e.

θ̂ = arg max

N−1∑
n=0

log(π(θ; sn, an)).

We assume central limit theorem holds for θ̂. Recall that we have assumed in Section 3.2 that the true
stationary distribution correction ω(s) = ω(η0; s). Using the kernel method introduced in Appendix
A, our estimation ω̂(s) = ω(η̂; s) is obtained via

min
η

∑
0≤i,j≤N−1

G(η, θ̂;xi, xj),

with xi = (si, ai, s
′
i) and

G(η, θ̂; (xi, xj)) =

(
ω(η; si)

π(ai|si)
π(θ̂, ai, si)

− ω(η, s′i)

)(
ω(η; sj)

π(aj |sj)
π(θ̂, aj , sj)

− ω(η, s′j)

)
k(s′i, s

′
j).

Assumption 1. We assume the following regularity conditions on G:

1. G is second order differentiable.

2. E[∂η∂θG(η0, θ0;xi, xj)] is finite.

3. E[∂2
ηG(η0, θ0;xi, xj)] is finite and non-zero.

4. E[∂ηG(η0, θ0;xi, xj)
2] is finite.

Here we simply write Exi∼dπ0 ,xj∼dπ0 as E for the simplicity of notation.

B.2 PROOF OF THEOREM 1

Proof. Following the kernel method,

η̂ = arg min
η

= arg min
η

∑
0≤i,j≤N−1

G(η, θ̂; (xi, xj)) with xi = (si, ai, s
′
i) and s′i , si+1.

10
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Then,
∑

1≤i,j≤N ∂ηG(η̂, θ̂; (xi, xj)) = 0, we have

0 =
1

N
√
N

∑
0≤i,j≤N−1

∂ηG(η0, θ0; (xi, xj)) +
√
N(η̂ − η0)

1

N2

∑
0≤i,j≤N−1

∂2
ηG(η0, θ0; (xi, xj))

+
√
N(θ̂ − θ) 1

N2

∑
0≤i,j≤N−1

∂θ∂ηG(η0, θ0; (xi, xj))

=
1

N
√
N

∑
0≤i,j≤N−1

∂ηG(η0, θ0; (xi, xj)) +
√
N(η̂ − η0)E

[
∂2
ηG(η0, θ0; (x1, x2))

]
+
√
N(θ̂ − θ)E [∂θ∂ηG(η0, θ0; (x1, x2))] + op(1).

Similarly, we have
η̃ = arg max

η

∑
1≤i,j≤N

G(η, θ0; (xi, xj)),

and 0 = 1
N
√
N

∑
0≤i,j≤N−1 ∂ηG(η0, θ0; (xi, xj))+

√
N(η̃−η0)E

[
∂2
ηG(η0, θ0; (x1, x2))

]
+op(1).

Define S(θ; (xi, xj)) = log(π(θ; si, ai)) + log(π(θ; sj , aj)). According to our estimation method,

θ̂ = arg max
θ

∑
0≤i,j≤N−1

S(θ; (xi, xj)).

Therefore, 0 = 1
N
√
N

∑
0≤i,j≤N−1 ∂θS(θ0; (xi, xj)) +

√
N(θ̂− θ0)E

[
∂2
θS(θ0; (x1, x2))

]
+ op(1).

Following the proof of Theorem 1 of (Henmin et al. 2007), it suffices to prove that

E [∂θ∂ηG(η0, θ0; (x1, x2))] = E [−∂ηG(η0, θ0; (x1, x2))∂θS(θ0; (x1, x2))] . (10)

One can check

E [∂ηG(η0, θ0; (x1, x2))]

=E
[
k(s′1, s

′
2)

[(
∂ηω(η0; s1)

π(a1|s1)

π(θ0; a1, s1)
− ∂ηω(η0; s′1)

)(
ω(η0; s2)

π(a2|s2)

π(θ0; a2, s2)
− ω(η0; s′2)

)
+

(
∂ηω(η; s2)

π(a2|s2)

π(θ0; a2, s2)
− ∂ηω(η0; s′2)

)(
ω(η0; s1)

π(a1|s1)

π(θ0; a1, s1)
− ω(η0; s′1)

)]]
=E

[
(k(s′1, s

′
2) + k(s′2, s

′
1))

(
∂ηω(η0; s1)

π(a1|s1)

π(θ0; a1, s1)
− ∂ηω(η0; s′1)

)(
ω(η0; s2)

π(a2|s2)

π(θ0; a2, s2)
− ω(η0; s′2)

)]
.

The last equality holds because (x1, x2) ∼ dπ0
(s1)π(x1; η0)⊗ dπ0

(s2)π(x2; η0). Besides, we have

∂θS(θ; (x1, x2)) =
∂θπ(θ; a1, s1)

π(θ; a1, s1)2
+
∂θπ(θ; a2, s2)

π(θ; a2, s2)2
.

Then, we derive

E [∂θ∂ηG(η0, θ; (x1, x2))]

=E
[
(k(s′1, s

′
2) + k(s′2, s

′
1))

[
−∂ηω(η0; s1)

π′(a1|s1)

π(θ0; a1, s1)2

(
ω(η0; s2)

π(a2|s2)

π(θ0; a2, s2)
− ω(η0; s′2)

)
−ω(η0; s2)

π′(a2|s2)

π(θ0, a2, s2)2

(
∂ηω(η0; s1)

π(a1|s1)

π(θ0; a1, s1)
− ∂ηω(η0; s′1)

)]]
=E

[
(k(s′1, s

′
2) + k(s′2, s

′
1))

[
−
(
∂ηω(η0; s1)

π′(a1|s1)

π(θ0; a1, s1)2
− ∂ηω(η0; s′1)

π(θ0; a1, s1)

)(
ω(η0; s2)

π(a2|s2)

π(θ0; a2, s2)
− ω(η0; s′2)

)
−
(
ω(η0; s2)

π′(a2|s2)

π(θ0; a2, s2)2
−

ω(η0; s′j)

π(θ0; a2, s2)

)(
∂ηω(η0; s1)

π(a1|s1)

π(θ0; a1, s1)
− ∂ηω(η0; s′1)

)]]
− E

[
(k(s′1, s

′
2) + k(s′2, s

′
1))

[
∂ηω(η0; s′1)

π(θ0; a1, s1)

(
ω(η0; s2)

π(a1|s1)

π(θ0; a2, s2)
− ω(η0; s′2)

)
+

ω(η0; s′2)

π(θ0; a2, s2)

(
∂ηω(η0; s1)

π(a1|s1)

π(θ0; a1, s1)
− ∂ηω(η0; s′1)

)]]
,E [−∂ηG(η0, θ0; (x1, x2))∂θS(θ0; (x1, x2))] + E [H(η0, θ0; (x1, x2))] .
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Here, we define

H(η0, θ0, (x1, x2)) =
∂ηω(η0; s′1)

π(θ0; a1, s1)

(
ω(η0; s2)

π(a2|s2)

π(θ0; a2, s2)
− ω(η0, s

′
2)

)
+

ω(η0; s′2)

π(θ0; a2, s2)

(
∂ηω(η0; si)

π(a1|s1)

π(θ0; a1, s1)
− ∂ηω(η0; s′1)

)
.

Note that

E
[(
ω(η0; s2)

π(a2|s2)

π(θ0, a2, s2)
− ω(η0, s

′
2)

)
|a1, s1, s

′
1, s
′
2

]
= 0,

E
[(
∂ηω(η0; s1)

π(a1|s1)

π(θ0; a1, s1)
− ∂ηω(η0; s′1)

)
|a2, s2, s

′
2

]
= 0.

Therefore E[H(η0, θ0; (x1, x2))] = 0. So we obtain (10).

B.3 PROOF OF COROLLARY 1

Proof. In the prove of Theorem 1, we see that

1

N2

∑
0≤i,j≤N−1

∂ηG(η0, θ0; (xi, xj)) +K1(η̂ − η0) +K2(θ̂ − θ) = op(1).

with K1 = E
[
∂2
ηG(η0, θ0; (x1, x2))

]
and K2 = E [∂θ∂ηG(η0, θ0; (x1, x2))]. Therefore,

E[(η̂ − η0)2] ≤ 2K−2
1

K2
2E[(θ̂ − θ0)2] + E


 1

N2

∑
0≤i,j≤N−1

∂ηG(η0, θ0; (xi, xj))

2

 .

We assume that CLT holds for the maximum likelihood estimator θ̂, i.e. E[(θ̂ − θ0)2] = O(1/N).
Besides, as E[∂ηG(η0, θ0; (xi, xj))] = 0, under Condition 4 of Assumption 1, , we can apply the
central limit theorem (for stationary Markov chain) and have

E


 1

N
√
N

∑
0≤i,j≤N−1

∂ηG(η0, θ0; (xi, xj))

2
 = O(1).

Therefore,
E[(η̂ − η0)2] = O(1/N).

C PROOFS OF PROPOSITIONS FOR EMP

Proof of Proposition 1.

E(s,a)∼d0

[
ω(s)

π(a|s)
π0(a|s)

r(s, a)

]
=
∑
s,a

ω(s)
π(a|s)
π0(a|s)

r(s, a)
∑
j

wjdπj (s)πj(a|s)

=
∑
s,a

ω(s)
π(a|s)
π0(a|s)

r(s, a)d0(s)π0(s) =
∑
s,a

d0(s)ω(s)π(a|s)r(s, a) = Rπ.

Proof of Proposition 2. If ω = dπ/d0, based on the stationary equation

dπ(s′) =
∑
s,a

dπ(s)π(a|s)T (s′|a, s), for any s′ ∈ S,

12
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we have∑
s′

ω(s′)d0(s′)f(s′) =
∑
s,a

ω(s)d0(s)π(a|s)T (s′|a, s)f(s′)

=
∑
j

∑
s,a

ω(s)
π(a|s)∑

j wjdπ(s)πj(a|s)/d0
wjdπj (s)πj(a|s)T (s′|a, s)f(s′)

= E(s,a,s′)∼d0

[
ω(s)

π(a|s)
p0(a|s)

f(s′)

]
.

Therefore,

E(s,a,s′)∼d0

[(
ω(s′)− ω(s)

π(a|s)
p0(a|s)

)
f(s′)

]
= 0.

On the opposite way, if

E(s,a,s′)∼d0

[(
ω(s′)− ω(s)

π(a|s)
p0(a|s)

)
f(s′)

]
= 0, for all function f : S → R,

we should have
d0(s′)ω(s′) =

∑
s,a

d0(s)ω(s)π(a|s)T (s′|a, s).

Therefore, d0ω satisfy the stationary equation and must equal to dπ (up to a constant).

Proof of Proposition 3. The proof follows immediately from that of Theorem 1. In particular, assume
π0 ∈ {π(θ; a, s) : θ ∈ Eθ} and the estimated π̂0 = π(θ̂; ·) is obtained via

θ̂ = arg max
θ

∑
j

Nj−1∑
n=0

log(π(θ; sj,n, aj,n)).

The rest part of the proof follows the same argument in the proof of Theorem 1.

D STATE-ACTION DISTRIBUTION LEARNING

Here we propose a behavior-agnostic approach that evaluates the target policy through learning
occupation distribution correction instead of stationary distribution correction. Recall that the
occupation distribution the stationary distribution of the state-action pair dπ(s)π(a|s). We define
occupation distribution correction as dπ(s)π(a|s)/(dπ0

(s)π0(a|s)). Since π(a|s) is known, we
denote u(a, s) = dπ(s)/(dπ0

(s)π0(a|s)) and formulate a min-max problem to learn u.

Following this notation, Equation (1) can be written as:

u(s′, a′)dπ0
(s′, a′) =

∑
s,a

u(s, a)π(a|s)dπ0
(s, a)P (s′|a, s), ∀s′,∀a′

For any test function f(s′, a′) : S ×R→ R and any probability density function ω(a′) with respect
to a′ ∈ A, the equation above implies that:∑
s′,a′

u(s′, a′)ω(a′)f(s′, a′)dπ0
(s′, a′) =

∑
s′

∑
a′

f(s′, a′)ω(a′)
∑
s,a

u(s, a)π(a|s)dπ0
(s, a)P (s′|a, s),

which is equivalent to,

E(s,a,s′)∼dπ0 [u(s, a)ω(a)f(s, a)− u(s, a)π(a|s)Ea′∼ω[f(s′, a′)]
]

= 0, ∀f.

This suggest the following mini-max problem can be used to estimate u(s, a)

min
u
{D(u) := max

f∈F
L(u, f)2},

where L(u, f) := E(s,a,s′)∼dπ0

[
u(s, a)ω(a)f(s, a)− u(s, a)π(a|s)Ea′∼ω[f(s′, a′)]

]
.

We simplify this mini-max problem into a minimization problem using the kernel method. Theorem
2 gives the closed form representation of D(u) when F is a unit ball in a RKHS with kernel k.

13
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Theorem 2. AssumeH is a RKHS of functions f(s, a) with a positive definite kernel k((s, a), (s′, a′)),
and define F := {f ∈ H : ||f ||H ≤ 1} to be the unit ball ofH. We have max

f∈F
L(u, f)2 =

= E(s,a,s′)∼dπ0 ,a′∼ω,(s̄,ā,s̄′)∼dπ0 ,ā′∼ω[u(s, a)u(s̄, ā)ω(a)ω(ā)k((s, a), (s̄, ā))

+ u(s, a)u(s̄, ā)π(a|s)π(ā|s̄)k((s′, a′), (s̄′, ā′))

− u(s, a)u(s̄, ā)ω(a)π(ā|s̄)k((s, a), (s̄′, ā′))− u(s, a)u(s̄, ā)ω(ā)π(a|s)k((s̄, ā), (s′, a′))].

E EXPERIMENTAL DETAILS

E.1 ENVIRONMENT DESCRIPTION

Taxi Taxi Dietterich & G (2000) is a 5 × 5 grid world simulating a taxi movement. Six actions are
contained in Taxi: moves North, East, South, West, pick up and drop off a passenger. A reward of 20
is received when it picks up a passenger or drops her/he off at the right place, and a reward of -1 for
each time step. The passengers are allow to randomly appear and disappear at every corner of the map
at each time step. The 5 × 5 grid size yields 2000 states in total (25 × 24 × 5, corresponding to 25
taxi locations, 24 passenger appearance status and 5 taxi status (empty or with one of 4 destinations)).

Gridworld Gridworld Thomas & Brunskill (2016) is a 4 × 4 grid world which including one reward
state, one terminate state and one fire state and thirteen normal state. Four action can be taken in this
environment: up, down, left and right. A reward of -1 will be received while the agent in normal
states, 1 reward is obtained in reward state, 100 reward is got in terminate state and -11 reward will
got in fire state.

SinglePath This environment has 5 states, 2 actions. The agent begins in state 0 and both actions
either take the agent from state n to state n + 1 or cause the agent to remain in state n. If the agent
arrives at a new state, it will receive a +1 reward, otherwise it will get a 1 reward.

Pendulum Pendulum has a continuous state space ofR3 which describes the triangle of and a action
space of [−2, 2].

E.2 BEHAVIOR POLICY ESTIMATION

EMP employs the maximum likelihood method as in Tirinzoni et al. (2019) to estimate the mixed
policy π̂0 as

π̂0 = arg max
π∈Π

m∑
j=1

Nj∑
n=1

log π(an|sn) (11)

As for discrete control tasks, the optimal π̂0 coincides with the count-frequency.

E.3 COMPUTATION OF KL-WEIGHTS

In an ad-hoc way, we optimize the weights wj according to the KL-divergence between the behavior
policies and the target policy, which can be estimated directly from the data. For finite-state space,
we propose to choose

wKLj =

∑
s∈S 1(j = arg minkDKL(π(·|s)||πk(·|s)))∑m

i=1

∑
s∈S 1(i = arg minkDKL(π(·|s)||πk(·|s)))

=

∑
s∈S 1(j = arg minkDKL(π(·|s)||πk(·|s)))

|S|

(12)

To implement this method for infinite- or continuous-state space in the numerical experiments, we
replace the set of all possible states S in (12) with the set of all states that has been visited in the data
buffer. The numerical results show that using the KL weights {wKLj } could achieve smaller MSE
compared to using {wj} as given by the data sample. We believe this approach deserves more careful
analysis in future research studies.
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Figure 5: Results of policy-aware OPPE methods (BCH, BCH (pooled) and BCH (KL-pooled))
and their corresponding partially policy-agnostic version (EMP (single), EMP and KL-EMP ) across
continuous and discrete environments with average reward.

E.4 ADDITIONAL EXPERIMENT RESULTS

BCH, EMP and KL-EMP have both policy-aware and partially policy-agnostic versions in multiple
behavior policies. In policy-aware BCH we first apply BCH for each subgroup of samples generated
by each behavior policy followed by output their average value. As for partially policy-agnostic BCH,
it is equal to EMP (single).

The policy-aware version of EMP is named as BCH (pooled). In BCH (pooled), the corresponding
min-max problem formation is

min
ω

max
f

E(j,s,a,s′)∼D

[(
ω(s′)− ω(s)

π(a|s)
πj(a|s)

)
f(s′)

]
. (13)

They both pool the data from different behavior policies together and the main difference is that BCH
(pooled) uses the exact behavior policies.

The policy-aware version of KL-EMP is called BCH (KL-polled). The main difference between
BCH (KL-polled) and BCH (polled) is that BCH (KL-polled) utilizes KL-divergence to calculate the
weights.

The results of the two versions are shown in Figure 5. We observe that the partially policy-agnostic
version OPPE consistently outperform the policy-aware version OPPE.
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