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ABSTRACT

Multi-domain data are widely leveraged in vision applications to take advantage
of complementary information from each modality, e.g., brain tumor segmenta-
tion from multi-parametric magnetic resonance imaging (MRI). However, due to
different imaging protocol and data loss or corruption, the availability of images
in all domains could vary amongst multiple data sources in practice, which makes
it challenging to train and test a universal model with a varied set of input data.
To tackle this problem, we propose a general approach to complete the possible
missing domain of the input data in a variety of application settings. Specifically,
we develop a novel generative adversarial network (GAN) architecture that uti-
lizes a representational disentanglement scheme for shared ‘skeleton’ encoding
and separate ‘flesh’ encoding across multiple domains. We further illustrate that
the learned representation in the multi-domain image translation could be lever-
aged for higher-level recognition, like segmentation. Specifically, we introduce
a unified framework of image completion branch and segmentation branch with
a shared content encoder. We demonstrate constant and significant performance
improvement by integrating the proposed representation disentanglement scheme
in both multi-domain image completion and image segmentation tasks using three
evaluation datasets individually for brain tumor segmentation, prostate segmenta-
tion, and facial expression image completion.

1 INTRODUCTION

Multi-domain images are often required as inputs due to the nature that different domains could
provide complementary knowledge in various vision tasks. For example, four medical imaging
modalities, MRI with T1, T1-weighted, T2-weighted, FLAIR (FLuid-Attenuated Inversion Recov-
ery), are acquired as a standard protocol to segment the accurate tumor regions for each patient in
the brain tumor segmentation task (Menze et al., 2014). Each modality can provide distinct features
to locate the true tumor boundaries from a differential diagnosis perspective. Additionally, when it
comes to the natural image tasks, there are similar scenarios such as person re-identification across
different cameras and different times (Zheng et al., 2015; 2019). Here, the medical images in dif-
ferent contrast modalities or natural images with the person under different appearance or cameras
can both be considered as different domains, which all contribute to depict the underlying object or
scene from different aspects of view.

However, some domains might be missing in practice. In large-scale datasets from multiple insti-
tutes, it is generally difficult or even infeasible to guarantee the availability of complete domains
for all the data. For example, in some cases, the patients might lack some imaging scans due to
different imaging protocol or data loss or corruption. In terms of taking the most advantage of all
these rare and valuable data, it is costly to just throw away the incomplete samples during training,
and even infeasible to test with missing domain input. Thus, it becomes necessary to effectively
artificially generate the missing data. An intuitive approach is to substitute the missing domains
with the nearest neighbor among other existing samples, but this might lack of semantic consistency
among domains of the input sample since it only focuses on pixel-level similarity with existing data.

Additionally, the recent success of GANs (Goodfellow et al., 2014; Mirza & Osindero, 2014; Isola
et al., 2017; Zhu et al., 2017a;b; Kim et al., 2017; Liu et al., 2017; Choi et al., 2018; Yoon et al.,
2018; Lee et al., 2019a) in image-to-image translation provides another possible solution for this
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(a) MUNIT / StarGAN (1-to-1) (b) CollaGAN (n-to-1)

(c) ReMIC (1-to-n)  (d) ReMIC (n-to-n)  

Figure 1: Image translation tasks using (a) Star-
GAN and MUNIT (1-to-1), (b) CollaGAN (n-to-
1), (c) ReMIC (1-to-n), and (d) ReMIC (n-to-
n). ReMIC completes the missing domain im-
ages that can be randomly distributed (N -to-n,
N ∈ {1, ..., n}) in the input set. It makes our
approach a more general and flexible framework
for image translation tasks.

challenge. By training a GAN-based model to generate images for missing domains, we are more
likely to keep the semantic consistency with existing domains by learning the semantic represen-
tations. CycleGAN (Zhu et al., 2017a) shows an impressive performance in the image-to-image
translation task via cycle-consistency constraints between real images and generated images. How-
ever, CycleGAN mainly focuses on the 1-to-1 mapping between two specific domains and assumes
the corresponding images in two domains strictly share the same representation in latent space. This
is limited in multi-domain applications since n(n− 1) mapping functions are required if there are n
domains. Following this, StarGAN (Choi et al., 2018) proposes a general method for multi-domain
image translation using a mask vector in inputs to specify the desired target domain. Meantime,
RadialGAN (Yoon et al., 2018) also deals with the multi-domain generation problem with the as-
sumption that all the domains share the same latent space. Although StarGAN and RadialGAN
make it possible to generate images in different target domains through the 1-to-n translation, the
representation learning and image generation are always conditioned on the input with only one
source domain. In order to take advantage of multiple available domains as inputs for representa-
tion learning, CollaGAN (Lee et al., 2019a) proposes a collaborative model to incorporate multiple
available domains to generate one missing domain. Similar to StarGAN, CollaGAN only relies on
the cycle-consistency constraints to preserve the contents in generated images, which are actually
implicit constraints between real images and fake images in pixel level. Additionally, since the
target domain is controlled by an one-hot mask vector in the input, CollaGAN is essentially doing
n-to-1 translation in one inference. Our goal in this work is to propose a more general n-to-n im-
age translation framework that could overcome the aforementioned limitations as illustrated in the
Fig. 1.

Recently, learning disentangled representation is proposed to capture the full distribution of possible
outputs by introducing a random style code (Chen et al., 2016; Higgins et al., 2017; Huang et al.,
2018; Lee et al., 2018). InfoGAN (Chen et al., 2016) and β-VAE (Higgins et al., 2017) learn the
disentangled representation without supervision. In image-to-image translation tasks, DIRT (Lee
et al., 2018) learns disentangled content and attribute features by exchanging the features encoded
from images of two domains respectively and then reverting back again. The image consistency
during translation is constrained by code reconstruction and image reconstruction. With a similar
code exchange framework, MUNIT (Huang et al., 2018) assumes a prior distribution on style code,
which allows sampling different style codes to generate multiple images in target domain. However,
both DIRT and MUNIT only deal with image translation between two domains, which is not efficient
to train n(n− 1) mapping functions in a n-domain task.

Inspired by previous works, we propose a n-to-nmulti-domain image translation approach based on
the representational disentanglement scheme for multi-domain image completion (ReMIC). Specif-
ically, our contributions are three-fold: (1) We propose a GAN architecture with representation
disentanglement to learn domain-shared features and domain-specific features for the more gen-
eral and flexible n-to-n image translation; (2) We illustrate the effectiveness of the representation
learning for high-level tasks by building a unified framework for jointly learning the generation and
segmentation with a shared content encoder; (3) Extensive experiments with three different datasets
demonstrate that the proposed method achieves better performance than previous state-of-the-art
methods on both generation and segmentation.

2 METHOD

As discussed above, images from different domains for the same data sample could present their
exclusive features of the data subject. Nonetheless, they also inherit some global content structures
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Figure 2: Overview of the proposed n-
to-n multi-domain completion and seg-
mentation framework. n = 4 and two
domain data are missing in this exam-
ple. Our model contains a unified con-
tent encoder Ec (red lines), domain-
specific style encoders Es

i (1 ≤ i ≤ n,
orange lines) and generators Gi (1 ≤
i ≤ n, blue lines). A variety of loss was
adopted (burgundy lines), i.e., image
consistency loss for visible domains, la-
tent consistency loss, adversarial loss
and reconstruction loss for the gener-
ated images. Furthermore, the repre-
sentational learning framework is flex-
ible to combine a segmentation genera-
tor GS following the content code for
the unified image generation and seg-
mentation.

of it. Let us take the parametric MRI for brain tumors as an example. T2 and FLAIR MRI can
highlight the differences in tissues’ water relaxational properties, which will distinguish the tumor
tissue from normal ones. Contrasted T1 MRI can examine the pathological intratumoral take-up of
contrast agents so that the boundary between tumor core and the rest will be highlighted. However,
the underline anatomical structure of the brain is shared by all these three modalities. With the
availability of multiple domain data, it will be meaningful to decompose the images into the shared
content structure (skeleton) and meanwhile distinguish and model their unique characteristics (flesh)
through learning. Therefore, we will be able to reconstruct the missing image during the testing by
using the shared skeleton (extracted from the available data domains) and a sampled flesh from the
learned model. Without assuming a fixed number of missing domains during the model training,
the learned framework could flexibly handle one or more missing domains. In addition, we further
enforce the accuracy of the extracted content structure by connecting it to the segmentation tasks.
In such manner, the disentangled representations of multiple domain images (both the skeleton and
flesh) can help in both the image completion and segmentation tasks.

Suppose there are n domains: {χ1, χ2, · · · , χn}. Let x1 ∈ χ1, x2 ∈ χ2, · · · , xn ∈ χn are
images from n different domains respectively, which are grouped data describing the same subject
x = {x1, · · · , xn}. In total, we assume the whole dataset contains M independent data samples.
For each data sample, we assume one or more of the n images might be randomly missing. The goal
of our first task is to complete all the missing domains for all the samples.

To accomplish the completion of all missing domains from a random set of available domains, we
assume the n domains share the latent representation of underline structure. We name the shared
latent representation as content code and meanwhile each domain also contains the domain-specific
latent representation, i.e., style code that is related to the various features or attributes in different
domains. The missing domains can be reconstructed from these two-aspect of information through
the learning of deep neural networks. Similar to the setting in MUNIT (Huang et al., 2018), we
also assume a prior distribution for style latent code as N (0, I) to capture the full distribution
of possible outputs in each domain. However, MUNIT trains separate content encoder for each
domain and enforce the disentanglement via coupled cross-domain translation during training while
the proposed method employs one single content encoder to extract the true representation shared
across all the domains.

2.1 UNIFIED IMAGE COMPLETION AND SEGMENTATION FRAMEWORK

As shown in Figure 2, our model contains a unified content encoder Ec and domain-specific style
encodersEs

i (1 ≤ i ≤ n). Content encoderEc extracts the content code c from all existing domains:
Ec(x1, x2, · · · , xn) = c. For the missing domains, we use zero padding in corresponding input
channels. For each domain, a style encoder Es

i learns the domain-specific style code si from the
corresponding domain image xi respectively (1 ≤ i ≤ n): Es

i (xi) = si.
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During the training, our model captures the content code c and style codes si (1 ≤ i ≤ n) (assumed
in a prior distribution of N (0, I) as shown in Figure 2) through the encoding process (denoted as
red and orange arrows respectively) with a random set of input images (in green box). We only need
to train a single ReMIC model to generate all these missing images from sets of available domains.

In the generation process, our model samples style codes from prior distribution and recombines
content code to generate images in n domains through generators Gi (1 ≤ i ≤ n) (denoted as blue
arrows). The generatorGi for each domain generates the fake images in corresponding domain from
the domain-shared content code and the domain-specific style code: Gi(c, si) = x̃i.

As discussed before, it is fairly common to find that there are missing domains for input data. Some
straight-forward solutions to complete all the missing images include zero filling, average image,
or generating images via image translation model, etc. Alternatively, based on the content code
learned in our model, we could develop a unified model for multi-task learning of both generation
and segmentation. Specifically, another branch of segmentation generator GS is added after content
encoder to generate segmentation mask. By optimizing the generation loss and segmentation Dice
loss (detailed in Section 2.2) simultaneously, the model could adaptively learn how to generate
missing images to promote the segmentation performance.

2.2 TRAINING LOSS

In the training of GAN models, the setting of losses is of paramount importance to the final genera-
tion results. Our loss objective contains the cycle-consistency loss of images and codes within and
across domains, adversarial loss and reconstruction loss on the generation and input images.

Image Consistency Loss: For each sample, the content and style encoders are able to extract a
domain-shared content code and domain-specific style codes respectively for each available do-
main. Then by recombining the content and style codes, the domain generators are expected to
reconstruct the input images from each domain. The image consistency loss is defined to constrain
the reconstructed images and real images as in the flow chat of “Image→ Code→ Image”.

Lxi
cyc = Exi∼p(xi)[‖ Gi(E

c(x1, x2, · · · , xn), Es
i (xi))− xi ‖1] (1)

where p(xi) is the data distribution in domain χi (1 ≤ i ≤ n).

Latent Consistency Loss: Next, the generated fake images can also be encoded as content and style
codes by using the same encoders. The latent consistency loss constrains the code before decoding
and after encoding again in the direction of “Code→ Image→ Code”.

Lc
cyc = Ec∼p(c),si∼p(si)[‖ E

c(G1(c, s1), G2(c, s2), · · · , Gn(c, sn))− c ‖1] (2)

Lsi
cyc = Ec∼p(c),si∼p(si)[‖ E

s
i (Gi(c, si))− si ‖1] (3)

where p(si) is the prior distribution N (0, I), p(c) is given by c = Ec(x1, x2, · · · , xn) and xi ∼
p(xi) (1 ≤ i ≤ n).

Adversarial Loss: The adversarial learning between generators and discriminators forces the data
distribution of the generated fake images to be close to the real images’ distribution for each domain.

Lxi

adv = Ec∼p(c),si∼p(si)[log(1−Di(Gi(c, si)))] + Exi∼p(xi)[logDi(xi)] (4)
where Di is the discriminator for domain i to distinguish the generated fake images x̃i and real
images xi ∈ χi.

Reconstruction Loss: In addition to the feature-level consistency mentioned above to constrain
the relationship between the generated fake images and real images in different domains, we also
constrain the pixel-level similarity between generated images and ground truth images in the same
domain during training stage.

Lxi
rec = Ec∼p(c),si∼p(si)[‖ Gi(c, si)− xi ‖1] (5)

Total Loss: The encodes, decoders and discriminators are jointly trained to optimize the total ob-
jective as follows.

min
Ec,Es

1 ,··· ,Es
n

max
D1,··· ,Dn

L(Ec, Es
1 , · · · , Es

n, D1, · · · , Dn)

= λadv

n∑
i=1

Lxi

adv + λxcyc

n∑
i=1

Lxi
cyc + λccycLc

cyc + λscyc

n∑
i=1

Lsi
cyc + λrecon

n∑
i=1

Lxi
recon

(6)
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where λadv , λxcyc, λccyc, λscyc, and λrecon are weights.

In the n-to-n image translation task, the model learns a complementary representation of multiple
domains, which can also facilitate the high-level recognition tasks. For example, extracted content
code (containing the underline anatomical structures) can largely benefit the segmentation of organs
and lesions in medical image analysis. On the other side, the segmentation task can enforce the
learning of a more representative content encoder. Therefore, we train a multi-task network for both
the segmentation and generation. In the proposed framework, we construct a unified generation and
segmentation model by adding a segmentation generator GS following the content code out from
the generated fake images as shown in Fig. 2. We utilize dice loss (Salehi et al., 2017) for accurate
segmentation of multiple input images.

Lseg = 1− 1

L

L∑
l=1

∑
p ŷp(l)yp(l)∑

p ŷp(l) + yp(l)− ŷp(l)yp(l)
(7)

where L is the total number of classes, p is the pixel position in the image, ŷ is the predicted seg-
mentation probability map fromGS and y is the ground truth segmentation mask. The segmentation
can loss can be added into the total loss in Equation 6 for an end-to-end joint learning.

3 EXPERIMENTAL RESULTS AND DISCUSSION

We firstly show the advantage of our proposed method in the n-to-n image completion task given
a random set of available domains. Moreover, we illustrate that the proposed model (a variation
with two branches) provides an efficient solution to multi-domain segmentation with missing image
inputs. To demonstrate the generalizability of the proposed algorithm, we evaluate the proposed
method on a natural image dataset as well as two medical image datasets.

Totally three datasets are employed in our experiments, i.e., BraTS, ProstateX, and RaFD.

BraTS The Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018 (Menze et al., 2014;
Bakas et al., 2017; 2018) provides a set of multi-institutional multimodal brain MRI scans with four
modalities: a) native (T1) and b) post-contrast T1-weighted (T1Gd), c) T2-weighted (T2), and d) T2
Fluid Attenuated Inversion Recovery (T2-FLAIR). Following the setting in (Lee et al., 2019b), 218
and 28 subjects are randomly selected for training and test sets. The 2D slices at the same location
are extracted from 3D MRI volumes for each of four modalities as one independent data sample
in our experiments. In total, the training and testing datasets contain 40,148 and 5,340 images
respectively. We resize the images of 240 × 240 to 256 × 256. Three labels are given for the brain
tumor segmentation, i.e., enhancing tumor (ET), tumor core (TC), and whole tumor (WT).

ProstateX The ProstateX dataset (Litjens et al., 2014) contains multi-parametric prostate MR scans
for 98 subjects. Here, we use the three modalities of each sample: 1) T2-weighted (T2), 2) Apparent
Diffusion Coefficient (ADC), 3) high b-value DWI images (HighB). We randomly divide the dataset
to 78 and 20 subjects for training and testing respectively. Similar to BraTS, 2D slices are extracted
from 3D volumes for each modality. In total, the training and testing sets contain 3,540 and 840
images respectively. We resize the images of 384×384 to 256×256. Prostate regions are manually
labeled as the whole prostate (WP) by board-certificated radiologists.

RaFD The Radboud Faces Database (RaFD) (Langner et al., 2010) contains eight facial expressions
collected from 67 participants respectively: neutral, angry, contemptuous, disgusted, fearful, happy,
sad, and surprised. We adopt images from three different camera angles (45◦, 90◦, 135◦) along
with three different gaze directions (left, frontal, right), 4,824 images in total. We treat the eight
paired images in eight expression domains as an data sample. 54 participants (3,888 images) and 13
participants (936 images) are randomly divided for training and testing set. Following the setting in
StarGAN (Choi et al., 2018), we crop the image with the face in the center and then resize them to
128× 128.

3.1 RESULTS OF MULTI-DOMAIN IMAGE COMPLETION

For comparison purpose, we firstly assume there are always only one domain missing for each
sample and the algorithm will be evaluated for multiple times when one domain is missed at each
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(a) BraTS

Methods T1 T1Gd T2 FLAIR
NRMSE / SSIM NRMSE / SSIM NRMSE / SSIM NRMSE / SSIM

MUNIT 0.4054 / 0.8904 0.3469 / 0.9084 0.4185 / 0.8702 0.4563 / 0.8728
StarGAN 0.3028 / 0.9346 0.2795 / 0.9351 0.5137 / 0.8473 0.4417 / 0.8931
CollaGAN 0.4729 / 0.8951 0.4952 / 0.8689 0.5243 / 0.8890 0.4299 / 0.8616
ReMIC w/o Recon 0.3502 / 0.9328 0.2349 / 0.9448 0.4485 / 0.8681 0.4214 / 0.8810
ReMIC 0.1939 / 0.9629 0.2143 / 0.9546 0.2410 / 0.9469 0.2639 / 0.9369
ReMIC+Multi-Sample 0.2031 / 0.9637 0.2096 / 0.9563 0.2369 / 0.9490 0.2348 / 0.9395

(b) ProstateX

Methods T2 ADC HighB
NRMSE / SSIM NRMSE / SSIM NRMSE / SSIM

MUNIT 0.6904 / 0.4428 0.9208 / 0.4297 0.9325 / 0.5383
StarGAN 0.6638 / 0.4229 0.9157 / 0.3665 0.9188 / 0.4350
CollaGAN 0.8070 / 0.2667 0.7621 / 0.4875 0.7722 / 0.6824
ReMIC w/o Recon 0.8567 / 0.3330 0.7289 / 0.5377 0.8469 / 0.7818
ReMIC 0.4908 / 0.5427 0.2179 / 0.9232 0.3894 / 0.9150
ReMIC+Multi-Sample 0.4742 / 0.5493 0.2171 / 0.9263 0.3945 / 0.9116

Table 1: Multi-domain Medical Image Completion Results

time. Then we investigate a more general scenario when there are more than one missing domains
and show that our proposed method is capable to handle the general random n-to-n image com-
pletion. Multiple quantitative metrics are used to evaluate the similarity between the generated
image and original one, i.e., normalized root mean-squared error (NRMSE) and mean structural
similarity index (SSIM) between generated images and target images. We compare our results with
previous arts on all three datasets for this task. The results of the proposed method (“ReMIC”),
ReMIC without reconstruction loss (“ReMIC w/o Recon”) and ReMIC with cross-domain transla-
tion (“ReMIC+Multi-Sample”, more details in Appendix C.2) are reported. Note that in our method,
by leveraging the unified content code and sampling the style code for each domain respectively, the
proposed model could handle any number of domain missing, which is more general and flexible
for the random n-to-n image completion. Besides, these compared methods have their own limits.

MUNIT (Huang et al., 2018) conducts 1-to-1 image translation between two domains through rep-
resentational disentanglement, as shown in Fig. 1(a). In experiments, we train and test MUNIT
models between any pair of two domains. Without loss of generality, we select “neural” images
to generate all the other domains by following the StarGAN setting, and “angry” image is used to
generate “neural” one. In BraTS , “T1” is selected to generate other domains since it is the most
common modality while “T1” is generated from “T1Gd”. Similarly, “T2” is selected to generate
other domains in ProstateX while “T2” is generated from “ADC”.

StarGAN (Choi et al., 2018) adopts a mask vector to generate image in the specified target domain.
Thus, different target domains could be generated from one source domain in multiple inference
passes while only a single model is trained. This is actually a 1-to-n image translation, since only
one domain can be used as input in StarGAN, we use the same domain pair match as MUNIT, which
is also the same as the setting in the StarGAN (Choi et al., 2018).

CollaGAN (Lee et al., 2019a;b) carries out the n-to-1 image translation as shown in Fig. 1(b),
where multiple source domains collaboratively generate the only one target domain which is as-
sumed missing in inputs. But CollaGAN cannot deal with multiple missing domains. In CollaGAN
experiments, we use the same domain generation setting as ours, that is, all the existing domains are
used to complete the one missing domain in sequence.

Results of Medical Image Completion: Fig. 3 and Fig. 5 in appendix show some sample results
of image completion on BraTS and ProstateX, and corresponding quantitative results are in Table 1.
Each row shows the target and generated images of one domain with the assumption of that domain
is missing in inputs. In comparison, our model achieves higher similarity to the target and also
produce qualitatively more accurate images, e.g., a more accurate outstanding tumor region in BraTS
and prostate regions are well-preserved in ProstateX. This is achieved by learning a better content
code through factorized latent space in our method, which is essential in preserving the anatomical
structures in medical images. Extended quantitative evaluation metrics are in Appendix.

Results of Facial Expression Image Translation: Fig. 4 shows a sample result of facial expression
image completion on RaFD dataset. In each column, we show the target and generated images in
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Target MUNIT StarGAN CollaGAN Ours

T1

T1Gd

T2

FLAIR

Figure 3: BraTS image completion results. Rows: 4 modalities. Columns: compared methods.

Methods Neutral Angry Contemptuous Disgusted
NRMSE / SSIM NRMSE / SSIM NRMSE / SSIM NRMSE / SSIM

MUNIT 0.1589 / 0.8177 0.1637 / 0.8156 0.1518 / 0.8319 0.1563 / 0.8114
StarGAN 0.1726 / 0.8206 0.1722 / 0.8245 0.1459 / 0.8506 0.1556 / 0.8243
CollaGAN 0.1867 / 0.7934 0.1761 / 0.7736 0.1856 / 0.7928 0.1823 / 0.7812
ReMIC w/o Recon 0.1215 / 0.8776 0.1335 / 0.8556 0.1192 / 0.8740 0.1206 / 0.8559
ReMIC 0.1225 / 0.8794 0.1290 / 0.8598 0.1217 / 0.8725 0.1177 / 0.8668

Methods Fearful Happy Sad Surprised
NRMSE / SSIM NRMSE / SSIM NRMSE / SSIM NRMSE / SSIM

MUNIT 0.1714 / 0.7792 0.1623 / 0.8073 0.1677 / 0.7998 0.1694 / 0.7884
StarGAN 0.1685 / 0.7943 0.1522 / 0.8288 0.1620 / 0.8227 0.1634 / 0.7974
CollaGAN 0.1907 / 0.7442 0.1829 / 0.7601 0.1783 / 0.7766 0.1888 / 0.7495
ReMIC w/o Recon 0.1321 / 0.8384 0.1399 / 0.8332 0.1284 / 0.8597 0.1333 / 0.8347
ReMIC 0.1316 / 0.8395 0.1383 / 0.8406 0.1301 / 0.8581 0.1276 / 0.8484

Table 2: RaFD multi-expression translation results.

one domain (expression), where we assume the target domain is missing in the inputs and need to be
generated from one or more available domains. In this way, we evaluate the missing domains one by
one sequentially. Compared with MUNIT and StarGAN results, our method could generate missing
images with a better quality, especially in the generating details like teeth, mouth and eyes. This is
paritally due to the fact that our method can incorporate complementary information from multiple
domains, while MUNIT and StarGAN can only accept one domain as input source. For example,
in the generation of “happy” and “disgusted” expressions, either MUNIT or StarGAN could not
generate a good teeth and mouth region, since their source domain “neutral” does not contain the
teeth. Compared with CollaGAN, our method could generate images with a better content through
explicit disentangled representation learning in feature level instead of implicit cycle-consistency
constraints in pixel level. The superior performance could also be observed in the NRMSE and
SSIM value across all testing samples in Table 2 with all eight expressions.

3.2 RESULTS OF IMAGE SEGMENTATION WITH MISSING DOMAIN

Based on the missing-domain image completion as above, we show that our proposed method could
go beyond image translation to solve the missing-domain image segmentation problem. Specifically,
our model learns factorized representations by disentangling latent space, which could be efficiently
leveraged for high-level tasks. As shown in Fig. 2, a segmentation branch is added after the learned
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Target

MUNIT

StarGAN

CollaGAN

Ours

Neutral Angry Contemptuous Disgusted Fearful Happy Sad Surprised

Figure 4: RaFD generation results. Columns: 8 expressions. Rows: compared methods.

Methods BraTS ProstateX
T1 T1Gd T2 FLAIR T2 ADC HighB

Oracle+All 0.822 0.908
Oracel+Zero 0.651 0.473 0.707 0.454 0.528 0.243 0.775
Oracle+Average 0.763 0.596 0.756 0.671 0.221 0.692 0.685
Oracle+NN 0.769 0.540 0.724 0.606 0.759 0.850 0.854
Oracle+MUNIT 0.783 0.537 0.782 0.492 0.783 0.708 0.858
Oracle+StarGAN 0.799 0.553 0.746 0.613 0.632 0.653 0.832
Oracle+CollaGAN 0.753 0.564 0.798 0.674 0.472 0.760 0.842
Oracle+ReMIC 0.789 0.655 0.805 0.765 0.871 0.898 0.891
ReMIC+Seg 0.806 0.674 0.822 0.771 0.872 0.909 0.905
ReMIC+Joint 0.828 0.693 0.828 0.791 0.867 0.904 0.904

Table 3: Missing-domain segmentation: Dice scores are reported here.

content codes to generate segmentation prediction mask. We evaluate the segmentation accuracy
with Dice coefficient on both BraTS and ProstateX datasets.

The results of unified image completion and segmentation model as shown in Table 8 achieve the
best dice score in both BraTS and ProstateX datasets. We train a fully supervised 2D U-shaped
segmentation network (a U-net variation, Ronneberger et al. (2015)) without missing images as the
“Oracle”. “Oracle+X” means that the results are computed by testing the missing images generated
from the “X” method with the pretrained “Oracle” model. “All” represents the full testing set without
any missing domains. “ReMIC+Seg” stands for using separate content encoders for generation and
segmentation tasks in our proposed unified framework, while “ReMIC+Joint” indicates sharing the
weights of content encoder for the two tasks. All methods obtain similar segmentation performances
in ProstateX, but ReMIC is still relative closer to the Oracle results. In a more difficult segmentation
task (like ET segmentation in BraTS), our proposed method shows significant improvement over
other compared methods and even superior to the Oracle in some cases.

4 CONCLUSION

In this work, we propose a general framework for multi-domain image completion, given that one or
more input images are missing. We learn shared content and domain-specific style encodings across
multiple domains via the representational disentanglement. We also design several loss functions
for accurate image generation, including image consistency loss, latent consistency loss, adversarial
loss, and reconstruction loss. Our framework is flexible and can be easily extended to a unified gen-
eration and segmentation network. Extensive experiments validate the proposed method surpasses
baseline methods and previous state-of-the-art methods on both multi-domain image generation and
segmentation with missing domains.
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A EXTENDED RESULTS FOR MULTI-DOMAIN IMAGE COMPLETION

A.1 QUALITATIVE RESULTS OF IMAGE COMPLETION FOR PROSTATEX

Due to the page limit, we put the quantitative results of image completion for ProstateX dataset here.
As shown in Fig. 5, our method could generate images much closer to target images in all the three
domains compared with other methods.

Target MUNIT StarGAN CollaGAN Ours

T2

ADC

HighB

Figure 5: ProstateX generation results. Rows: 1) T2, 2) ADC, 3) HighB. Columns: 1) Ground truth,
2) MUNIT, 3) StarGAN, 4) CollaGAN, 5) ReMIC

A.2 QUANTITATIVE RESULTS OF IMAGE COMPLETION FOR THREE DATASETS

We demonstrate the quantitative results for multi-domain image completion with two more evalu-
ation metrics: Mean Absolute Error (MAE), and Peak Signal-to-Noise Ratio (PSNR) for all three
datasets. As shown in this section, Table 4, Table 5, and Table 6 are the extended full tables for Ta-
ble 1 and Table 2 in the main text. The best results are in bold for each domain. It is shown that our
method is able to generate images not only closer to the target images (lower MAE, NRMSE, and
higher SSIM), but also with higher image quality (higher PSNR), from the results of three datasets.

In addition, for BraTS and ProstateX data, the generated images in the jointly trained generation-
segmentation model are evaluated using the same metrics as shown in Table 4 and Table 5. The
results indicate that adding segmentation branch does not bring an obvious benefit for image gener-
ation. This is because the segmentation sub-module mainly focuses on the tumor region which takes
up only a small part among the whole slice image. Besides, we use dice loss as the segmentation
training objective which might not be consistent with the metrics used to evaluate generated images
that emphasize the pixel-level similarity.

B EXTENDED RESULTS FOR IMAGE SEGMENTATION WITH MISSING
DOMAIN

Based on the missing-domain image completion, we show that our proposed method could go be-
yond image translation to solve the missing-domain segmentation problem. Specifically, our model
learns factorized representations by disentangling latent space, which could be efficiently leveraged
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Methods T1 T1Gd
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

MUNIT 0.0343 / 0.4054 / 22.2984 / 0.8904 0.0204 / 0.3469 / 25.6280 / 0.9084
StarGAN 0.0286 / 0.3028 / 24.7236 / 0.9346 0.0180 / 0.2795 / 27.4234 / 0.9351
CollaGAN 0.0383 / 0.4729 / 21.3504 / 0.8951 0.0304 / 0.4952 / 22.8241 / 0.8689
ReMIC w/o Recon 0.0302 / 0.3502 / 24.1283 / 0.9328 0.0145 / 0.2349 / 29.0389 / 0.9448
ReMIC 0.0181 / 0.1939 / 29.0687 / 0.9629 0.0134 / 0.2143 / 29.9335 / 0.9546
ReMIC+Multi-Sample 0.0186 / 0.2031 / 28.8312 / 0.9637 0.0131 / 0.2096 / 30.1349 / 0.9563
ReMIC+Seg 0.0185 / 0.2038 / 28.5042 / 0.9607 0.0136 / 0.2193 / 29.6170 / 0.9507
ReMIC+Joint 0.0179 / 0.1930 / 28.8452 / 0.9610 0.0136 / 0.2240 / 29.4216 / 0.9504

Methods T2 FLAIR
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

MUNIT 0.0298 / 0.4185 / 22.6869 / 0.8702 0.0374 / 0.4563 / 21.5905 / 0.8728
StarGAN 0.0375 / 0.5137 / 21.1905 / 0.8473 0.0332 / 0.4417 / 22.7630 / 0.8931
CollaGAN 0.0372 / 0.5243 / 21.3118 / 0.8890 0.0334 / 0.4299 / 22.3037 / 0.8616
ReMIC w/o Recon 0.0332 / 0.4485 / 22.0745 / 0.8681 0.0345 / 0.4214 / 22.2554 / 0.8810
ReMIC 0.0186 / 0.2410 / 27.7468 / 0.9469 0.0211 / 0.2639 / 26.9189 / 0.9369
ReMIC+Multi-Sample 0.0185 / 0.2369 / 27.9594 / 0.9490 0.0188 / 0.2348 / 27.6469 / 0.9395
ReMIC+Seg 0.0204 / 0.2634 / 26.9036 / 0.9421 0.0197 / 0.2440 / 27.2777 / 0.9356
ReMIC+Joint 0.0185 / 0.2421 / 27.6881 / 0.9457 0.0185 / 0.2368 / 27.5816 / 0.9361

Table 4: BraTS results: Multi-domain image completion (full table)

Methods T2 ADC
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

MUNIT 0.1207 / 0.6904 / 15.6308 / 0.4428 0.1385 / 0.9208 / 13.8983 / 0.4297
StarGAN 0.1231 / 0.6638 / 15.9468 / 0.4229 0.1413 / 0.9157 / 13.8014 / 0.3665
CollaGAN 0.1480 / 0.8070 / 20.2846 / 0.2667 0.1063 / 0.7621 / 21.4448 / 0.4875
ReMIC w/o Recon 0.1580 / 0.8567 / 13.6738 / 0.3330 0.1070 / 0.7289 / 15.7083 / 0.5377
ReMIC 0.0840 / 0.4908 / 18.6200 / 0.5427 0.0253 / 0.2179 / 26.6150 / 0.9232
ReMIC+Multi-Sample 0.0810 / 0.4742 / 18.8986 / 0.5493 0.0250 / 0.2171 / 26.7024 / 0.9263
ReMIC+Seg 0.0871 / 0.5024 / 18.4236 / 0.5336 0.0272 / 0.2322 / 26.0828 / 0.9107
ReMIC+Joint 0.0881 / 0.5071 / 18.3206 / 0.5353 0.0288 / 0.2403 / 25.8024 / 0.9064

Methods HighB
MAE / NRMSE / PSNR / SSIM

MUNIT 0.0788 / 0.9325 / 16.9616 / 0.5383
StarGAN 0.0883 / 0.9188 / 17.1168 / 0.4350
CollaGAN 0.0571 / 0.7722 / 24.6687 / 0.6824
ReMIC w/o Recon 0.0584 / 0.8469 / 17.8987 / 0.7818
ReMIC 0.0254 / 0.3894 / 24.7927 / 0.9150
ReMIC+Multi-Sample 0.0268 / 0.3945 / 24.8066 / 0.9116
ReMIC+Seg 0.0272 / 0.4110 / 24.3277 / 0.9061
ReMIC+Joint 0.0286 / 0.4359 / 23.8270 / 0.9006

Table 5: ProstateX results: multi-domain image completion (full table)

for high-level tasks. As shown in Fig. 2, a segmentation branch is added after the learned content
code to generate segmentation prediction map. We adopt dice loss as the segmentation loss in the
training. We run the segmentation experiments on both BraTS and ProstateX datasets, and use dice
score as evaluation metric. In the following, we look into two specific settings in missing-domain
segmentation.

B.1 MISSING-DOMAIN IMPUTATION FOR PRETRAINED SEGMENTATION MODEL

Suppose we have trained a segmentation model on a complete dataset with all images in available
domains. Then during inference, this pretrained model will be used to predict segmentation results
for new samples. For new subjects, some domains are missing. Straightforward solutions to com-
plete the missing domains include zero filling, average image computed from all existing domains,
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Methods Neutral Angry
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

MUNIT 0.0547 / 0.1589 / 19.8469 / 0.8177 0.0556 / 0.1637 / 19.7303 / 0.8156
StarGAN 0.0545 / 0.1726 / 19.2725 / 0.8206 0.0543 / 0.1722 / 19.4336 / 0.8245
CollaGAN 0.0867 / 0.1867 / 24.3897 / 0.7934 0.0784 / 0.1761 / 24.8884 / 0.7736
ReMIC w/o Recon 0.0419 / 0.1215 / 22.2963 / 0.8776 0.0450 / 0.1335 / 21.4615 / 0.8556
ReMIC 0.0399 / 0.1225 / 22.2679 / 0.8794 0.0431 / 0.1290 / 21.7570 / 0.8598

Methods Contemptuous Disgusted
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

MUNIT 0.0524 / 0.1518 / 20.2793 / 0.8319 0.0537 / 0.1563 / 19.9362 / 0.8114
StarGAN 0.0462 / 0.1459 / 20.7605 / 0.8506 0.0512 / 0.1556 / 20.0036 / 0.8243
CollaGAN 0.0883 / 0.1856 / 24.4246 / 0.7928 0.0869 / 0.1823 / 24.5366 / 0.7812
ReMIC w/o Recon 0.0402 / 0.1192 / 22.4073 / 0.8740 0.0422 / 0.1206 / 22.1819 / 0.8559
ReMIC 0.0401 / 0.1217 / 22.2414 / 0.8725 0.0396 / 0.1177 / 22.4135 / 0.8668

Methods Fearful Happy
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

MUNIT 0.0605 / 0.1714 / 19.1714 / 0.7792 0.0571 / 0.1623 / 19.7709 / 0.8073
StarGAN 0.0552 / 0.1685 / 19.3516 / 0.7943 0.0504 / 0.1522 / 20.4397 / 0.8288
CollaGAN 0.0881 / 0.1907 / 24.1724 / 0.7442 0.0812 / 0.1829 / 24.5709 / 0.7601
ReMIC w/o Recon 0.0461 / 0.1321 / 21.4604 / 0.8384 0.0493 / 0.1399 / 20.9334 / 0.8332
ReMIC 0.0455 / 0.1316 / 21.5295 / 0.8395 0.0469 / 0.1383 / 21.0465 / 0.8406

Methods Sad Surprised
MAE / NRMSE / PSNR / SSIM MAE / NRMSE / PSNR / SSIM

MUNIT 0.0575 / 0.1677 / 19.3867 / 0.7998 0.0575 / 0.1677 / 19.3867 / 0.7998
StarGAN 0.0530 / 0.1620 / 19.7368 / 0.8227 0.0558 / 0.1634 / 19.6744 / 0.7974
CollaGAN 0.0783 / 0.1783 / 24.7656 / 0.7766 0.0856 / 0.1888 / 24.2375 / 0.7495
ReMIC w/o Recon 0.0450 / 0.1284 / 21.7430 / 0.8597 0.0488 / 0.1333 / 21.3782 / 0.8347
ReMIC 0.0436 / 0.1301 / 21.6384 / 0.8581 0.0447 / 0.1276 / 21.7793 / 0.8484

Table 6: RaFD results: Multi-domain image completion (full table)

and the nearest neighbor (NN) among training samples. We show the dice scores for these base-
line methods in Table 7. Oracle results give the average testing dice score when all the domains
are available in inference. Each column shows the dice score of segmentation prediction when the
current domain is missing during inference. Moreover, based on image translation methods, we can
generate fake images for missing domain imputation, and the results for different methods are also
shown in Table 7. We show that our proposed method achieves the best dice score compared with
all aforementioned baselines and other GAN-based image translation methods. This also indicates
the our method could generate superior images preserving a better content representation through
disentangled latent space. Furthermore, from the results in Table 7, we know that the T1Gd modality
and the T2 modality are the most significant contrasts in the segmentation of BraTS and ProstateX
data, whose missing will cause a severe decrease in dice score performance. Our method could
alleviate such a loss to a large extent. Here, the dice score for BraTS is the average number for the
three classes: WT, TC, and ET. Please see Table 9 in Appendix for a full table with all per-class dice
scores.

B.2 MISSING-DOMAIN SEGMENTATION TRAINING

Suppose we would like to train a segmentation model for a new data set, but most patients in this
cohort just contain a random subset of all required domains. In this scenario, it is definitely not
efficient to just use the most common domain overlapped by most patients. One simple solution is
to complete all the missing images in training set by some imputation method, such as zero-filling
image, average image, or generating images via image translation model. The results for these
methods are shown in Table 8. More advanced, based on the content code learned in our model, we
could develop a join model for multi-task learning of both generation and segmentation. Specifically,
another branch of segmentation generator is added after content encoder to generate segmentation
map. By optimizing the generation loss in Eq. 6 and segmentation loss in Eq. 2.2 simultaneously, the
model could adaptively learn how to generate missing images to promote segmentation performance.
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The results of jointly learned model as shown in Table 8 achieve the best dice score in both BraTS
and ProstateX datasets. “ReMIC+Seg” stands for using separate content encoders for generation and
segmentation tasks, while “ReMIC+Joint” indicates sharing the weights of content encoder for the
two tasks. Note that the baseline methods get better results after retraining the model on the missing
data, since the model is trained to fit to the exact input format by optimizing the segmentation
objective under the supervision of segmentation labels. However, our method can still get the best
results through adaptive learning model. In ProstateX data, the segmentation of whole prostate
region is not very challenging and the numbers among different methods do not differ a lot. But in
more difficult segmentation tasks like ET segmentation in BraTS, our proposed method shows an
apparent advantage over other methods as shown in Table 10.

Methods BraTS ProstateX
T1 T1Gd T2 FLAIR T2 ADC HighB

Oracle 0.822 0.908
Zero 0.651 0.473 0.707 0.454 0.528 0.243 0.775
Average 0.763 0.596 0.756 0.671 0.221 0.692 0.685
NN 0.769 0.540 0.724 0.606 0.759 0.850 0.854
MUNIT 0.783 0.537 0.782 0.492 0.783 0.708 0.858
StarGAN 0.799 0.553 0.746 0.613 0.632 0.653 0.832
CollaGAN 0.753 0.564 0.798 0.674 0.472 0.760 0.842
ReMIC 0.819 0.641 0.823 0.784 0.863 0.907 0.903

Table 7: Missing-domain imputation for pretrained segmentation model

Methods BraTS ProstateX
T1 T1Gd T2 FLAIR T2 ADC HighB

Oracle 0.822 0.908
Zero 0.811 0.656 0.823 0.775 0.868 0.899 0.897
Average 0.796 0.604 0.788 0.759 0.856 0.885 0.897
ReMIC 0.789 0.655 0.805 0.765 0.871 0.898 0.891
ReMIC+Seg 0.806 0.674 0.822 0.771 0.872 0.909 0.905
ReMIC+Joint 0.828 0.693 0.828 0.791 0.867 0.904 0.904

Table 8: Missing-domain segmentation

B.3 EXTENDED SEGMENTION RESULTS FOR BRATS DATASET

Firstly, we shows full tables with the per-class dice scores for BraTS segmentation results in Table 9
and Table 10. Compared with WT and TC classes, ET class is definitely more challenging in the
brain tumor segmentation task, since enhancing tumor always just occupy a very small region among
the whole tumor. In the ET class, we can see our method outperforms the other methods to a large
extent.

Furthermre, we validate our method can work not only for 2D image segmentation but also 3D image
segmentation. When a 3D volumetric image is missing in some domain, we deploy our method to
generate 2D images per slice and stack them to build the whole 3D volumetric image in this domain.
As shown in Table 9, we evaluate the per-class dice score for missing-domain imputation with the
oracle model trained from complete-domain 3D segmentation. The results show our method could
give a better performance in most domains. During experiment, the smoothness among different
slices in 3D image generation is a concern that could be improved.

C ABLATIVE STUDY

C.1 RANDOM MULTI-DOMAIN IMAGE COMPLETION

To show the superiority of our method in dealing with a random subset of missing domain, we
train our model with randomly missing domains in training samples for RaFD dataset. Among all
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Methods T1 T1Gd T2 FLAIR
WT / TC / ET WT / TC / ET WT / TC / ET WT / TC / ET

2D

Oracle 0.910 / 0.849 / 0.708
Zero 0.771 / 0.609 / 0.572 0.872 / 0.539 / 0.008 0.755 / 0.690 / 0.677 0.458 / 0.468 / 0.435
Average 0.870 / 0.744 / 0.674 0.882 / 0.603 / 0.303 0.849 / 0.732 / 0.686 0.655 / 0.710 / 0.648
NN 0.883 / 0.765 / 0.660 0.871 / 0.564 / 0.186 0.811 / 0.720 / 0.642 0.534 / 0.669 / 0.614
MUNIT 0.886 / 0.785 / 0.679 0.872 / 0.552 / 0.187 0.882 / 0.781 / 0.682 0.408 / 0.541 / 0.527
StarGAN 0.897 / 0.795 / 0.704 0.886 / 0.588 / 0.184 0.851 / 0.725 / 0.661 0.570 / 0.664 / 0.604
CollaGAN 0.860 / 0.747 / 0.651 0.864 / 0.576 / 0.252 0.882 / 0.811 / 0.700 0.663 / 0.697 / 0.663
ReMIC 0.909 / 0.834 / 0.714 0.899 / 0.669 / 0.354 0.905 / 0.855 / 0.709 0.853 / 0.807 / 0.691

3D

Oracle 0.909 / 0.867 / 0.733
Zero 0.876 / 0.826 / 0.694 0.884 / 0.574 / 0.020 0.901 / 0.865 / 0.728 0.661 / 0.730 / 0.643
Average 0.880 / 0.814 / 0.640 0.854 / 0.618 / 0.282 0.838 / 0.801 / 0.695 0.713 / 0.732 / 0.675
NN 0.890 / 0.829 / 0.703 0.859 / 0.538 / 0.081 0.790 / 0.799 / 0.704 0.472 / 0.686 / 0.607
ReMIC 0.905 / 0.864 / 0.722 0.888 / 0.614 / 0.273 0.902 / 0.871 / 0.734 0.855 / 0.850 / 0.724

Table 9: BraTS results: Missing-domain imputation for pretrained segmentation model (full tabel)

Methods T1 T1CE T2 FLAIR
WT / TC / ET WT / TC / ET WT / TC / ET WT / TC / ET

Oracle 0.910 / 0.849 / 0.708
Zero 0.904 / 0.818 / 0.710 0.888 / 0.687 / 0.394 0.907 / 0.842 / 0.720 0.841 / 0.793 / 0.692
Average 0.905 / 0.798 / 0.685 0.898 / 0.603 / 0.312 0.897 / 0.803 / 0.663 0.846 / 0.768 / 0.663
ReMIC 0.908 / 0.783 / 0.676 0.897 / 0.685 / 0.382 0.901 / 0.815 / 0.698 0.851 / 0.779 / 0.665
ReMIC+Seg 0.911 / 0.819 / 0.687 0.902 / 0.708 / 0.411 0.910 / 0.839 / 0.716 0.850 / 0.792 / 0.671
ReMIC+Joint 0.915 / 0.859 / 0.710 0.910 / 0.740 / 0.430 0.909 / 0.858 / 0.716 0.860 / 0.823 / 0.691

Table 10: BraTS results: Missing-domain segmentation (full table)

the eight domains, we assume that each sample contains at least one existing domain randomly.
In other words, there are possibly 0∼7 missing domains for each training sample. This is a very
challenging setting where the number and the choice of missing domains are totally random. This
difficult problem cannot be solved by existing works, and to our best knowledge, our proposed
method is the first one that could achieve the random n-to-n image translation. In testing, we
evaluate the model with different number of input domains. We show the results of three testing
samples shown in Figs. 6∼ 8. The top half of each column shows the input domain(s), where the
missing domains are filled with zeros. The bottom half of each column shows the generation results
for all the eight domains no matter if it exists in input domains or not. Firstly, in our method, no
matter how many and which domains are available, the model could generate images for all the
domains including missing ones in an one-time inference. Comparing the results in each row, we
could see that the domain-specific style and domain-shared content are all preserved well even when
we push the limit of existing domain(s) to be only one. In addition, when the number of visible
domains increase, the content in each domain image is enhanced gradually and gets closer to the
target image. This illustrates that our model is efficiently learning a better content code through
representation disentanglement as the source domains provide more complementary information.

C.2 MULTI-SAMPLE LEARNING

Based on the proposed model in Fig. 2, we further propose a more advanced model and training
strategy when multiple samples are inputted at one time. Generally, based on the assumption of
partially shared latent space, we assume that the factorized latent code can independently represent
the corresponding content and style information in the input image. Then by exchanging the content
codes from two independent samples, it should be able to reconstruct the original input image by
recombining the style code extracted from the other sample. Based on this idea, we build a com-
prehensive model with cross-domain training between two samples. Similarly as the framework
in Fig. 2, the image and code consistency loss and image reconstruction loss are also constrained
through the encoding and decoding procedure. The results of multi-sample learning are shown in
Table 1 named as “ReMIC+Multi-Sample”.
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C.3 ANALYSIS OF MISSING-DOMAIN SEGMENTATION RESULTS

To better understand why our method is a better solution in missing-domain imputation for multi-
domain recognition tasks like segmentation, we demonstrate three randomly selected testing samples
in BraTS dataset as shown in Fig. 9. Rows 1∼3 shows the first sample, and the left two samples
are shown in the same format. In the first sample, the first row shows real images in four domains
and its ground truth segmentation labels. When some domain for this sample is randomly missing,
a straightforward solution is to search through all the available training data and find the nearest
neighbor (NN) to complete the missing image. We search the nearest neighbor according to the
Euclidean distance in 2D image space. The second row shows the images in four domains and the
segmentation map for the NN sample, which actually looks very similar to the target sample visually.
However, we note that the tumor region is seriously different between the target sample and its NN
sample, which shows the NN image is not a good missing imputation in semantics. To cope with
this issue, our proposed method could generate images for missing domains with not only pixel-level
similarity but also similar tumor regions, which are the most significant parts in tumor segmentation
task. As shown in the third row, the generated images in four domains are very close to the target
images. The segmentation map shows the prediction results when the generated T1 image is used as
imputation in inputs, which gives a segmentation mask very close to the ground truth. These results
illustrate the superiority of our method, which results from the disentangled representation learning
in feature level.

D IMPLEMENTATION DETAILS

Here, we describe the implementation details of our method. We will open source all the source
codes and models if get accepted.

D.1 HYPERPARAMETERS

In our algorithm, we use the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.5, β2 = 0.999.
The learning rate is 0.0001. We set the loss weights in Equation 6 as λadv = 1, λxcyc = 10, λccyc =
1, λscyc = 1, λrecon = 20. For comparison purpose, we train the model to 150,000 / 100,000 /
100,000 iterations for BraTS, ProstateX, and RaFD datasets respectively, and compare the results
across MUNIT, StarGAN, CollaGAN, and ours ReMIC in all datasets. In ReMIC, we set the di-
mension of the style code as 8 for comparison purpose with MUNIT. For image generation during
testing, we use a fixed style code of 0.5 in each dimension for both MUNIT and ReMIC to compute
quantitative results.

D.2 NETWORK ARCHITECTURES

The network structures of ReMIC is developed on the backbone of MUNIT model. We describe the
details of each module here.

Unified Content Encoder: consists of a down-sampling module and residual blocks to extract
contexture knowledge from all available domain images in inputs. The down-sampling module
contains a 7× 7 convolutional block with stride 1 and 64 filters, and two 4× 4 convolutional blocks
with stride 2 and, 128 and 256 filters respectively. The strided convolutional layers downsample
the input to features maps of size W/4 ×H/4 × 256, where W and H are the width and height of
input image. Next, there are four residual blocks, each of which contains two 3 × 3 convolutional
blocks with 256 filters and stride 1. We apply Instance Normalization (IN) (Ulyanov et al., 2017)
after all the convolutional layers. Note that the proposed unified content encoder accepts images of
all domains as input (missing domains are filled with zeros in initialization), and learns a universe
content code complementarily and collaboratively, which are different from MUNIT.

Style Encoder: contains a similar down-sampling module and several residual blocks, which is
followed by a global average pooling layer and a fully connected layer to learn the style vector. The
down-sampling module is developped using the same structure as that in the unified content encoder
above, and two more 4 × 4 convolutional blocks with stride 2 and 256 filters are followed. The
final fully connected layer generates style code as a 8-dim vector. There is no IN applied to the
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style encoders to keep the original feature means and variances with style information (Huang &
Belongie, 2017).

Generator: includes four residual blocks, each of which contains two 3 × 3 convolutional blocks
with 256 filters and stride 1. Two nearest-neighbor upsampling layers and a 5 × 5 convolutional
block with stride 1 and, 128 and 64 filters respectively are followed to up-sample content codes
back to the original image size. Finally, there is a a 7 × 7 convolutional block with stride 1 to
output the reconstructed image. In order to incorporate the style code in the generation process,
the Adaptive Instance Normalization (AdaIN) (Huang & Belongie, 2017) is applied to each residual
block as follows (Huang et al., 2018):

AdaIN(z, γ, β) = γ
(z − µ(z)

σ(z)

)
+ β (8)

where z is the activation from the last convolutional layer. µ(z) and σ(z) are the channel-wise mean
and standard deviations of the activation. γ and β are the affine parameters in the AdaIN layers that
are generated from style codes via a multi-layer perceptron (MLP). In this way, the input style code
controls the generated style information through the affine transformation in the AdaIN layers in all
generators (Huang & Belongie, 2017).

Discriminator: includes four 4 × 4 convolutional blocks with stride 2 and, 64, 128, 256, and 512
filters in sequence. The Leaky ReLU activation with slope 0.2 is applied after convolutional layers.
A multi-scale discriminator (Wang et al., 2018) is used to consider the results at three scales together.
In adversarial training, we adopt LSGAN objective (Mao et al., 2017) as adversarial loss to learn to
generate realistic images.

Segmentor: We adopt a segmentation net with a U-Net shape (Ronneberger et al., 2015). In order
to build a joint model with the image generation modules, we build a variant U-Net: the downsam-
pling part share the same structure as the content encoder while the upsampling part have the same
layers as the generator as described above. Similar as the original U-Net (Ronneberger et al., 2015),
we also adopt the skip-connections between the downsampling and upsampling layers in the our
segmentation model.
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Figure 6: Random multi-domain image completion results. Rows 1-8 are input images, and rows
9-16 are generated images when different numbers of input images are given. Each column demon-
strates the images in one domain in the order of “neutral”, “angry”, “contemptuous”, “disgusted”,
“fearful”, “happy”, “sad”, “surprised”.
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Figure 7: Random multi-domain image completion results. Rows 1-8 are input images, and rows
9-16 are generated images when different numbers of input images are given. Each column demon-
strates the images in one domain in the order of “neutral”, “angry”, “contemptuous”, “disgusted”,
“fearful”, “happy”, “sad”, “surprised”.
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Figure 8: Random multi-domain image completion results. Rows 1-8 are input images, and rows
9-16 are generated images when different numbers of input images are given. Each column demon-
strates the images in one domain in the order of “neutral”, “angry”, “contemptuous”, “disgusted”,
“fearful”, “happy”, “sad”, “surprised”.
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Figure 9: Missing-domain segmentation results of three testing samples in BraTS. Every three
rows show results for one testing sample. For each testing sample, we show: 1) real images with
groundtruth segmentation label, 2) nearest neighbor searched from training data with its segmenta-
tion label, 3) generated images using our method and segmentation prediction when T1 is missing.
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