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ABSTRACT

Semantic parsing is the problem of deriving machine interpretable meaning repre-
sentations from natural language utterances. Neural models with encoder-decoder
architectures have recently achieved substantial improvements over traditional
methods. Although neural semantic parsers appear to have relatively high re-
call using large beam sizes, there is room for improvement with respect to one-
best precision. In this work, we propose a generator-reranker architecture for
semantic parsing. The generator produces a list of potential candidates and the
reranker, which consists of a pre-processing step for the candidates followed by
a novel critic network, reranks these candidates based on the similarity between
each candidate and the input sentence. We show the advantages of this approach
along with how it improves the parsing performance through extensive analysis.
We experiment our model on three semantic parsing datasets (GEO, ATIS, and
OVERNIGHT). The overall architecture achieves the state-of-the-art results in all
three datasets.

1 INTRODUCTION

Semantic parsing is the task of deriving machine interpretable meaning representations such as logi-
cal forms or structured queries from natural language utterances. These meaning representations can
be executed in various environments, making semantic parsing applicable in many frameworks such
as querying data/knowledge bases for question answering (Zelle & Mooney, 1996; Zettlemoyer &
Collins, 2007; Liang et al., 2011; Berant et al., 2013), generating regular expression (Kushman &
Barzilay, 2013), instruction following (Artzi & Zettlemoyer, 2013), and communicating with robots
(Chen & Mooney, 2011; Tellex et al., 2011; Bisk et al., 2016).

Conventionally, semantic parsing has been done with a two step approach: first, a large number of
potential candidates are generated using deterministic methods and combinatorial search (the gen-
erator), and then the best candidate is selected among them with a probabilistic method or scoring
(the critic) (Berant & Liang, 2014; Kwiatkowski et al., 2013; Zettlemoyer & Collins, 2005; Berant
et al., 2013; Cai & Yates, 2013). With recent advancement of neural networks, neural models with
encoder-decoder architectures has obtained impressive improvements (Dong & Lapata, 2016; Jia &
Liang, 2016; Herzig & Berant, 2017; Su & Yan, 2017; B. Chen & Han, 2018; Shaw et al., 2019).
These encoder-decoder based neural semantic parsers produce one candidate given an input sen-
tence, essentially acting as both the generator and the critic. However, undesirable prediction errors
still occur, e.g. predicting a wrong comparative or superlative structure (such as < instead of ≤).
On the other hand, neural semantic parsing models have a high recall, i.e. top-n predictions of the
model cover the gold-standard meaning representation most of the time (c.f. Table 2 in Section 2).

In this work we propose a generator-reranker architecture that uses two neural networks for semantic
parsing: a generator network, which generates a list of potential candidates, and a reranker system,
which consists of a pre-processing step for the candidates followed by a novel critic network that
reranks these candidates based on the similarity between each candidate and the input sentence. An
advantage of separating the semantic parsing process into a generator network and a critic network
is that the critic observes each candidate and the input sentence entirely, taking into account bidi-
rectional representations of both sentences and can globally reason over the entire candidate. This
may be more effective in terms of choosing the right candidate and mitigating some of the errors
arising from auto-regressive decoding in the generator. Furthermore, the critic can leverage extra
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Table 1: One example from each dataset that we use in our experiments. Input utterances and the
corresponding logical forms are denoted by x and y respectively.

Dataset Example
GEO x : “which states adjoin alabama ?”

y : answer(state(next to 2(stateid(alabama))))

ATIS x : “get flights between st. petersburg and charlotte”
y : ( lambda $0 e ( and ( flight $0)

( from $0 st petersburg: ci) ( to $0 charlotte: ci)))

OVERNIGHT x : “show me all meetings not ending at 10 am”
y : Type.Meeting u EndTime. != 10

data sources for training, e.g. a paraphrase dataset and allow for better transfer learning. Our key
contributions in this work are the following:

1. We introduce a neural critic model, which reranks the candidates of a semantic parser based on
their similarity score with respect to the input utterance.

2. We propose various pre-processing methods for the candidates to leverage the pre-trained repre-
sentations of their tokens using the critic model.

3. We show through extensive qualitative and quantitative studies how the critic model helps miti-
gating errors of a state-of-the-art neural semantic parser and improves the performance.

Evaluation results of our approach on three existing semantic parsing datasets (see Table 1 for a
sample input-output pair for each dataset) show that our model improves upon the state-of-the-art
results and the generator-reranker architecture can substantially improve parsing performance.

2 RELATED WORK

The semantic parsing problem has received significant attention and has a rich literature (Kamath &
Das, 2018). While traditional approaches (Kate & Mooney, 2006; Wong & Mooney, 2007; Clarke
et al., 2010; Zettlemoyer & Collins, 2007; Kwiatkowski et al., 2011; Wang et al., 2015; Li et al.,
2015; Cai & Yates, 2013; Berant et al., 2013; Quirk et al., 2015; Artzi et al., 2015; Zhang et al., 2017)
rely on high-quality lexicons, manually-built templates, and/or domain or representation specific
features, in more recent studies neural models with encoder-decoder architectures show impressing
results (Dong & Lapata, 2016; Jia & Liang, 2016; Herzig & Berant, 2017; Su & Yan, 2017; B. Chen
& Han, 2018; Shaw et al., 2019).

Among recent results, Herzig & Berant (2017) achieves the best performance on the OVERNIGHT
dataset (Wang et al., 2015), which consists of 8 various domains. The model in Herzig & Berant
(2017) is an attention-based sequence-to-sequence model and it is trained jointly over 8 domains.
Very recently, Shaw et al. (2019) presents an approach that uses a Graph Neural Network (GNN)
architecture, which successfully incorporates information about relevant entities and their relations
in parsing natural utterances. Similar to Vinyals et al. (2015); Jia & Liang (2016); Herzig & Berant
(2017), the decoder has a copying mechanism, which can copy an entity to the output during parsing.
This model achieves the best performance in GEO dataset (Zelle & Mooney, 1996) and is competitive
with state-of-the-art in ATIS dataset (Dahl et al., 1994). We note that this model was not applied to
the OVERNIGHT dataset.

We provide in Table 2 the comparison between top-10 (25) oracle1 and top-1 (greedy decoding)
accuracy for the state-of-the-art sequence-to-sequence models. We note that while it may not be
possible to reach top-10 (25) accuracy for all datasets2, there is certainly room for improvement.

1The fraction of test examples where the gold-standard logical form is present in one of the top-10 (25)
predicted logical forms.

2For instance, Wang et al. (2015) reports 17% rate of incorrect labels in the OVERNIGHT dataset.
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Table 2: Top-1 (greedy decoding) vs top-10 (25) oracle for the best performing sequence-to-
sequence models on three semantic parsing datasets.

Model Dataset Top-1 Acc. Top-10 Oracle Top-25 Oracle
Herzig & Berant (2017) OVERNIGHT 79.6 91.7 93.5

Shaw et al. (2019) GEO 92.5 95.3 96.4
Shaw et al. (2019) ATIS 89.7 93.3 94.2

Figure 1: Overview of our method demonstrating semantic parsing process. In the example, the top
prediction by the generator is y1 whereas the candidate y2 is scored highest by the critic among the
candidates of the generator.

Motivated by these observations, we consider a generator-reranker architecture for semantic parsing.
The reranker system consists of a critic network, which reranks candidate logical forms based on
their similarity scores to the input utterance. We propose various techniques for processing candidate
logical forms before the critic scores their similarity to the input utterance. For the generator, we
use the model in Shaw et al. (2019) and for the critic, we use the BERT model (Devlin et al., 2018)
for all three datasets. Although the setting is parser agnostic, we would like to investigate if the
generator-reranker architecture can further improve the performance of the best performing parser.

To the best of our knowledge, our reranker system is novel and has not been considered before in
semantic parsing. However, the idea of reranking the candidates of a generator model appears in
various applications in the literature. We refer the reader to Collins & Koo (2005) for reranking
based on a combination of feature functions for various NLP tasks.

For semantic parsing task, Yavuz et al. (2016) applies reranking based on predicted answer type.
We note that this method may not be effective for the cases where the candidate logical forms return
the same answer type but the top prediction is wrong (such as predicting a wrong comparative,
e.g. < instead of ≤). We believe choosing the best candidate by assessing its relevance to the input
utterance entirely would be a more effective method. In a more recent work by Yin & Neubig (2019),
reranking is applied by two main quality-measuring features of candidate logical forms. The first
one is the reconstruction feature, using the probability of reproducing the original input utterance x
from y. The second is the discriminative matching feature, which is based on pair-wise associations
of tokens in x and y. In our work, reranking of candidate logical forms is applied based on their
similarity with the input utterance directly using a critic model which can leverage the pre-trained
representations of processed logical forms as well as extra data sources to learn similarity.

3 MODEL ARCHITECTURE

Our goal is to learn a model which maps an input utterance x to a logical form representation of
its meaning y. The input utterance x is a sequence of words x1, x2, . . . , xn1

∈ V(in) where V(in) is
the input vocabulary and the output logical form y is a sequence of tokens y1, y2, . . . , yn2 ∈ V(out)

where V(out) is the output vocabulary.

In this work, we consider a combination of two models for semantic parsing. Figure 1 illustrates the
model architecture along with an example. We describe the model architecture in what follows.
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3.1 GENERATOR

To generate candidate logical forms, we use the model recently introduced in Shaw et al. (2019),
which is based on the Transformer architecture (Vaswani et al., 2017), with the self-attention layer
extended to incorporate relations between input elements, and the decoder extended with a copy
mechanism similar to Vinyals et al. (2015); Jia & Liang (2016); Herzig & Berant (2017). The model
is trained with natural utterances paired with logical forms and learns shared representations from
these pairs. Candidate logical forms are generated using beam search for a given input utterance.

3.2 PROCESSING CANDIDATES

Before scoring the similarity between a logical form and an input utterance, we preprocess the can-
didate logical forms. We propose the processing methods in an increasing order of their complexity
and how close they map the logical forms to natural text. Note that the critic can leverage the
pretrained representations of more processed logical forms better and can be more effective when
scoring similarities. Figure 3 in Appendix A illustrates these methods along with an example.

3.2.1 RAW LOGICAL FORM

In this method, we consider raw logical forms without any processing for calculating similarity with
respect to the input utterance. This is the simplest method that is applicable to any dataset.

3.2.2 NATURAL LANGUAGE ENTITY NAMES

In this method, we simply convert entities to natural text. The output tokens are often self-
explanatory and easy to be converted to simple text, e.g., “num assists” → “number of assists”,
“en.location.greenberg cafe” → “greenberg cafe” in OVERNIGHT dataset, and “ arrival time” →
“arrival time” in ATIS dataset etc. This approach requires an additional step but can be applied in
a straightforward manner. The advantage of this approach is that the critic can leverage pre-trained
representations for these tokens. We describe the exact procedure in Appendix A for each dataset.

3.2.3 TEMPLATED EXPANSIONS

In this method, logical forms are converted to canonical utterances using a deterministic template
(e.g. arg max(type.player, numRebounds) to “player that has the largest number of re-
bounds”). The purpose of the canonical utterances is to capture the meaning of the logical forms.
Here the assumption is that while it is nearly impossible to generate a grammar that parses all utter-
ances, it is possible to write one that generates one canonical utterance for each logical form (Wang
et al., 2015). We use this method only for OVERNIGHT dataset as there is an available template in-
troduced in Wang et al. (2015) to convert the logical forms to canonical utterances. In this case, the
critic can be considered as a paraphrase model, producing a score based on the equivalence of two
sentences semantically. During test time, candidate logical forms that do not have a corresponding
canonical utterance are treated as incorrect candidates and they are not included in ranking.

3.3 CRITIC

The critic network takes two sentences as an input and outputs a score s ∈ [0, 1] based on the
similarity of the sentences. The input may consist of two arbitrary sentences (coming from different
language models, vocabularies etc.) depending on the processing of the logical forms described in
the previous section. We use the critic to rerank the candidate logical forms based on their similarity
score with respect to the input utterance. We use the BERT model (Devlin et al., 2018) for this task3.

To train the critic, positive and negative examples are generated as follows. Each natural utterance
in the training set has a gold-standard logical form, which forms the positive examples. For the
negative examples we apply the generator, which is trained over the training set, to generate logical
forms for each natural utterance in the training set with beam search. The incorrect logical forms are
paired with the natural utterance for negative examples. Additionally, we pair any two logical forms

3The logical forms are tokenized using the public BERT wordpiece tokenizer as wordpieces often contain
useful information. Different tokenization methods can be considered, which we leave for future work.
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Figure 2: Overview of generating training examples for the critic.

among beam candidates as negative examples to increase training data and to help the model learn
subtle differences among the candidates. The logical forms are processed according to the method
we use in the model. The positive pairs are labeled as 1 and the negative pairs are labeled as 0. The
model performs binary classification. Figure 2 illustrates this approach with an example.

As aforementioned, we can leverage existing paraphrase datasets to pretrain the critic and fine tune
it over the examples we generate. For instance, we use the Quora question pairs4, which contains
over 400K annotated question pairs with binary paraphrase labels. Furthermore, we may choose not
to apply reranking in certain cases. From the error cases of the critic over the training examples, two
cases stand out. The first one is where each candidate is scored below 0.5 (no candidate is similar
to the input utterance according to the critic) and the second one is the case where at least two
candidates are scored very high and close to each other. It appears quite natural not to do ranking if
all scores are below 0.5 to address the first case. On the other hand, one can address the second case
by setting a threshold between the best and second best score and choose not to do ranking if the
difference is less than this threshold. However, setting this threshold is prone to overfitting and may
look somewhat arbitrary if chosen by maximizing the accuracy over the evaluation set. Therefore,
we set this threshold as 0.001 once and keep it same for all experiments. Our goal here is merely to
show various strategies one can take with the critic model. We may choose not to rerank if either or
both of these cases occur at inference and instead output the top prediction of the generator.

4 EXPERIMENTS

4.1 DATASET

We use three semantic parsing datasets in our experiments. Table 1 presents an example for each
dataset.

GeoQuery (GEO) contains natural language questions about US geography along with correspond-
ing logical forms (Zelle & Mooney, 1996). We follow Zettlemoyer & Collins (2005) and use 600
training examples and 280 test examples. We use logical forms based on Functional Query Language
(FunQL) (Kate et al., 2005). We use logical form exact match when reporting accuracy.

ATIS (ATIS) contains natural language queries for a flights database along with corresponding
database queries written in lambda calculus (Dahl et al., 1994). We follow Zettlemoyer & Collins
(2007) and use 4473 training examples and 448 test examples. We compare normalized logical
forms using canonical variable naming and sorting for unordered arguments (Jia & Liang, 2016)
when reporing accuracy.

Overnight (OVERNIGHT) contains 13,682 examples of language utterances paired with logical
forms across eight domains (Wang et al., 2015). In this dataset, each logical form has a corre-
sponding canonical utterance, which we use in templated expansions method when we process the
candidate logical forms to canonical utterances. We evaluate on the same train/test split as Wang
et al. (2015); Jia & Liang (2016); Herzig & Berant (2017) with the same accuracy metric, i.e. the
fraction of test examples for which the denotations of the predicted and gold logical forms are equal.

4.2 TRAINING DETAILS

For the generator, we follow the settings of Shaw et al. (2019) for GEO and ATIS datasets. The
model was not applied to OVERNIGHT dataset, therefore, we configured the hyperparameters based

4See https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs.
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Table 3: Test accuracy for all models on OVERNIGHT dataset, which has eight domains: Basketball,
Blocks, Calendar, Housing, Publications, Recipes, Restaurants, and Social. We use the generator-
reranker (G-R) architecture with different options. Beam-n: Beam search is applied with size n, pQ:
The critic is pre-trained over the Quora dataset, TH1: rerank if there is at least one score above 0.5,
TH2: rerank if best score − second best score > 0.001. The candidate logical forms are processed
with templated expansions method (Section 3.2.3) in this experiment.

Method Bas. Blo. Cal. Hou. Pub. Rec. Res. Soc. Avg.
Previous Methods
B. Chen & Han (2018) 88.2 61.4 81.5 74.1 80.7 82.9 80.7 82.1 79.0
Su & Yan (2017)5 88.2 62.2 82.1 78.8 80.1 86.1 83.7 83.1 80.6
Herzig & Berant (2017) 86.2 62.7 82.1 78.3 80.7 82.9 82.2 81.7 79.6
Our Methods
Shaw et al. (2019) 89.3 63.7 81.5 82.0 80.7 85.6 89.5 84.8 82.1
G-R (Beam-10) 88.7 66.4 83.3 82.5 78.9 86.6 89.8 83.7 82.5
G-R (Beam-10 & pQ) 89.0 65.2 83.3 83.6 78.3 87.5 89.5 85.5 82.7
G-R (Beam-25) 89.0 67.7 83.3 84.1 82.6 87.5 89.4 83.9 83.4
G-R (Beam-25 & pQ) 89.3 66.7 84.5 83.6 80.1 88.0 91.0 85.2 83.5
G-R (Beam-25 & pQ & TH1) 89.0 65.7 85.1 83.6 81.4 88.0 91.0 86.0 83.7
G-R (Beam-25 & pQ & TH2) 88.7 66.4 82.7 83.1 82.0 87.0 89.8 85.8 83.2

on performance cross-validated on the training set. We provide the final setting and training process
in full detail in Appendix B.

For the critic, we use the BERTLARGE model in Devlin et al. (2018), where we feed two sentences as
an input and feed the [CLS] representation into an output layer for binary classification. We either
directly train the model with the examples generated by the generator (see Section 3.3) or train the
model on Quora question pairs first and fine tune it over our examples. We apply the early stopping
rule based on the evaluation set accuracy to determine the total training steps. We use the learning
rate 1e-6 and batch size 32 when we train and fine tune the critic.

4.3 RESULTS

OVERNIGHT: We compare our model with the state-of-the-art models in Table 3. All models use
the same training/test splits, therefore, we directly take the reported best performances from their
original papers for fair comparison. We use the model in Shaw et al. (2019) for the generator. As
Table 3 shows, this model alone (without any reranking) improves the state-of-the-art performance
from 79.6% to 82.15% accuracy and sets a new state-of-the-art as a sequence-to-sequence model.
In this experiment, we use templated expansions method (Section 3.2.3) when processing candidate
logical forms for reranking. We do our experiments over the generator-reranker architecture on three
settings:

1. Beam size - This determines the number of candidates produced by the generator.
2. Initialization of the critic - This determines how the critic is initialized. We use a pre-trained

model (pQ), which is trained over Quora question pairs and fine tuned over the generated ex-
amples by the generator. We compare this with directly training the critic over the generated
examples by the generator without Quora dataset.

3. Reranking with a threshold rule - We apply reranking based on various threshold rules. We
compare reranking at all times with reranking when there is at least one candidate with score
above 0.5 (TH1) and reranking if the difference between best score and second best score is
above 0.001 (TH2).

From the overall results, we can see that:
5In Su & Yan (2017), each domain has a separate model where it is trained using the training data of all

the other domains and fine tuned on the training data of the domain reported. All the other methods have one
single model.
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1. Increasing the beam size improves the performance as expected. As the generator outputs more
candidates, it is more likely that the correct form is among them. Therefore, this allows the
critic to identify a higher number of true positives and improve the performance. Increasing the
beam size further does not significantly improve the performance (beam size 50 achieves 83.80%
accuracy), hence we conclude the experiment with beam size 25.

2. Using a pre-trained model improves the performance as well. We note that the task of the critic
is to infer the similarity of two input sentences, therefore, we can initialize it with one that has
been trained over an existing paraphrase dataset.

3. Reranking with a threshold rule may be helpful for the overall architecture. We observe that
reranking by the critic at all times may not be the best approach. We note that choosing not
to rerank when all scores are below 0.5 increases the performance further. On the other hand,
reranking if the difference between the best score and second best score is above the threshold
we set does not help in this case.

The overall architecture improves the performance of the generator (82.1% accuracy) to 83.7%
accuracy. We note that this improvement is significant for OVERNIGHT dataset as it is an average
over 8 domains with an improvement for each one of them.

We next apply raw logical form (Section 3.2.1) and natural language entity names (Section 3.2.2)
methods when processing the candidate logical forms and show that the critic improves the per-
formance in these cases as well. While our best result with templated expansions (Section 3.2.3)
method achieves 83.71% accuracy in Table 3, the best results we achieve with the first two methods
are 82.81% and 83.16% respectively. We note that the critic improves upon the performance of the
generator (82.1% accuracy) in all three cases. As the logical forms are processed more towards
natural text, the performance gets better. This is expected since it helps the critic to measure the
similarity with respect to the input utterance.

GEO and ATIS: We continue with GEO and ATIS datasets and provide the best set of our results.

For the GEO dataset, we set the beam size as 10 for the number of candidates produced by the
generator. We do not process the candidate logical forms and use the raw versions as the output
tokens are already in processed form. We pretrain the critic over the Quora dataset and fine tune it
over the generated examples by the generator on the training set. We produce 25 candidate logical
forms for each example in the training set when generating examples to train the critic.

For the ATIS dataset, we set the beam size as 10 for the number of candidates produced by the
generator. We process the candidate logical forms with natural language entity names method in a
straightforward manner (see Appendix A.1). We pretrain the critic over the Quora dataset and fine
tune it over the generated examples by the generator on the training set. We produce 25 candidate
logical forms for each example in the training set when generating examples to train the critic.

The results are shown in Table 4. We observe a performance gain in both datasets and achieve the
state-of-the-art performance with the generator-reranker architecture. We note that in ATIS dataset,
there is a significant improvement upon the baseline and the overall architecture obtains the state-
of-the-art result over Wang et al. (2014), where the approach is not based on neural models.

4.4 ERROR ANALYSIS

In this section, we categorize the types of errors the generator model makes and analyze which ones
are corrected by the critic to understand what types of errors can be mitigated via our approach. We
use the OVERNIGHT dataset as it has a much larger test set. In the following examples, the top
prediction of the generator is wrong, but the gold-standard logical form is among the beam candi-
dates and correctly scored highest by the critic. We provide the corresponding canonical utterances
instead of the logical forms for the sake of presentation.

1. Wrong comparative structure:
Input utterance: meetings after january 2 or after january 3
Top prediction: meeting whose date is at least jan 2 or jan 3
Corrected to: meeting whose date is larger than jan 2 or jan 3
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Table 4: Test accuracy for all models on GEO and ATIS datasets. The settings follow the same as
Table 3 and we denote TH3 as the threshold rule of applying both TH1 and TH2, i.e. reranking
when there is at least one score above 0.5 and if best score− second best score > 0.001.

Method GEO
Previous Methods
Shaw et al. (2019) 92.5
Our Methods
G-R (Beam-10 & pQ) 92.5
G-R (Beam-10 & pQ & TH1) 92.5
G-R (Beam-10 & pQ & TH2) 93.2
G-R (Beam-10 & pQ & TH3) 93.2

Method ATIS
Previous Methods
Wang et al. (2014) 91.3
Shaw et al. (2019) 89.7
Our Methods
G-R (Beam-10 & pQ) 90.6
G-R (Beam-10 & pQ & TH1) 91.1
G-R (Beam-10 & pQ & TH2) 91.3
G-R (Beam-10 & pQ & TH3) 91.5

2. NP-shift to wrong position:
Input utterance: what article citing multivariate data analysis was in annals of statistics
Top prediction: article whose venue is annals of statistics and that multivariate data analysis cites
Corrected to: article whose venue is annals of statistics and that cites multivariate data analysis

3. Similar word confusion in elliptical constructions:
Input utterance: show me recipes with a preparation time equal to or greater than rice pudding
Top prediction: recipe whose preparation time is at least cooking time of rice pudding
Corrected to: recipe whose preparation time is at least preparation time of rice pudding

4. Incorrect matching to semantically non-equivalent phrase:
Input utterance: housing that is cheaper than 123 sesame street
Top prediction: housing unit whose size is smaller than size of 123 sesame street
Corrected to: housing unit whose monthly rent is smaller than monthly rent of 123 sesame street

Although the critic helps fixing these errors and improves the performance in semantic parsing,
there are few cases where it is ineffective. Therefore, a stronger critic may further increase the
performance. We provide here the cases where the top prediction of the generator is correct, but the
critic scores another prediction higher and this leads to an error.

1. Comparative by trivial algebra:
Input utterance: friends of people who joined their jobs before 2005
Top prediction: person that employee whose start date is at most 2004 is friends with
Best scored candidate: person that employee whose start date is smaller than 2004 is friends with

2. Comparative by common sense:
Input utterance: who is younger than alice
Top prediction: person whose birthdate is larger than birthdate of alice
Best scored candidate: person whose birthdate is smaller than birthdate of alice

5 CONCLUSION

In this paper, we proposed a generator-reranker architecture for semantic parsing. We introduced a
novel neural critic model that reranks the candidates of a semantic parser based on their similarity
scores with respect to the input utterance. We proposed various processing methods for the candidate
logical forms, enabling the critic to leverage the pre-trained representations for the tokens of the
candidates. Our architecture further enables leveraging extra data resources in a direct fashion. We
showed that the proposed architecture improves the parsing performance and achieves the state-of-
the-art results on three semantic parsing datasets.

As the model is generator agnostic, in the future work we plan to try (a combination of) neural
and/or traditional parsers as the generator and apply our architecture on more benchmark datasets.
In addition, we believe that our architecture may also be effective in the cross-lingual semantic
parsing setting (Zhang et al., 2018). One can leverage paraphrase datasets available in source-target
language and pretrain the critic, which could help choosing the right form among the generator
candidates.
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A PROCESSING CANDIDATES

A.1 NATURAL LANGUAGE ENTITY NAMES

We apply this method to OVERNIGHT and ATIS datasets as the GEO dataset does not require pro-
cessing since the output tokens already has English words.

For the ATIS dataset, we apply a very simple procedure. We take the tokens that start with an
underscore (i.e. “ ”) and remove it (e.g. “ from” → “from”, “ to” → “to” etc.). Additionally, for
such tokens, if there are underscores in between, we replace them with space to break into further
tokens (e.g. “ departure time”→ “departure time”, “ fare amount”→ “fare amount”).

For the OVERNIGHT dataset, each entity token has a corresponding English text available in Wang
et al. (2015), which is used in the process of building the dataset. These are used within a set of
rules for the logical form, canonical utterance conversion as well. We note that this method is rather
straightforward compared to templated expansions method since we only replace each entity token
with its corresponding English text.
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Figure 3: Overview of the proposed three methods with an example demonstrating each one. Raw
logical form method uses logical forms as they are without any change, natural language entity
names method simply changes entities to natural text, and templated expansions method uses a
template to convert logical forms to canonical utterances.

B TRAINING DETAILS OF THE GENERATOR ON OVERNIGHT DATASET

The final setting has 2 encoder and 2 decoder layers. The source embedding and hidden dimensions
are chosen as 64 and the target embedding and hidden dimensions are chosen as 128. We set the
corresponding feed forward layer hidden dimensions 4 times higher. We employed dropout at train-
ing time with probability 0.2. We used 8 attention heads for each task. We used a clipping distance
of 8 for relative position representations (Shaw et al., 2018).

We used the Adam optimizer (Kingma & Ba, 2014) with β1 = 0.9, β2 = 0.98, and ε = 1e-9. We set
the learning rate as 5e-5. We used the same warmup and decay strategy for learning rate as Vaswani
et al. (2017), selecting the warmup steps as 4000. We trained the model for 50000 steps with batch
size 32. We used a simple strategy of splitting each input utterance on spaces to generate a sequence
of tokens. We mapped any token that did not occur at least 2 times in the training dataset to a special
out-of-vocabulary token. Token embeddings are taken from a pre-trained BERT (Devlin et al., 2018)
encoder. We freeze the pre-trained parameters of BERT for 6000 steps, and then jointly fine tune all
parameters, similar to existing approaches for gradual unfreezing (Howard & Ruder, 2018). When
unfreezing the pre-trained parameters, we restart the learning rate schedule.

Motivated by the best performing approach in Herzig & Berant (2017), the generator is trained us-
ing the natural utterance, logical form pairs over all training examples, i.e., jointly over all domains.
Therefore, all model parameters are shared across domains and the model is trained from all exam-
ples. Since there is no explicit representation of the domain that is being decoded, to help the model
learn identifying the domain given only the input, we add an artificial token at the beginning of each
source sentence to specify the target domain, similar to Johnson et al. (2017) for neural machine
translation.
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