
Under review as a conference paper at ICLR 2020

DISAGREEMENT-REGULARIZED IMITATION
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a simple and effective algorithm designed to address the covariate shift
problem in imitation learning. It operates by training an ensemble of policies on
the expert demonstration data, and using the variance of their predictions as a cost
which is minimized with RL together with a supervised behavioral cloning cost.
Unlike adversarial imitation methods, it uses a fixed reward function which is easy
to optimize. We prove a regret bound for the algorithm in the tabular setting which
is linear in the time horizon multiplied by a coefficient which we show to be low
for certain problems in which behavioral cloning fails. We evaluate our algorithm
empirically across multiple pixel-based Atari environments and continuous con-
trol tasks, and show that it matches or significantly outperforms behavioral cloning
and generative adversarial imitation learning.

1 INTRODUCTION

Training artificial agents to perform complex tasks is essential for many applications in robotics,
video games and dialogue. If success on the task can be accurately described using a reward or
cost function, reinforcement learning (RL) methods offer an approach to learning policies which has
been shown to be successful in a wide variety of applications (Mnih et al., 2015; 2016; Lillicrap
et al., 2016; Hessel et al., 2018) However, in other cases the desired behavior may only be roughly
specified and it is unclear how to design a reward function to characterize it. For example, training
a video game agent to adopt more human-like behavior using RL would require designing a reward
function which characterizes behaviors as more or less human-like, which is difficult.

Imitation learning (IL) offers an elegant approach whereby agents are trained to mimic the demon-
strations of an expert rather than optimizing a reward function. Its simplest form consists of training
a policy to predict the expert’s actions from states in the demonstration data using supervised learn-
ing. While appealingly simple, this approach suffers from the fact that the distribution over states
observed at execution time can differ from the distribution observed during training. Minor errors
which initially produce small deviations from the expert trajectories become magnified as the policy
encounters states further and further from its training distribution. This phenomenon, initially noted
in the early work of (Pomerleau, 1989), was formalized in the work of (Ross & Bagnell, 2010) who
proved a quadratic O(εT 2) bound on the regret and showed that this bound is tight. The subsequent
work of (Ross et al., 2011) showed that if the policy is allowed to further interact with the envi-
ronment and make queries to the expert policy, it is possible to obtain a linear bound on the regret.
However, the ability to query an expert can often be a strong assumption.

In this work, we propose a new and simple algorithm called DRIL (Disagreement-Regularized Im-
itation Learning) to address the covariate shift problem in imitation learning, in the setting where
the agent is allowed to interact with its environment. Importantly, the algorithm does not require
any additional interaction with the expert. It operates by training an ensemble of policies on the
demonstration data, and using the disagreement in their predictions as a cost which is optimized
through RL together with a supervised behavioral cloning cost. The motivation is that the policies
in the ensemble will tend to agree on the set of states covered by the expert, leading to low cost, but
are more likely to disagree on states not covered by the expert, leading to high cost. The RL cost
thus pushes the agent back towards the distribution of the expert, while the supervised cost ensures
that it mimics the expert within the expert’s distribution.

1

Under review as a conference paper at ICLR 2020

Our theoretical results show that, subject to realizability and optimization oracle assumptions, our
algorithm obtains a O(εκT) regret bound for tabular MDPs, where κ is a measure which quantifies
a tradeoff between the concentration of the demonstration data and the diversity of the ensemble
outside the demonstration data. We evaluate DRIL empirically across multiple pixel-based Atari en-
vironments and continuous control tasks, and show that it matches or significantly outperforms be-
havioral cloning and generative adversarial imitation learning, often recovering expert performance
with only a few trajectories.

2 PRELIMINARIES

Denote by S the state space,A the action space, and Π the class of policies the learner is considering.
Let T denote the task horizon and π? the expert policy whose behavior the learner is trying to mimic.
For any policy π, let dπ denote the distribution over states induced by following π. Denote C(s, a)
the expected immediate cost of performing action a in state s, which we assume is bounded in
[0, 1]. In the imitation learning setting, we do not necessarily know the true costs C(s, a), instead
we observe expert demonstrations. Our goal is to find a policy π which minimizes an observed
surrogate loss ` between its actions and the actions of the expert under the induced distribution of
states, i.e.

π̂ = arg minEs∼dπ [`(π(s), π?(s))] (1)

For the following, we will assume ` is the total variation distance (denoted by ‖ · ‖), which is an
upper bound on the 0−1 loss. Our goal is thus to minimize the following quantity, which represents
the distance between the actions taken by our policy π and the expert policy π?:

Jexp(π) = Es∼dπ
[
‖π(·|s)− π?(·|s)‖

]
(2)

The following result shows that if ` represents an upper bound on the 0 − 1 loss and C satisfies
certain smoothness conditions, then minimizing this loss within ε translates into an O(εT) regret
bound on the task cost JC(π) = Es,a∼π[C(s, a)].

Theorem 1. (Ross et al., 2011) Let π be such that Jexp(π) = ε, and Qπ
?

T−t+1(s, a) −
Qπ

?

T−t+1(s, π?) ≤ u for all a ∈ A, t ∈ {1, 2, ..., T}, dtπ(s) > 0. Then JC(π) ≤ JC(π?) + uTε.

Unfortunately, it is often not possible to optimize Jexp directly, since it requires evaluating the expert
policy on the states induced by following the current policy. The supervised behavioral cloning cost
JBC, which is computed on states induced by the expert, is often used instead:

JBC(π) = Es∼dπ? [‖π?(·|s)− π(·|s)‖] (3)

Minimizing this loss within ε yields a quadratic regret bound on regret:

Theorem 2. (Ross & Bagnell, 2010) Let JBC(π) = ε, then JC(π) ≤ JC(π?) + T 2ε.

Furthermore, this bound is tight: as we will discuss later, there exist simple problems which match
the worst-case lower bound.

3 ALGORITHM

Our algorithm is motivated by two criteria: i) the policy should perform similarly to the expert on
the expert’s data distribution, and ii) the policy should move towards the expert’s data distribution
if it is away from it. These two criteria are addressed by combining two losses: a standard behavior
cloning loss, and an additional loss which represents the variance over actions induced by sampling
different policies from the posterior given the demonstration data D. We call this the uncertainty
cost, which is defined as:

2

Under review as a conference paper at ICLR 2020

Algorithm 1 Disagreement-Regularized Imitation Learning (DRIL)
1: Input: Expert demonstration data D = {(si, ai)}Ni=1
2: Initialize policy π and policy ensemble E = {πe}
3: for e = 1, E do
4: Sample De ∼ D with replacement, with |De| = |D|.
5: Train πe to minimize JBC(πe) on De to convergence.
6: end for
7: for i = 1, ... do
8: Perform one gradient update to minimize JBC(π) using a minibatch from D.
9: Perform one step of policy gradient to minimize Cclip

U (s, a).
10: end for

CU(s, a) = Varπ∼p(π|D)(π(a|s))

The motivation is that the variance over plausible policies is high outside the expert’s distribution,
since the data is sparse, but it is low inside the expert’s distribution, since the data there is dense.
Minimizing this cost encourages the policy to return to regions of dense coverage by the expert.
Intuitively, this is what we would expect the expert policy π? to do as well. The total cost which the
algorithm optimizes is given by:

Jalg(π) = Es∼dπ? [‖π?(·|s)− π(·|s)‖]︸ ︷︷ ︸
JBC(π)

+Es∼dπ,a∼π(·|s)

[
CU(s, a)

]
︸ ︷︷ ︸

JU(π)

The first term is a behavior cloning loss and is computed over states generated by the expert policy,
of which the demonstration data D is a representative sample. The second term is computed over
the distribution of states generated by the current policy and can be optimized using policy gradient.
More precisely, we approximate the posterior p(π|D) by training an ensemble E = {πe}|E|e=1 of
models on different bootstrap samples of the demonstration data. Note that the demonstration data
is fixed, and this ensemble can be trained once offline. We then interleave the supervised behavioral
cloning updates and the policy gradient updates which minimize the variance of the posterior. The
full algorithm is shown in Algorithm 1.

In practice, for the supervised loss we optimize the KL divergence between the actions predicted by
the policy and the expert actions, which is an upper bound on the total variation distance. We also
found it helpful to use a clipped uncertainty cost:

Cclip
U (s, a) =

{
+1 if CU (s, a) ≤ q
−1 else

where the threshold q is a top quantile of the raw uncertainty costs computed over the demonstration
data. The threshold q defines a normal range of uncertainty based on the demonstration data, and
values outside of this range incur a negative cost.

The RL cost can be optimized using any policy gradient method, in our experiments we used an
advantage actor-critic algorithm (Mnih et al., 2016). We note that model-based methods could in
principle be used as well if sample efficiency is a constraint.

4 ANALYSIS

4.1 COVERAGE COEFFICIENT

We now analyze DRIL for tabular MDPs. We will show that, subject to assumptions that the policy
class contains an optimal policy and that we are able to optimize costs within ε of their global

3

Under review as a conference paper at ICLR 2020

minimum, our algorithm obtains a regret bound which is linear κT , where κ which is quantity
specific to the environment and d?π . Intuitively, κ represents a tradeoff between how concentrated
the demonstration data is and how high the variance of the posterior is outside the expert distribution.

Assumption 1. (Realizability) π? ∈ Π

Assumption 2. (Optimization Oracle) For any given cost function J , our minimization procedure
returns a policy π̂ ∈ Π such that J(π̂) ≤ arg minπ∈Π J(π) + ε

The motivation behind our algorithm is that the policies in the ensemble agree inside the expert’s
distribution and disagree outside of it. This defines a reward function which pushes the learner back
towards the expert’s distribution if it strays away. However, what constitutes inside and outside the
distribution, or sufficient agreement or disagreement, is ambiguous. Below we define quantities
which makes these ideas precise.

Definition 1. For any set U ⊆ S, define the maximum probability ratio between the state distri-
butions induced by the expert policy and by policies in the policy class inside of U as α(U) =

maxπ∈Π

∑
s∈U

dπ(s)
d?π(s) .

Note that α(U) ≤ 1
mins∈U d?π(s) . For a set U , α(U) will be low if the expert distribution has high

density inside of U , and the states in U is reachable by policies in the policy class.

Definition 2. Define the minimum variance of the posterior outside of U as β(U) =
mins/∈U,a∈AVarπ∼p(π|D)[π(a|s)].

We now define the κ coefficient as the minimum ratio of these two quantities over all possible subsets
of S .

Definition 3. We define κ(U) = α(U)
β(U) , and κ = minU⊆S κ(U).

We can view minimizing κ(U) over different U ⊆ S as minimizing a tradeoff between coverage by
the expert policy inside of U , and variance of the posterior outside of U . Note that by making U very
small, it may be easy to make α(U) small, but doing so may also make β(U) small and κ(U) large.
Conversely, making U large may make β(U) large but may also make α(U) large as a result.

4.2 REGRET BOUND

We now establish a relationship between the κ coefficient just defined, the cost our algorithm opti-
mizes, and Jexp defined in Equation (2) which we would ideally like to minimize and which trans-
lates into a regret bound. All proofs can be found in Appendix A.

Lemma 1. For any π ∈ Π, we have Jexp(π) ≤ κJalg(π)

This result shows that if κ is not too large, and we are able to make our cost function Jalg(π) small,
then we can ensure Jexp(π) is also be small. This result is only useful if our cost function can indeed
achieve a small minimum. The next lemma shows that this is the case.

Lemma 2. minπ∈Π Jalg(π) ≤ 2ε

Here ε is the threshold specified in Assumption 2. Combining these two lemmas with the previous
result of Ross et al. (2011), we get a regret bound which is linear in κT .

Theorem 3. Let π̂ be the result of minimizing Jalg using our optimization oracle, and assume that
Qπ

?

T−t+1(s, a) − Qπ?T−t+1(s, π?) ≤ u for all a ∈ A, t ∈ {1, 2, ..., T}, dtπ(s) > 0. Then π̂ satisfies
JC(π̂) ≤ JC(π?) + 3uκεT .

Our bound is an improvement over that of behavior cloning if κ is less than O(T). Note that
DRIL does not require knowledge of κ. The quantity κ is problem-dependent and depends on the
environment dynamics, the expert policy and the class of policies available to the learner. We next
compute κ exactly for a problem for which behavior cloning is known to perform poorly, and show
that it is independent of T .

Example 1. Consider the tabular MDP given in (Ross et al., 2011) as an example of a problem
where behavioral cloning incurs quadratic regret, shown in Figure 1. There are 3 states (s0, s1, s2)

4

Under review as a conference paper at ICLR 2020

Figure 1: Example of a problem where behavioral cloning incurs quadratic regret.

and two actions (a0, a1). The expert policy is given by π?(s0) = a0, π
?(s1) = a0, π

?(s2) = a1.
Here d?π = (0, 1

T ,
T−1
T). Writing out κ({s1, s2}) yields:

κ({s1, s2}) =
α({s1, s2})
β({s1, s2})

=
maxπ∈Π

∑
s∈{s1,s2}

dπ(s)
d?π(s)

mina∈{a0,a1}Var(a|s0)

For any π, dπ(s1) ≤ 1
T and dπ(s2) ≤ T−1

T due to the dynamics of the MDP, so dπ(s)
d?π(s) ≤ 1 for s ∈

{s0, s1}. Furthermore, since s0 is never visited in the demonstration data Varπ∼p(π|D)(π(a|s2)) is
equal to the variance of a uniform distribution with variance 1, i.e. 1

12 . Therefore:

κ ≤ κ({s1, s2}) ≤
1 + 1

1
12

= 24

Applying our result from Theorem 3, we see that our algorithm obtains an O(εT) regret bound on
this problem, in contrast to the O(εT 2) regret of behavioral cloning 1.

5 RELATED WORK

The idea of learning through imitation dates back at least to the work of (Pomerleau, 1989), who
trained a neural network to imitate the steering actions of a human driver using images as input. The
problem of covariate shift was already observed, as the author notes: “when driving for itself, the
network may occasionally stray from the center of the road and so must be prepared to recover by
steering the vehicle back to the center of the road”.

This issue was formalized in the work of (Ross & Bagnell, 2010), who on one hand proved an
O(εT 2) regret bound, and on the other hand provided an example showing this bound is tight.
The subsequent work (Ross et al., 2011) gave an algorithm which obtains linear regret, provided
the agent can both interact with the environment, and query the expert policy. Our approach also
requires environment interaction, but importantly does not require the ability to query the expert.

Imitation learning has been used within the context of modern RL to help improve sample efficiency
(Hester et al., 2018) or overcome exploration (Nair et al., 2017). These settings assume the reward
is known and that the policies can then be fine-tuned with reinforcement learning. In this case,
covariate shift is less of an issue since it can be corrected using the reinforcement signal.

1Observe that a policy with π(a0|s1) = 1 − εT, π(a1|s1) = εT, π(a1|s0) = 1 has a behavioral cloning
cost of ε but a regret of εT 2.

5

Under review as a conference paper at ICLR 2020

0 100 200 300 400 500
Time Horizon

0

20

40

60

80

100

120

Re
gr

et

N=1 demonstration
DRIL
Behavior Cloning

0 100 200 300 400 500
Time Horizon

0

20

40

60

80

100

120

Re
gr

et

N=5 demonstrations
DRIL
Behavior Cloning

0 100 200 300 400 500
Time Horizon

0

20

40

60

80

100

120

Re
gr

et

N=10 demonstrations
DRIL
Behavior Cloning

Figure 2: Results on tabular MDP from (Ross & Bagnell, 2010). Shaded region represents range
between 5th and 95th quantiles, computed across 500 trials. Behavior cloning exhibits poor worst-
case regret, whereas DRIL has low regret across all trials.

The work of (Luo et al., 2019) also proposed a method to address the covariate shift problem when
learning from demonstrations when the reward is known, by conservatively extrapolating the value
function outside the training distribution using negative sampling. This addresses a different setting
from ours, and requires generating plausible states which are off the manifold of training data,
which may be challenging when the states are high dimensional such as images. The work of Reddy
et al. (2019) proposed to treat imitation learning within the Q-learning framework, setting a positive
reward for all transitions inside the demonstration data and zero reward for all other transitions in the
replay buffer. However, this requires carefully decaying the reward over time as the policy produces
states closer to the expert’s distribution. Our approach deals with a similar setting, but uses a fixed
reward function.

Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016) is a state-of-the-art algo-
rithm which addresses the same setting as ours. It operates by training a discriminator network to
distinguish expert states from states generated by the current policy, and the negative output of the
discriminator is used as a reward signal to train the policy. The motivation is that states which are
outside the training distribution will be assigned a low reward while states which are close to it will
be assigned a high reward. This encourages the policy to return to the expert distribution if is strays
away from it. However, the adversarial training procedure means that the reward function is chang-
ing over time, which can make the algorithm unstable or difficult to tune. In contrast, our approach
uses a simple fixed reward function. We include comparisons to GAIL in our experiments.

Using disagreement between models in an ensemble to represent uncertainty has recently been ex-
plored in several contexts. The works of (Shyam et al., 2018; Pathak et al., 2019) used disagreement
between different dynamics models to drive exploration in the context of model-based RL. Con-
versely, (Henaff et al., 2019) used variance across different dropout masks to prevent policies from
exploiting error in dynamics models. Ensembles have also been used to represent uncertainty over
Q-values in model-free RL in order to encourage exploration (Osband et al., 2016). Here, we use
disagreement between different policies trained on the expert data to address covariate shift in the
context of imitation learning.

6 EXPERIMENTS

6.1 TABULAR MDPS

As a first experiment, we applied DRIL to the tabular MDP of (Ross & Bagnell, 2010) shown in
Figure 1. We computed the posterior over the policy parameters given the demonstration data using
a Dirichlet distribution with parameters determined by visitation counts. For behavior cloning, we
sampled a single policy from this posterior. For our method, we sampled 5 policies and used their
negative variance to define an additional reward function. We combined this with a reward which
was the probability density function of a given state-action pair under the posterior distribution,
which corresponds to the supervised learning loss, and used tabular Q-learning to optimize the sum
of these two reward functions. This experiment was repeated 500 times for time horizon lengths up
to 500 and N = 1, 5, 10 expert demonstration trajectories.

Figure 2 shows plots of the regret over the 500 different trials across different time horizons. Al-
though the average performance of BC improves with more expert demonstrations, it exhibits poor

6

Under review as a conference paper at ICLR 2020

1 3 5 10 15 20
Expert Trajectories

0

250

500

750

1000

1250

1500

1750

Re
wa

rd

MsPacman

Expert
DRIL
Behavioral Cloning
GAIL

1 3 5 10 15 20
Expert Trajectories

0

200

400

600

800

1000

Re
wa

rd

SpaceInvaders

1 3 5 10 15 20
Expert Trajectories

0

50

100

150

200

250

300

350

Re
wa

rd

Breakout

1 3 5 10 15 20
Expert Trajectories

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd

BeamRider

1 3 5 10 15 20
Expert Trajectories

20

15

10

5

0

5

10

15

20

Re
wa

rd

Pong

1 3 5 10 15 20
Expert Trajectories

0

10000

20000

30000

40000

50000

Re
wa

rd

Qbert

a)

0 20 40 60 80 100 120 140 160
Training epochs

1.00

0.98

0.96

0.94

Un
ce

rta
in

ty
 C

os
t

MsPacman

0 20 40 60 80 100 120 140 160
Training epochs

0

500

1000

1500

2000

Ep
iso

de
 R

ew
ar

d

0 20 40 60 80 100 120 140 160
Training epochs

1.00

0.95

0.90

0.85

0.80

Un
ce

rta
in

ty
 C

os
t

SpaceInvaders

0 20 40 60 80 100 120 140 160
Training epochs

0

200

400

600

800

Ep
iso

de
 R

ew
ar

d

0 20 40 60 80 100 120 140 160
Training epochs

1.00

0.95

0.90

0.85

0.80

Un
ce

rta
in

ty
 C

os
t

Breakout

0 20 40 60 80 100 120 140 160
Training epochs

0

100

200

300

Ep
iso

de
 R

ew
ar

d

0 20 40 60 80 100 120 140 160
Training epochs

0.98

0.96

0.94

0.92

Un
ce

rta
in

ty
 C

os
t

BeamRider

0 20 40 60 80 100 120 140 160
Training epochs

0

1000

2000

Ep
iso

de
 R

ew
ar

d

b)
Figure 3: Results on Atari environments. a) Final policy performance for different numbers of
expert trajectories. b) Evolution of policy reward and uncertainty cost during training with N = 5
trajectories.

worst-case performance with some trials incurring very high regret, especially when using fewer
demonstrations. Our method has low regret across all trials, which stays close to constant indepen-
dantly of the time horizon, even with a single demonstration. This performance is better than that
suggested by our analysis, which showed a worst-case linear bound with respect to time horizon.

6.2 ATARI ENVIRONMENTS

We next evaluated our approach on six different Atari environments. We used pretrained PPO
(Schulman et al., 2017) agents from the stable baselines repository (Hill et al., 2018) to generate
N = {1, 3, 5, 10, 15, 20} expert trajectories. We compared against two other methods: standard be-
havioral cloning (BC) and Generative Adversarial Imitation Learning (GAIL). Results are shown in
Figure 3a. DRIL outperforms behavioral cloning across most environments and numbers of demon-
strations, often by a substantial margin. In the worst case its performance matches that of behavior

7

Under review as a conference paper at ICLR 2020

1 3 5
Expert Trajectories

500

1000

1500

2000

2500

Re
wa

rd

Ant

Expert
DRIL
Behavioral Cloning
Random

1 3 5
Expert Trajectories

1500

1000

500

0

500

1000

1500

2000

2500

Re
wa

rd

HalfCheetah

1 3 5
Expert Trajectories

0

250

500

750

1000

1250

1500

1750

2000

Re
wa

rd

Hopper

1 3 5
Expert Trajectories

0

100

200

300

400

500

600

700

Re
wa

rd

Walker2D

1 3 5
Expert Trajectories

300

200

100

0

100

200

Re
wa

rd

LunarLanderContinuous-v2

1 3 5
Expert Trajectories

100

50

0

50

100

150

200

Re
wa

rd

BipedalWalkerHardcore

Figure 4: Results on continuous control tasks.

cloning. In many cases, our method is able to match the expert’s performance using a small number
of trajectories.

Figure 3b shows the evolution of the uncertainty cost and the policy reward throughout training. In
all cases, the test reward improves while the uncertainty cost decreases. Interestingly, there is cor-
respondence between the change in the uncertainty cost during training and the gap in performance
between behavior cloning and DRIL. For example, in MsPacman there is both a small improvement
in uncertainty cost over time and a small gap between behavior cloning and our method, whereas in
Breakout there is a large improvement in uncertainty cost and a large gap between behavior cloning
and our method. This suggests that the gains from our method comes from redirecting the policy
back towards the expert manifold, which is manifested as a decrease in the uncertainty cost.

We were not able to obtain meaningful performance for GAIL on these domains, despite performing
a hyperparameter search across learning rates for the policy and discriminator, and across different
numbers of discriminator updates. We additionally experimented with clipping rewards in an effort
to stabilize performance. These results are consistent with those of (Reddy et al., 2019), who also
reported negative results when running GAIL on images. While improved performance might be
possible with more sophisticated adversarial training techniques, we note that this contrasts with our
method which uses a fixed reward function obtained through simple supervised learning.

6.3 CONTINUOUS CONTROL

We next report results of running our method on a 6 different continuous control tasks from the
PyBullet2 and OpenAI Gym (Brockman et al., 2016) environments. We again used pretrained agents
to generate expert demonstrations. Results are shown in Figure 4. In these environments we found
behavior cloning to be a much stronger baseline than for the Atari environments, and in many tasks
it was able to match expert performance using as little as 3 trajectories. Our method exhibits a
modest improvement on Walker2D and BipedalWalkerHardcore when a single trajectory is used,
and otherwise has similar performance to behavior cloning. The fact that our method does not
perform worse than behavior cloning on tasks where covariate shift is likely less of an issue provides
evidence of its robustness.

7 CONCLUSION

Addressing covariate shift has been a long-standing challenge in imitation learning. In this work,
we have proposed a new method to address this problem by penalizing the disagreement between
an ensemble of different policies sampled from the posterior. Importantly, our method requires

2https://github.com/bulletphysics/bullet3/tree/master/examples/
pybullet/gym/pybullet_envs/examples

8

https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/examples
https://github.com/bulletphysics/bullet3/tree/master/examples/pybullet/gym/pybullet_envs/examples

Under review as a conference paper at ICLR 2020

no additional labeling by an expert. Our experimental results demonstrate that DRIL can often
match expert performance while using only a small number of trajectories across a wide array of
tasks, ranging from tabular MDPs to pixel-based Atari games and continuous control tasks. On the
theoretical side, we have shown that our algorithm can provably obtain a low regret bound for tabular
problems in which the κ parameter is low.

There are multiple directions for future work. On the theoretical side, extending our analysis to
continuous state spaces and characterizing the κ parameter on a larger array of problems would help
to better understand the settings where our method can expect to do well. Empirically, there are
many other settings in structured prediction (Daumé et al., 2009) where covariate shift is an issue
and where our method could be applied. For example, in dialogue and language modeling it is
common for generated text to become progressively less coherent as errors push the model off the
manifold it was trained on. Our method could potentially be used to fine-tune language or translation
models (Cho et al., 2014; Welleck et al., 2019) after training by applying our uncertainty-based cost
function to the generated text.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–
decoder for statistical machine translation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, Oc-
tober 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL
https://www.aclweb.org/anthology/D14-1179.

Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. CoRR,
abs/0907.0786, 2009. URL http://arxiv.org/abs/0907.0786.

Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive policy learning with un-
certainty regularization for driving in dense traffic. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=HygQBn0cYm.

Matteo Hessel, Joseph Modayil, Hado P. van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, and David Silver. Rainbow: Combining
improvements in deep reinforcement learning. In AAAI, 2018.

Todd Hester, Matej Vecerı́k, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Hor-
gan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John Agapiou, Joel Z.
Leibo, and Audrunas Gruslys. Deep q-learning from demonstrations. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Ap-
plications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018, pp. 3223–3230, 2018. URL https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16976.

Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Rene Traore, Prafulla Dhariwal,
Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Radford, John Schul-
man, Szymon Sidor, and Yuhuai Wu. Stable baselines. https://github.com/hill-a/
stable-baselines, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 29, pp. 4565–4573. Curran Associates, Inc., 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL
http://arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a con-
ference paper at the 3rd International Conference for Learning Representations, San Diego, 2015.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://
github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR,
abs/1509.02971, 2016.

Yuping Luo, Huazhe Xu, and Tengyu Ma. Learning self-correctable policies and value functions
from demonstrations with negative sampling. CoRR, abs/1907.05634, 2019. URL http://
arxiv.org/abs/1907.05634.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

10

https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/0907.0786
https://openreview.net/forum?id=HygQBn0cYm
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16976
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
http://arxiv.org/abs/1412.6980
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
http://arxiv.org/abs/1907.05634
http://arxiv.org/abs/1907.05634
http://dx.doi.org/10.1038/nature14236

Under review as a conference paper at ICLR 2020

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of The 33rd
International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pp. 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR. URL http:
//proceedings.mlr.press/v48/mniha16.html.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. 2018 IEEE International
Conference on Robotics and Automation (ICRA), pp. 6292–6299, 2017.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped DQN. CoRR, abs/1602.04621, 2016. URL http://arxiv.org/abs/1602.
04621.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In ICML, 2019.

Dean A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network.
In D. S. Touretzky (ed.), Advances in Neural Information Processing Systems 1,
pp. 305–313. Morgan-Kaufmann, 1989. URL http://papers.nips.cc/paper/
95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf.

Siddharth Reddy, Anca D. Dragan, and Sergey Levine. SQIL: imitation learning via regularized
behavioral cloning. CoRR, abs/1905.11108, 2019. URL http://arxiv.org/abs/1905.
11108.

Stephane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Yee Whye Teh
and Mike Titterington (eds.), Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, volume 9 of Proceedings of Machine Learning Research, pp. 661–668,
Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL http://proceedings.
mlr.press/v9/ross10a.html.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Geoffrey Gordon, David Dunson, and Miroslav
Dudk (eds.), Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics, volume 15 of Proceedings of Machine Learning Research, pp. 627–635, Fort
Lauderdale, FL, USA, 11–13 Apr 2011. PMLR. URL http://proceedings.mlr.press/
v15/ross11a.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/
1707.06347.

Pranav Shyam, Wojciech Jaskowski, and Faustino Gomez. Model-based active exploration. CoRR,
abs/1810.12162, 2018.

Sean Welleck, Kianté Brantley, Hal Daumé III, and Kyunghyun Cho. Non-monotonic sequential text
generation. CoRR, abs/1902.02192, 2019. URL http://arxiv.org/abs/1902.02192.

11

http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v48/mniha16.html
http://arxiv.org/abs/1602.04621
http://arxiv.org/abs/1602.04621
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://papers.nips.cc/paper/95-alvinn-an-autonomous-land-vehicle-in-a-neural-network.pdf
http://arxiv.org/abs/1905.11108
http://arxiv.org/abs/1905.11108
http://proceedings.mlr.press/v9/ross10a.html
http://proceedings.mlr.press/v9/ross10a.html
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1902.02192

Under review as a conference paper at ICLR 2020

A PROOFS

Lemma 1. For any π ∈ Π we have Jexp(π) ≤ κJalg(π)

Proof. We will first show that for any π ∈ Π and U ⊆ S, we have Jexp(π) ≤ α(U)
β(U)Jalg(π). We can

rewrite this as:

Jexp(π) = Es∼dπ
[
‖π(·|s)− π?(·|s)‖

]
= Es∼dπ

[
I(s ∈ U)‖π(·|s)− π?(·|s)‖

]
+ Es∼dπ

[
I(s /∈ U)‖π(·|s)− π?(·|s)‖

]

We begin by bounding the first term:

Es∼dπ
[
I(s ∈ U)‖π(·|s)− π?(·|s)‖

]
=
∑
s∈U

dπ(s)‖π(·|s)− π?(·|s)‖

=
∑
s∈U

dπ(s)

dπ?(s)
dπ?(s)‖π(·|s)− π?(·|s)‖

≤
(∑
s∈U

dπ(s)

dπ?(s)

)(∑
s∈U

dπ?(s)‖π(·|s)− π?(·|s)‖
)

≤
(∑
s∈U

dπ(s)

dπ?(s)

)∑
s∈U

dπ?(s)‖π(·|s)− π?(·|s)‖

≤
(∑
s∈U

dπ(s)

dπ?(s)

)∑
s

dπ?(s)‖π(·|s)− π?(·|s)‖

=
(∑
s∈U

dπ(s)

dπ?(s)

)
Es∼dπ? [‖π(·|s)− π?(·|s)‖]

≤ α(U)JBC(π)

We next bound the second term:

Es∼dπ
[
I(s /∈ U)‖π(·|s)− π?(·|s)‖

]
≤ Es∼dπ

[
I(s /∈ U)‖

]
≤ Es∼dπ

[
I(s /∈ U)

mina∈AVari[πi(a|s)]
β(U)

]
=

1

β(U)
Es∼dπ

[
I(s /∈ U)

∑
a∈A

π(a|s)Vari[πi(a|s)]
]

=
1

β(U)

∑
s/∈U

dπ(s)
∑
a∈A

π(a|s)Vari[πi(a|s)]︸ ︷︷ ︸
A(π)

Now observe we can decompose the RL cost as follows:

12

Under review as a conference paper at ICLR 2020

JU(π) = Es∼dπ,a∼π(·|s)

[
Variπi(a|s)

]
=
∑
s

dπ(s)
∑
a

π(a|s)
[
Variπi(a|s)

]
=
∑
s∈U

dπ(s)
∑
a

π(a|s)
[
Variπi(a|s)

]
︸ ︷︷ ︸

B(π)

+
∑
s/∈U

dπ(s)
∑
a

π(a|s)
[
Variπi(a|s)

]
︸ ︷︷ ︸

A(π)

Putting these together, we get the following:

Jexp(π) ≤ α(U)JBC(π) +
1

β(U)
A(π)

=
α(U)β(U)

β(U)
JBC(π) +

α(U)

α(U)β(U)
A(π)

=
α(U)β(U)

β(U)
JBC(π) +

α(U)

α(U)β(U)
A(π)

≤ α(U)

β(U)
JBC(π) +

α(U)

β(U)
A(π)

≤ α(U)

β(U)

(
JBC(π) +A(π)

)
≤ α(U)

β(U)

(
JBC(π) + JU(π)

)
=
α(U)

β(U)
Jalg(π)

Here we have used the fact that β(U) ≤ 1 since 0 ≤ π(a|s) ≤ 1 and α(U) ≥
∑
s∈U

d?π(s)
d?π(s) ≥ 1

hence 1
α(U) ≤ 1. Taking the minimum over subsets U ⊆ S, we get Jexp(π) ≤ κJalg(π).

Lemma 2. minπ∈Π Jalg(π) ≤ 2ε

Proof. Plugging the optimal policy into Jalg, we get:

Jalg(π?) = JBC(π?) + JU(π?)

= 0 + Es∼dπ? ,s∼π?(·|s)

[
Vari[πi(a|s)]

]
= Es∼dπ? ,s∼π?(·|s)

[1

|E|
∑
i

(
πi(a|s)− π̄(a|s)

)2]
≤ Es∼dπ? ,s∼π?(·|s)

[1

|E|
∑
i

(
πi(a|s)− π?(a|s)

)2

+
(
π̄(a|s)− π?(a|s)

)2]
= Es∼dπ? ,s∼π?(·|s)

[1

|E|
∑
i

(
πi(a|s)− π?(a|s)

)2]
︸ ︷︷ ︸

Term1

+Es∼dπ? ,s∼π?(·|s)

[(
π̄(a|s)− π?(a|s)

)2]
︸ ︷︷ ︸

Term2

We will first bound Term 1:

13

Under review as a conference paper at ICLR 2020

Es∼dπ? ,s∼π?(·|s)

[1

|E|

|E|∑
i=1

(
πi(a|s)− π?(a|s)

)2]
=

1

|E|
Es∼dπ?

[∑
a

π?(a|s)
|E|∑
i=1

(
πi(a|s)− π?(a|s)

)2]

≤ 1

|E|
Es∼dπ?

[∑
a

π?(a|s)
|E|∑
i=1

∣∣∣πi(a|s)− π?(a|s)∣∣∣]

≤ 1

|E|
Es∼dπ?

[|E|∑
i=1

∑
a

∣∣∣πi(a|s)− π?(a|s)∣∣∣]

≤ 1

|E|

|E|∑
i=1

Es∼dπ?
[
‖πi(·|s)− π?(·|s)‖

]

≤ 1

|E|

|E|∑
i=1

ε

= ε

We will next bound Term 2:

Es∼dπ? ,a∼π?(·|s)

[(
π̄(a|s)− π?(a|s)

)2]
= Es∼dπ? ,s∼π?(·|s)

[(
π?(a|s)− 1

|E|

|E|∑
i=1

πi(a|s)
)2]

= Es∼dπ? ,s∼π?(·|s)

[(1

|E|

|E|∑
i=1

π?(a|s)− 1

|E|

|E|∑
i=1

πi(a|s)
)2]

= Es∼dπ? ,s∼π?(·|s)

[(1

|E|

|E|∑
i=1

π?(a|s)− πi(a|s)
)2]

≤ Es∼dπ? ,s∼π?(·|s)

[1

|E|2
|E|

|E|∑
i=1

(
π?(a|s)− πi(a|s)

)2]
(Cauchy − Schwarz)

=
1

|E|

|E|∑
i=1

Es∼dπ? ,s∼π?(·|s)

[(
π?(a|s)− πi(a|s)

)2]

≤ 1

|E|

|E|∑
i=1

Es∼dπ? ,s∼π?(·|s)

[∣∣∣π?(a|s)− πi(a|s)∣∣∣]

≤ 1

|E|

|E|∑
i=1

Es∼dπ?
[
‖π?(·|s)− πi(·|s)‖

]

=
1

|E|

|E|∑
i=1

JBC(πi)

≤ ε

The last step follows from our optimization oracle assumption: 0 ≤ minπ∈Π JBC(π) ≤ JBC(π?) =
0, hence JBC(πi) ≤ 0 + ε = ε. Combining the bounds on the two terms, we get Jalg(π?) ≤ 2ε.
Since π? ∈ Π, the result follows.

14

Under review as a conference paper at ICLR 2020

Theorem 1. Let π̂ be the result of minimizing Jalg using our optimization oracle, and assume that
Qπ

?

T−t+1(s, a) − Qπ?T−t+1(s, π?) ≤ u for all a ∈ A, t ∈ {1, 2, ..., T}, dtπ(s) > 0. Then π̂ satisfies
J(π̂) ≤ J(π?) + 3uκεT .

Proof. By our optimization oracle and Lemma 2, we have

Jalg(π̂) ≤ min
π∈Π

Jalg(π) + ε

≤ 2ε+ ε

= 3ε

Combining with Lemma 1, we get:

Jexp(π̂) ≤ κJalg(π̂)

≤ 3κε

Applying Theorem 1 from (Ross et al., 2011), we get J(π̂) ≤ J(π?) + 3uκεT .

B EXPERIMENTAL DETAILS

B.0.1 ATARI ENVIRONMENTS

All behavior cloning and ensemble models were trained to minimize the negative log-likelihood
classification loss on the demonstration data for 500 epochs using Adam (Kingma & Ba, 2014) and
a learning rate of 2.5 · 10−4. For our method, we initially performed a hyperparameter search on
Space Invaders over the following values:

Table 1: Hyperparameters (our method)

Hyperparameter Values Considered Final Value
Policy Learning rate 2.5 · 10−2, 2.5 · 10−3, 2.5 · 10−4 2.5 · 10−3

Quantile cutoff 0.8, 0.9, 0.95, 0.98 0.98
Number of supervised updates 1, 5 1
Number of policies in ensemble 5 5
Gradient clipping 0.1 0.1
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Number of steps 128 128
Minibatch size 4 4

We then chose the best values and kept those hyperparameters fixed for all other environments. All
other A2C hyperparameters follow the default values in the repo (Kostrikov, 2018): policy networks
consisted of 3-layer convolutional networks with 8−32−64 feature maps followed by a single-layer
MLP with 512 hidden units.

For GAIL, we used the implementation in (Kostrikov, 2018) and replaced the MLP discriminator
by a CNN discriminator with the same architecture as the policy network. We initially performed a
hyperparameter search on Breakout with 10 demonstrations over the following values:

However, we did not find any hyperparameter configuration which performed better than behavioral
cloning.

B.1 CONTINUOUS CONTROL

All behavior cloning and ensemble models were trained to minimize the mean-squared error regres-
sion loss on the demonstration data for 500 epochs using Adam (Kingma & Ba, 2014) and a learning

15

Under review as a conference paper at ICLR 2020

Table 2: Hyperparameters (GAIL)

Hyperparameter Values Considered Final Value
Policy Learning rate 2.5 · 10−2, 2.5 · 10−3, 2.5 · 10−4 2.5 · 10−3

Discriminator Learning rate 2.5 · 10−2, 2.5 · 10−3, 2.5 · 10−4 2.5 · 10−3

Number of discriminator updates 1, 5, 10 5
Gradient clipping 0.1 0.1
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Number of steps 128 128
Minibatch size 4 4

rate of 2.5 · 10−4. Policy networks were 2-layer fully-connected MLPs with tanh activations and 64
hidden units.

Table 3: Hyperparameters (our method)

Hyperparameter Values Considered Final Value
Policy Learning rate 2.5 · 10−3, 2.5 ·1 0−4, 1 · 10−4, 5 · 10−5 2.5 · 10−5

Quantile cutoff 0.98 0.98
Number of supervised updates 1 1
Number of policies in ensemble 5 5
Gradient clipping 0.1 0.1
Entropy coefficient 0.01 0.01
Value loss coefficient 0.5 0.5
Number of steps 128 128
Minibatch size 4 4

16

	Introduction
	Preliminaries
	Algorithm
	Analysis
	Coverage Coefficient
	Regret Bound

	Related Work
	Experiments
	Tabular MDPs
	Atari Environments
	Continuous Control

	Conclusion
	Proofs
	Experimental Details
	Atari Environments
	Continuous Control

