Under review as a conference paper at ICLR 2020

UNIFYING GRAPH CONVOLUTIONAL NEURAL
NETWORKS AND LABEL PROPAGATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Label Propagation (LPA) and Graph Convolutional Neural Networks (GCN) are
both message passing algorithms on graphs. Both solve the task of node classifi-
cation but LPA propagates node label information across the edges of the graph,
while GCN propagates and transforms node feature information. However, while
conceptually similar, theoretical relation between LPA and GCN has not yet been
investigated. Here we study the relationship between LPA and GCN in terms of
two aspects: (1) feature/label smoothing where we analyze how the feature/label
of one node are spread over its neighbors; And, (2) feature/label influence of how
much the initial feature/label of one node influences the final feature/label of an-
other node. Based on our theoretical analysis, we propose an end-to-end model
that unifies GCN and LPA for node classification. In our unified model, edge
weights are learnable, and the LPA serves as regularization to assist the GCN in
learning proper edge weights that lead to improved classification performance.
Our model can also be seen as learning attention weights based on node labels,
which is more task-oriented than existing feature-based attention models. In a
number of experiments on real-world graphs, our model shows superiority over
state-of-the-art GCN-based methods in terms of node classification accuracy.

1 INTRODUCTION

Consider the problem of node classification in a graph, where the goal is to learn a mapping M :
VY — L from nodes V to labels L. Solution to this problem is widely applicable to various scenarios,
e.g., inferring income of users in a social network or classifying scientific articles in a citation
network. Different from a generic machine learning problem where samples are independent from
each other, nodes are connected by edges in the graph, which provide additional information and
require more delicate modeling. To capture the graph information, researchers have mainly designed
models on the assumption that labels and features vary smoothly over the edges of the graph. In
particular, on the label side £, node labels are propagated and aggregated along edges in the graph,
which is known as Label Propagation Algorithm (LPA) (Zhu et al., 2003; Zhou et al., 2004; Zhang
& Lee, 2007; Wang & Zhang, 2008; Karasuyama & Mamitsuka, 2013; Gong et al., 2017; Liu et al.,
2019a); On the node side V, node features are propagated along edges and transformed through
neural network layers, which is known as Graph Convolutional Neural Networks (GCN) (Kipf &
Welling, 2017; Hamilton et al., 2017; Li et al., 2018; Xu et al., 2018; Liao et al., 2019; Xu et al.,
2019; Qu et al., 2019).

GCN and LPA are related in that they propagate features and labels on the two sides of the mapping
M, respectively. However, the relationship between GCN and LPA has not yet been investigated.
Specifically, what is the theoretical relationship between GCN and LPA, and how can they be com-
bined to develop a more accurate model for node classification in graphs?

Here we study the theoretical relationship between GCN and LPA from two viewpoints: (1)
Feature/label smoothing, where we show that the intuition behind GCN/LPA is smoothing fea-
tures/labels of nodes across the edges of the graph, i.e., one node’s feature/label equals the weighted
average of features/labels of its neighbors. We prove that if edge weights smooth the node features,
they also smooth the node labels with guaranteed upper bound on the approximation error. And, (2)
feature/label influence, where we quantify how much the initial feature/label of node v, influences

Under review as a conference paper at ICLR 2020

the output feature/label of node v, in GCN/LPA by studying the Jacobian/gradient of node v}, with
respect to node v,, and then we also prove their quantitative relationship.

Based on the above theoretical analysis, we propose a unified model GCN-LPA for node classifi-
cation. We show that the key to improving the performance of GCN is to enable nodes within the
same class/label to connect more strongly with each other by making edge weights/strengths train-
able. Then we prove that increasing the strength of edges between the nodes of the same class is
equivalent to increasing the accuracy of LPA’s predictions. Therefore, we can first learn the opti-
mal edge weights by minimizing the loss of predictions in LPA, then plug the optimal edge weights
into a GCN to learn node representations and do final classification. In GCN-LPA, we further com-
bine the two steps together and train the whole model in an end-to-end fashion, where the LPA
part serves as regularization to assist the GCN part in learning proper edge weights that benefit the
separation of different classes. It is worth noticing that GCN-LPA can also be seen as learning at-
tention weights for edges based on node label information, which requires less handcrafting and is
more task-oriented than existing work that learns attention weights based on node feature similarity
(Velickovi¢ et al., 2018; Thekumparampil et al., 2018; Zhang et al., 2018; Liu et al., 2019b). Ex-
periments on five datasets indicate that our model outperforms state-of-the-art methods in terms of
classification accuracy.

2 UNIFYING GCN AND LPA

In this section, we first formulate the node classification problem and briefly introduce LPA and
GCN. We then prove their relationship from the viewpoints of smoothing and influence. Based on
our theoretical analysis, we then propose a unified model GCN-LPA, and we also analyze the reason
why our model performs better than GCN in node classification.

2.1 PROBLEM FORMULATION AND PRELIMINARIES

We begin by describing the problem of node classification on graphs and introducing notation. Con-
sider a graph G = (V, A, X,Y), where V = {v1,--- ,v,} is the set of nodes and A € R™*" is the
adjacency matrix (self-loops are included). Each node v; has a feature vector x;, while only the first
m nodes have labels y1, - - - , Yy, from the label set £ = {1,--- | ¢}. The goal is to learn a mapping
M 'V — L and predict labels of unlabeled nodes.

Label Propagation Algorithm. LPA assumes that two connected nodes are likely to have the same

label, and thus it propagates labels iteratively along the edges. Define Y (*) = [y%k), SRR yék)]—'— €
R™*¢ as the soft label matrix (i.e., predicted label distribution of all nodes) in iteration k£ and D as
the diagonal degree matrix for A with entries d;; = > ; @ij- Then label propagation scheme (Zhu
et al., 2003) in iteration k is formulated as

yk+l) — p=1gy®), (1)
where y§0> is the one-hot indicator vector of y; forz = 1, - - - ,m or zero vector otherwise. Note that
yng) is reset to its initial label yl(o) fori = 1,--- ,m after iteration % since these nodes are labeled.

Graph Convolutional Neural Network. GCN is a multi-layer feedforward neural network that
propagates and transforms node features across the graph. The layer-wise propagation rule of GCN
is XD = 5(D=2AD~2 X(®W*)) where W*) is trainable weight matrix in the k-th layer,
o(+) is an activation function such as ReLU, and X (%) = [xgk)7 e ,x;"”]T are the k-th layer node
representations with X(?) = X. To align with the above LPA, we use D~ 'A as the normalized
adjacency matrix instead of the symmetric one D 2AD™ = proposed by Kipf & Welling (2017).
Therefore, the feature propagation scheme of GCN in layer k is:

XD = o(DrAXF k), 2)

Notice similarity between Eqgs. (1) and (2). Next we shall study and uncover the relationship between
the two equations.

Under review as a conference paper at ICLR 2020

2.2 FEATURE SMOOTHING AND LABEL SMOOTHING

The intuition behind both LPA and GCN is smoothing (Zhu et al. 2003 Li et al ,2018): In LPA, the
final label of a node is the weighted average of labels of its neighbors: yl d > JEN() Qi y§m);
in GCN, the final node representation is also the weighted average of representations of its neighbors
if we assume o is identity function and (") are identity matrices: x(oo) 1 Z JEN (i) Qi XSOO)
Next we show the relationship between feature smoothing and label smoothlng

Theorem 1 (Relationship between feature smoothing and label smoothing) Suppose that the
latent ground-truth mapping M : x — y from node features to node labels is differentiable
and satisfies L-Lipschitz constraint, i.e., (x1) — M(x2)] < L||x1 — x2||2 for any x1 and
Xo. If the edge weights {a;;} approximately smooth x; over its immediate neighbors with error
€;, L., X; = d% Zjej\/(i) a;jX; + €, then the edge weights {a;;} also approximately smooth y;

over its immediate neighbors with the following approximation error: ’yi — d > JEN() iV

Llleill2 + o(max ey (|Ix; — x4]|2)), where () denotes a higher order infinitesimal than c.

Proof of Theorem 1 is in Appendix A. Theorem 1 indicates that label smoothing is theoretically
guaranteed by feature smoothing. Note that if we treat edge weights {a;;} learnable, then feature
smoothing (i.e., ¢, — 0) can be directly achieved by keeping node features x; fixed while setting
{a;;} appropriately, without resorting to feature propagation in a multi-layer GCN. Therefore, a
simple approach to exploit this theorem would be to learn {a;;} by reconstructing node feature
x; from its neighbors, then use the learned {aij} to reconstruct node labels y; (Karasuyama &

Mamitsuka, 2013). This is equivalent to first minimizing the difference between X (*) and X (M) by

learning D~ A in a one-layer GCN where o and W (?) are identity, then plug the learned D~ A in
LPA and run it for one iteration.

As shown in Theorem 1, the approximation error of labels is dominated by L||¢;||2. However,
this error could be fairly large in practice because: (1) The number of immediate neighbors for a
given node may be too small to reconstruct its features perfectly, especially in the case where node
features are high-dimensional and sparse. For example, in a citation network where node features
are one-hot bag-of-words vectors, the feature of one article can never be precisely reconstructed if
none of its neighboring articles contains the specific word that appears in this article. As a result,
||€;]|2 will be non-neglibible. This explains why it is beneficial to apply LPA and GCN for multiple
iterations/layers in order to include information from farther away neighbors. (2) The ground-truth
mapping M may not be sufficiently smooth due to the complex structure of latent manifold and
possible noise, which fails to satisfy L-Lipschitz constraint. In other words, the constant L will be
extremely large.

2.3 FEATURE INFLUENCE AND LABEL INFLUENCE

To address the above concerns and extend our analysis, we next consider GCN and LPA with multi-
ple layers/iterations, and do not impose any constraint on the ground-truth mapping M.

Consider two nodes v, and vy, in a graph. Inspired by Koh & Liang (2017) and Xu et al. (2018), we
study the relationship between GCN and LPA in terms of influence, i.e., how the output feature/label
of v, will change if the initial feature/label of v; is varied slightly. Technically, the feature/label
influence is measured by the Jacobian/gradient of the output feature/label of v, with respect to the
initial feature/label of v;,. Denote xgk) as the k-th layer representation vector of v, in GCN, and x;
as the initial feature vector of v,. We quantify the feature influence of v on v, as follows:

Definition 1 (Feature influence) The feature influence of node vy, on node v, after k layers of GCN
is the L1-norm of the expected Jacobian matrix oxH JOxp: Ij(va, vp; k) = ||E [5‘x,(1k)/8xb] | 1+ The
normalized feature influence is then defined as I ;(vq,vp; k) = It (va, vp; k)/ Y viey Lr(Va, vis k).

We also consider the label influence of node v;, on node v, in LPA (this implies that v, is unlabeled
and vy, is labeled). Since different label dimensions of yl(')
we assume that all y; and yl(') are scalars within [0, 1] (i.e., a binary classification) for simplicity.
Label influence is defined as follows:

do not interact with each other in LPA,

Under review as a conference paper at ICLR 2020

Definition 2 (Label influence) The label influence of labeled node vy on unlabeled node v, after k

iterations of LPA is the gradient of y((lk) with respect to yp: Ij(vg, vp; k) = 8y((lk) /Oyp.

The following theorem shows the relationship between feature influence and label influence:

Theorem 2 (Relationship between feature influence and label influence) Assume the activation
Sfunction used in GCN is ReLU. Denote v, as an unlabeled node, vy, as a labeled node, and (3 as the
fraction of unlabeled nodes. Then the label influence of vy, on v, after k iterations of LPA equals, in
expectation, to the cumulative normalized feature influence of vy, on v, after k layers of GCN:

E (11 (va, vp; k)] :ijlﬁjff(vavvb;j)- 3)

Proof of Theorem 2 is in Appendix B. Intuitively, Theorem 2 shows that if v has high label influence
on v,, then the initial feature vector of v, will also affect the output feature vector of v, to a large
extent. Theorem 2 provides the theoretical guideline for designing our unified model in the next
subsection.

2.4 THE UNIFIED MODEL

Before introducing the proposed model, we first rethink the GCN method and see what an ideal
node representation should be like. Since we aim to classify nodes, the perfect node representation
would be such that nodes with the same label are embedded close together, which would give a large
separation between different classes. Intuitively, the key to achieve this goal is to enable nodes within
the same class to connect more strongly with each other, so that they are pushed together by the
GCN. We can therefore make edge strengths/weights trainable, then learn to increase the intra-class
feature influence for each class iz >°, ., _ It(va,vs) by adjusting edge weights. However,
this requires operating on Jacobian matrices with the size of d(®©) x d5) (d(®) and d¥) are the
dimensions of initial and output features, respectively), which is impractical if initial node features
are high-dimensional. Fortunately, we can turn to optimizing the intra-class label influence instead,
e, D00 uyiyemigy—i 11(Va; vp), according to Theorem 2. We further show that, by the following
theorem, the intra-class label influence for a given node v,, is proportional to the probability that v,
is classified correctly by LPA:

Theorem 3 (Relationship between label influence and LPA’s prediction) Consider a given node
vq and its label y,. If we treat node v, as unlabeled, then the total label influence of nodes with
label y, on node v, is proportional to the probability that node v, is classified as vy, by LPA:

Y Di(va,vbsk) o< Pr (o = ya),)

Vb Yb="Ya

where 1, is the predicted label of v, using a k-iteration LPA.

Proof of Theorem 3 is in Appendix C. Theorem 3 indicates that, if edge weights A* maximize
the probability that v, is correctly classified by LPA, then they also maximize the intra-class label
influence for node v,. We can therefore first learn the optimal edge weights A* by minimizing the
loss of predicted labels by LPA:

1
A* = in L a A = i - J Aa> a)s 5
argjmn 1pa(A) argjnln - Z (a>Ya) ®)

Vg:alm

where J is the cross-entropy loss and a < m means v, is labeled. The optimal A* maximize the
probability that each node is correctly labeled by LPA, thus also increasing the intra-class label
influence (by Theorem 3) and intra-class feature influence (by Theorem 2). Then we can apply A*
and the corresponding D* to a GCN to predict labels and learn optimal transformation matrices:

XE) — (Dt AX®Ww Ry k=01, K -1, (6)
W* = argmin Lye, (W, A*) = arg min J(X %) V). 7
w w

Under review as a conference paper at ICLR 2020

In practice, it is generally better to combine the above two steps together and train the whole model
in an end-to-end fashion:

W*, A* = argmin Lge, (W, A) + ALjpe (A4), 8)

W,A

where A is the balancing hyper-parameter. In this way, L;,q(A) serves as a regularization term
that assists the learning of edge weights A, since it is hard for the GCN to learn both W and A
simultaneously due to overfitting. The proposed GCN-LPA approach can also be seen as learning the
importance of edges that can be used to reconstruct node labels accurately by LPA, then transferring
this knowledge from label space to feature space for the GCN. From this perspective, GCN-LPA
also connects to Theorem 1 except that the knowledge transfer is in the other direction.

It is also worth noticing how the optimal A* is configured. The principle here is that we do not mod-
ify the basic structure of the original graph (i.e., not adding or removing edges) but only adjusting
weights of existing edges. This is equivalent to learning a positive mask matrix M for the adjacency
matrix A and taking the Hadamard product M oA = A*. Each element M;; can be set as either a free
variable or a function of the nodes at edge endpoints, for example, M;; = log (exp(xlT Hx;) + 1)
where H is a learnable kernel matrix for measuring feature similarity.

2.5 ANALYSIS OF GCN-LPA MODEL BEHAVIOR

In this subsection, we show benefits of our unified model compared with GCN by analyzing proper-
ties of embeddings produced by the two models. We first analyze the update rule of GCN for node v;:

xgkﬂ) =0 D s N (v) &ijx§k)w(k)), where d;; = a;;/d;; is the normalized weight of edge (j, 7).
This formula can be decomposed into the following two steps: (1) In aggregation step, we calculate
the aggregated representation hgk) of all neighborhoods N (v;): hgk) = Zvj EN(v:) Ezl-jx;k); (2) In
transformation step, the aggregated representation hgk) is mapped to a new space by a transforma-

tion matrix and nonlinear function: xgkﬂ) = U(hgk)W(k)). We show by the following theorem
that the aggregation step reduces the overall distance in the embedding space between the nodes that
are connected in the graph:

Theorem 4 (Shrinking property in GCN) Let D(x) = 3 Z%Uj a;j||xi —x;||3 be a distance met-

ric between the embeddings x of nodes. Then we have D(h(®)) < D(x(*)).

Proof of Theorem 4 is in Appendix D. Theorem 4 indicates that the overall distance among con-
nected nodes is reduced after taking one aggregation step, which implies that connected components
in the graph “shrink” and nodes within each connected component get closer to each other in the
embedding space. In an ideal case where edges only connect nodes with the same label, the aggre-
gation step will push nodes within the same class together, which greatly benefits the transformation
step that acts like a hyperplane W) for classification. However, two connected nodes may have
different labels. These “noisy” edges will impede the formation of clusters and make the inter-class
boundary less clear.

Fortunately, in GCN-LPA, edge weights are learned by minimizing the difference between ground-
truth labels and labels reconstructed from multi-hop neighbors. This will force the model to increase
weight/bandwidth of possible paths that connect nodes with the same label, so that labels can “flow”
easily along these paths for the purpose of label reconstruction. In this way, GCN-LPA is able to
identify potential intra-class edges and increase their weights to assist learning clustering structures.

To illustrate this, we apply a two-layer untrained GCN with randomly initialized transformation
matrices to the well-known Zachary’s karate club network (Zachary, 1977) as shown in Figure 1a,
which contains 34 nodes of 2 classes and 78 unweighted edges (grey solid lines). We then increase
the weights of intra-class edges by ten times to simulate GCN-LPA. We find that GCN works well
on this network (Figure 1b), but GCN-LPA performs even better than GCN because the node em-
beddings are completely linearly separable as shown in Figure 1c. To further justify our claim, we
randomly add 20 “noisy” inter-class edges (grey dotted lines) to the original network, from which we
observe that GCN is misled by noise and mixes nodes of two classes together (Figure 1d), but GCN-
LPA still distinguishes the two clusters (Figure le) because it is better at “denoising” undesirable
edges based on the supervised signal of labels.

Under review as a conference paper at ICLR 2020

(a) Karate club network (b) GCN on the (c) GCN-LPA onthe (d) GCN onthe (e) GCN-LPA on the
with noisy edges original network original network noisy network noisy network

Figure 1: Visualization of two-dimensional node embeddings learned by an untrained GCN and
GCN-LPA on Zachary’s karate club network. Coordinates in (b)-(e) are embedding coordinates. We
also randomly add extra “noisy” edges that connect two nodes with different classes to the original
network (grey dotted lines in (a)). More visualization results are included in Appendix E.

3 CONNECTION TO EXISTING WORK

Edge weights play a key role in graph-based node classification as well as representation learning.
In this section, we discuss three lines of related work that learn edge weights adaptively.

Locally linear embedding (LLE) (Roweis & Saul, 2000) and its variants (Zhang & Wang, 2007,
Kong et al., 2012) learn edge weights by constructing a linear dependency between a node and
its neighbors, then use the learned edge weights to embed high-dimensional nodes into a low-
dimensional space. Our work is similar to LLE in the aspect of transferring the knowledge of edge
importance from one space to another, but the difference is that LLE is an unsupervised dimension
reduction method that learns the graph structure based on local proximity only, while our work is
semi-supervised and explores high-order relationship among nodes.

Classical LPA (Zhu et al., 2003; Zhou et al., 2004) can only make use of node labels rather than node
features. In contrast, adaptive LPA considers node features by making edge weights learnable.
Typical techniques of learning edge weights include adopting kernel functions (Zhu et al., 2003;
Liu et al., 2019a) (e.g., a;; = exp(— >_,(zia — x;4)?/03) where d is dimensionality of features),
minimizing neighborhood reconstruction error (Wang & Zhang, 2008; Karasuyama & Mamitsuka,
2013), using leave-one-out loss (Zhang & Lee, 2007), or imposing sparseness on edge weights
(Hong et al., 2009). However, in these LPA variants, node features are only used to assist learning
the graph structure rather than explicitly mapped to node labels, which limits their capability in node
classification. Another notable difference is that adaptive LPA learns edge weights by introducing
the regularizations above, while our work takes LPA itself as regularization to learn edge weights.

Our method is also conceptually connected to attention mechanisms on graphs (Velickovic et al.,
2018; Thekumparampil et al., 2018; Zhang et al., 2018; Liu et al., 2019b), in which an attention
weight ;; is learned between node v; and v;. For example, a;; = LeakyReLU(a " [Wx;||Wx;,])
in GAT (Velickovi¢ et al., 2018), a;; = a - cos(Wx;, ij) in AGNN (Thekumparampil et al.,
2018), Q5 = (Wlxi)TWQXj in GaAN (Zhang et al., 2018), and Q5 = CLT tanh(Wlxi + Wng)
in GeniePath (Liu et al., 2019b), where a and W are trainable variables. A significant difference
between these attention mechanisms and our work is that attention weights are learned based merely
on feature similarity, while we propose that edge weights should be consistent with the distribution
of labels on the graph, which requires less handcrafting of the attention function and is more task-
oriented. Nevertheless, all the above formulas for calculating attentions can also be used in our
model as the implementation of edge weights.

4 EXPERIMENTS

We evaluate our model and present its performance on five datasets including citation networks and
coauthor networks. We also study the hyper-parameter sensitivity and provide training time analysis.

4.1 DATASETS

We use the following five datasets in our experiments:

Under review as a conference paper at ICLR 2020

Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy
nodes 2,708 3,327 19,717 18,333 34,493
edges 5,278 4,552 44,324 81,894 247,962
features 1,433 3,703 500 6,805 8,415
classes 7 6 3 15 5
Intra-class edge rate 81.0% 73.6% 80.2% 80.8% 93.1%

Table 1: Dataset statistics after removing self-loops and duplicate edges.

Citation networks: We consider three citation network datasets (Sen et al., 2008): Cora, Citeseer,
and Pubmed. In these datasets, nodes correspond to documents, edges correspond to citation links,
and each node has a sparse bag-of-words feature vector as well as a class label. Coauthor networks:
We also use two co-authorship networks (Shchur et al., 2018), Coauthor-CS and Coauthor-Phy,
based on Microsoft Academic Graph from the KDD Cup 2016 challenge. Here nodes are authors
and an edge indicates that two authors co-authored a paper. Node features represent paper keywords
for each author’s papers, and class labels indicate most active fields of study for each author.

Statistics of the five datasets are shown in Table 1. We also calculate the intra-class edge rate
(the fraction of edges that connect two nodes within the same class), which is significantly higher
than inter-class edge rate in all networks. The finding supports our claim in Section 2.5 that node
classification benefits from intra-class edges in a graph.

4.2 BASELINES

We compare against the following baselines in our experiments: Multi-layer Perceptron (MLP)
and Logistic Regression (LR) are feature-based methods that do not consider the graph structure.
Label Propagation (LPA) (Zhu et al., 2003), on the other hand, only consider the graph struc-
ture and ignore node features. The rest of baselines are GCN-based methods: Graph Convolu-
tional Network (GCN) (Kipf & Welling, 2017) proposes a first-order approximation to spectral
graph convolutions. Graph Attention Network (GAT) (Velickovi¢ et al., 2018) propose an at-
tention mechanism to treat neighbors differently in the aggregation step. Jumping Knowledge
Networks (JK-Net) (Xu et al., 2018) leverages different neighborhood ranges for each node to en-
able structure-aware representation. We use concat as the aggregator for JK-Net. Graph Sampling
and Aggregation (GraphSAGE) (Hamilton et al., 2017) is a mini-batch implementation of GCN
that uses neighborhood sampling strategy and different aggregation schemes. We use mean as the
aggregator for GraphSAGE.

4.3 EXPERIMENTAL SETUP

Our experiments focus on the transductive setting where we only know labels of part of nodes but
have access to the entire graph as well as features of all nodes. The ratio of training, validation, and
test set are set as 6 : 2 : 2. The weight of each edge is treated as a free variable during training. We
train our model for 200 epochs using Adam (Kingma & Ba, 2015) and report the test set accuracy
when validation set accuracy is maximized. Each experiment is repeated three times and we report
the mean and 95% confidence interval. We initialize weights according to Glorot & Bengio (2010)
and row-normalize input features. During training, we apply L2 regularization to the transformation

Method Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy
MLP 646+17 620+£18 859403 917+t 14 94.1+12
LR 773+18 71.2+18 86.0+0.6 91.1 £ 0.6 93.8 + 1.1
LPA 853409 70.0 &+ 1.7 82.6 + 0.6 91.34+0.2 949 4+ 04
GCN 88.2+ 0.8 773+£1.5 8§72+ 0.4 936 +£1.5 96.2 +£0.2
GAT 87.7+03 762+09 869+0.5 93.8 £ 04 96.3 +£ 0.7
JK-Net 89.1+12 783+£09 858+1.1 924+ 04 948 +04
GraphSAGE | 868+ 19 752+ 1.1 847+ 1.6 926 £ 1.6 945+ 1.1
GCN-LPA 885+ 15 787+06 87.8+0.6 94.8 + 04 96.9 + 0.2

Table 2: Mean and 95% confidence interval of test set accuracy for all methods and datasets.

Under review as a conference paper at ICLR 2020

80 80

n mm GCN-LPA
s GCN
S 1o
S
75 o
75
oy ‘NE/E\B/E\S\S-S\‘ 3 m @
e e =
2)/e_e’/e/é—e—e———\ 3 o
¥ [+ €
<70 <70 s
o
—o— # GCN layers = 1 —o— # GCN layers = 1 Lo
GCN layers = 2 # GCN layers = 2 £
—5— # GCN layers = 3 —B- # GCN layers = 3 o
65 65 =
2 3 42 5 & 71 8 1 2 5 0 15 20 1K 10K 100K ™M
LPA iterations A # nodes

Figure 2: Sensitivity to # LPA Figure 3: Sensitivity to A on Figure 4: Training time per
iterations on Citeseer dataset. Citeseer dataset. epoch on random graphs.

matrices and use the dropout technique (Srivastava et al., 2014). The settings of all other hyper-
parameters can be found in Appendix F.

4.4 RESULTS

The results of node classification are summarized in Table 2. Table 2 indicates that only using node
features (MLP, LR) or graph structure (LPA) will lead to information loss and cannot fully exploit
datasets in general. The results demonstrate that our proposed GCN-LPA model surpasses state-
of-the-art GCN/GNN baselines. We note that JK-Net is a strong baseline on Cora, but it does not
perform consistently well on other datasets.

We investigate the influence of the number of LPA iterations and the training weight of LPA loss
term A on the performance of classification. The results on Citeseer dataset are plotted in Figures
2 and 3, respectively, where each line corresponds to a given number of GCN layers in GCN-LPA.
From Figure 2 we observe that the performance is boosted at first when the number of LPA iterations
increases, then the accuracy stops increasing and decreases since a large number of LPA iterations
will include more noisy nodes. Figure 3 clearly shows that training without the LPA loss term
(i.e., A = 0) is more difficult than the case where A = 1 ~ 5, which justifies our aforementioned
claim that it is hard for the GCN part to learn both transformation matrices W and edge weights A
simultaneously without the assistance of LPA regularization.

We study the training time of GCN-LPA on random graphs. We use the one-hot identity vector
as feature and O as label for each node. The size of training set and validation set is 100 and 200,
respectively, while the rest is test set. The average number of neighbors for each node is set as 5, and
the number of nodes is varied from one thousand to one million. We run GCN-LPA and GCN for
100 epochs on a Microsoft Azure virtual machine with 1 NVIDIA Tesla M60 GPU, 12 Intel Xeon
CPUs (E5-2690 v3 @2.60GHz), and 128GB of RAM, using the same hyper-parameter setting as in
Cora. The training time per epoch of GCN-LPA and GCN is presented in Figure 4. Our result shows
that GCN-LPA requires only 9.2% extra training time on average compared to GCN.

5 CONCLUSION AND FUTURE WORK

In this paper, we studied the theoretical relationship between two types of well-known graph-based
models for node classification, label propagation algorithm and graph convolutional neural networks,
from the perspectives of feature/label smoothing and feature/label influence. We then propose a
unified model GCN-LPA, which learns transformation matrices and edge weights simultaneously
in GCN with the assistance of LPA regularizer. We also analyze why our unified model performs
better than traditional GCN in node classification. Experiments on five datasets demonstrate that our
model outperforms state-of-the-art baselines, and it is also highly time-efficient with respect to the
size of a graph.

We point out two avenues of possible directions for future work. First, our proposed model focuses
on transductive setting where all node features and the entire graph structure are given. An interest-
ing problem is whether it can be applied to inductive setting where we have no access to test nodes
during training. Second, the question of how to generalize the idea of our model to GNNs with
different aggregation functions (e.g., concatenation or max-pooling) is also a promising direction.

Under review as a conference paper at ICLR 2020

REFERENCES

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International Conference on Artificial Intelligence and
Statistics, 2010.

Chen Gong, Dacheng Tao, Wei Liu, Liu Liu, and Jie Yang. Label propagation via teaching-to-
learn and learning-to-teach. IEEE Transactions on Neural Networks and Learning Lystems, 28
(6), 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, 2017.

Cheng Hong, Zicheng Liu, and Jie Yang. Sparsity induced similarity measure for label propagation.
In Proceedings of the 12th IEEE International Conference on Computer Vision. IEEE, 2009.

Masayuki Karasuyama and Hiroshi Mamitsuka. Manifold-based similarity adaptation for label prop-
agation. In Advances in Neural Information Processing Systems, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of the 5th International Conference on Learning Representations, 2017.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
Proceedings of the 34th International Conference on Machine Learning, 2017.

Deguang Kong, Chris Ding, Heng Huang, and Feiping Nie. An iterative locally linear embedding
algorithm. In Proceedings of the 29th International Coference on International Conference on
Machine Learning. Omnipress, 2012.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In The 32nd AAAI Conference on Artificial Intelligence, 2018.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. In Proceedings of the 7th International Conference on Learning
Representations, 2019.

Yanbin Liu, Juho Lee, Minseop Park, Saechoon Kim, Eunho Yang, Sung Ju Hwang, and Yi Yang.
Learning to propagate labels: Transductive propagation network for few-shot learning. In Pro-
ceedings of the 7th International Conference on Learning Representations, 2019a.

Ziqi Liu, Chaochao Chen, Longfei Li, Jun Zhou, Xiaolong Li, Le Song, and Yuan Qi. Geniepath:
Graph neural networks with adaptive receptive paths. In The 33rd AAAI Conference on Artificial
Intelligence, 2019b.

Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural networks. In Proceedings
of the 36th International Conference on Machine Learning, 2019.

Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally linear embed-
ding. science, 290(5500), 2000.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3), 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls
of graph neural network evaluation. In Neural Information Processing Systems Workshop on
Relational Representation Learning, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1), 2014.

Under review as a conference paper at ICLR 2020

Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proceedings of the 6th International Conference on Learn-
ing Representations, 2018.

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. IEEE Transac-
tions on Knowledge and Data Engineering, 20(1), 2008.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings
of the 35th International Conference on Machine Learning, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the 7th International Conference on Learning Representations,
2019.

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
anthropological research, 33(4), 1977.

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung. Gaan:
Gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint
arXiv:1803.07294, 2018.

Xinhua Zhang and Wee S Lee. Hyperparameter learning for graph based semi-supervised learning
algorithms. In Advances in Neural Information Processing Systems, 2007.

Zhenyue Zhang and Jing Wang. Mlle: Modified locally linear embedding using multiple weights.
In Advances in Neural Information Processing Systems, 2007.

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Scholkopf. Learn-
ing with local and global consistency. In Advances in Neural Information Processing Systems,
2004.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International Conference on Machine
Learning, 2003.

10

Under review as a conference paper at ICLR 2020

APPENDIX

A PROOF OF THEOREM 1

Proof. Denote a;; = a;;/d;; as the normalized weight of edge (7, 7). Itis clear that JEN() a;ij =
1. Given that M is differentiable, we perform a first-order Taylor expansion with Peano’s form of
remainder at x; for 3 -, @ijy;:

D ayy= Y agMxy)

JEN(3) JEN(3)
- aM(Xl)
= 3y (M) + 25 0 x) ol ~ xil)
JEN (D)
OM(x;) _ _ ©
= M(xi) + =55 > aixg—x)+ Y ao(x; —xill2)
JEN(3) JEN(D)
8/\/1 xl
=Y — € + Z aijo([lx; — xi[2)-
JEN(3)
According to Cauchy-Schwarz inequality and L-Lipschitz property, we have
‘6}(761' < HaxT < Leillz- (10)
Therefore, the approximation of y; is bounded by
vi— Y iy
JEN (i)
8M(xl) ~
=T~ 2 auollxs = xill2)
JEN(3) (11
6M(xl) ~
< | Taer il | 2 aiollxg = xillz)
JEN (i)
< L||¢; P — X; .
< Lljell2 + o max (Ihe; —)
|

B PROOF OF THEOREM 2

Before proving Theorem 2, we first give two lemmas that demonstrate the exact form of feature
influence and label influence defined in this paper. The relationship between feature influence and
label influence can then be deduced from their exact forms.

Lemma 1 Assume the activation function in GCN is ReLU. Let Py, be a path [v(k), o= 1}(0)]
of length k from node v, to node vy, where v¥) = v,, 00 = v, and v0-V € N(’U(i)) for
i=k,---,1. Then we have

Ip(va,ves ZHG (i=1) (i) 5 (12)
Pr i=k
where G,,(i-1)) is the normalized weight of edge (v®, =),
Proof. See Xu et al. (2018) for the detailed proof. (]

The product term in Eq. (12) is the probability of a given path Py. Therefore, the right hand side in
Eq. (12) is the sum over probabilities of all possible paths of length k from v, to vy, which is the
probability that a random walk starting at v, ends at v, after taking & steps.

11

Under review as a conference paper at ICLR 2020

Lemma 2 Let P} be a path [v(-j),v(j_l), e ,U(O)] of length j from node v, to node vy, where
) = v, 00 = g, 00D € N(v(i))fori = j,--+,1, and all nodes except vy, are unlabeled.
Then we have .
1(Va, vps K ZZHG G=1) i) s (13)
j=1 P i=k

J

where G, i-1) () is the normalized weight of edge (v(i), U(i_l)).

Proof. To prove this lemma, note that a significant difference between LPA and GCN is that all

labeled nodes are reset to its original labels after each iteration in LPA. This implies that the initial

label y; of node v, appears not only as yé), but also as every y(J) for 7 =1,--- k — 1. Therefore,

() is the cumulative influence of yl(, 7 on Ya (k) forj=0,1,--- k—1:

8y((lk) k—1 8y¢(zk)

the influence of y; on yq

I (v, vp; k) = = Z —. (14)
Oyp =0 8yéj)
According to the updating rule of LPA, we have
. k—1
L a5
ayl()ﬂ 8y(]) v N (a) ayl;
For those labeled node v, yg D is reset to their initial labels and thus independent of y(]) There-
fore, we can restrict v, to be unlabeled nodes only (z > m means v, is unlabeled):
b (k) P (k—1)
Ya LA Yz (16)

8yl§J) v, EN (vg),2>m 6y§3)

The above expansion can be performed iteratively until the index k decreases to j, Which is equiva-

lent to performmg all possible random walks for k£ — j steps starting from v,. Since g o= = O forall

z#b and) = 1, only those random-walk paths that end exactly at v, count for the computation.

Therefore we have

dys"
8y(3) = Z H Qyy(i—1) 1;0)7 (17)
b ’U. j—

where Py, is a path from v, to v, of length k: — j containing only unlabeled nodes except vy.
Substituting the right hand term of Eq (14) with Eq. (17), we obtain that

1
1(Va, v K Z Z H%(z D @) = ZZH V(=1) (@) - (18)

7=0 73“ = 7j=1 ’P” i=k
]
Now Theorem 2 can be proved by combining Lemma 1 and Lemma 2:

Proof. Suppose that whether a node is labeled or not is independent of each other for the given
graph. Then we have

k

1
E[1;(va, vp; k)] = Z Z Pr(/P; is unlabeled) H Ay (i=1) ()

j=1 P; i=k

k 1
ZZZﬁj Hdv(i—l)ﬂ}(i) (19)

=1 P; i=k

k
=3 B If(va, 003 4)-

=1

12

Under review as a conference paper at ICLR 2020

C PROOF OF THEOREM 3

Proof. Denote the set of labels as £. Since different label dimensions in ya') do not interact with
each other when running LPA, the value of the y,-th dimension in y((l') (denoted by y((l') [ya]) comes
only from the nodes with initial label y,,. It is clear that

k 1
Yy [ya] = Z Z Z H Ay(i-1) () (20)

VpYb="Ya j=1 73;J i=k

which equals > I;(vq, vp; k) according to Lemma 2. Therefore, we have

Vb Yo=Ya

(k)
N Ya " Ya
Pr(ia = va) = =2 oy = S Lk e
diecYa (1] VbiYb=Ya

D PROOF OF THEOREM 4

In this proof we assume that the dimension of node representations is one, but note that the conclu-
sion can be easily generalized to the case of multi-dimensional representations since the function
D(x) can be decomposed into the sum of one-dimensional cases. In the following of this proof, we

still use bold notations xgk)

scalars rather than vectors.

and hZ(-k) to denote node representations, but keep in mind that they are

We give two lemmas before proving Theorem 4. The first one is about the gradient of D(x):

(k)

)

_ <k _ aD™)
=X, - PR

Lemma3 h
k aD(x™®) k - k k ~ k k
Proof. xl(.) _ 7{9)((5,9)) — xg) _ Zvjej\/(vi) aij(xg) _ X.§)) = ZvjeN(m) aijx§) — hl(.). O

It is interesting to see from Lemma 3 that the aggregation step in GCN is equivalent to running
gradient descent for one step with a step size of one. However, this is not able to guarantee that
D(h®)) < D(x(¥)) because the step size may be too large to reduce the value of D.

The second lemma is about the Hessian of D(x):
Lemma 4 V2D(x) =< 21, or equivalently, 21 — V2 D(x) is a positive semidefinite matrix.

Proof. We first calculate the Hessian of D(x) = 3 Do, Gigllxi = X l|3:

1 *~C~l11 *&12 e *C:Lm
) —G21 l—ag -+ —a, .
VD(x) = | . o Tl =1-D'aA (22)
_afnl _&nQ e 1- dnn

Therefore, 21 — V2D(x) = I + D=1 A. Since D! A is Markov matrix (i.e., each entry is non-
negative and the sum of each row is one), its eigenvalues are within the range [-1, 1], so the eigen-
values of I + D' A are within the range [0, 2]. Therefore, I + D 'Aisa positive semidefinite
matrix, and we have V2D (x) =< 21. O

We can now prove Theorem 4:

Proof. Since D is a quadratic function, we perform a second-order Taylor expansion of D around
x(%) and obtain the following inequality:

1
D(h®) =Dx") 4+ vD(x®)T(h® — x*)y 4 §(h(k) —x"TY2D(x)(h*) — x*))
=D(x®) - vD®)TVvD(x®) + %VD(X(k))TV2D(X)VD(X(k)) (23)
SD(X(k)) — VD(x(k))TVD(X(k)) + VD(x(k))TVD(x(k)) = D(X(k)).

13

Under review as a conference paper at ICLR 2020

E MORE VISUALIZATION RESULTS ON KARATE CLUB NETWORK

Figure 5 illustrates more visualization of GCN and GCN-LPA on karate club network. In each
subfigure, we vary the number of layers from 1 to 4 to examine how the learned representations
evolve. The initial node features are one-hot identity vectors, and the dimension of hidden layers
and output layer is 2. The transformation matrices are uniformly initialized within range [-1, 1]. We
use sigmoid function as the nonlinear activation function. Comparing the four figures in each row,
we conclude that the aggregation step and transformation step in GCN and GCN-LPA do benefit the
separation of different classes. Comparing Figure 5a and 5c (or Figure 5b and 5d), we conclude that
more inter-class edges will make the separation harder for GCN (or GCN-LPA). Comparing Figure
5a and 5b (or Figure 5c¢ and 5d), we conclude that GCN-LPA is more noise-resistant than GCN,
therefore, GCN-LPA can better differentiate classes and identify clustering substructures.

1-layer 2-layer 3-layer 4-layer
. L]
L]
° ° L] L]
. . L= . « ™ . :
° < o . ° .. 4y . Ui % ° o 4
LI ®e Ol °
N * « o, ° o
° '8 L . .. °
L] L] L]
(a) GCN on the original network
1-layer 2-layer 3-layer 4-layer
L]
L
° ? ° .
e o . [°
° ° X o® '.- . °
° ® (] y
¢ ® ° [o
. [e o0 °
¢ ® ‘.. o
L] L]
(b) GCN-LPA on the original network
1-layer 2-layer 3-layer 4-layer
[]
S ']
L] L]
L) .
Y, [] s 2 . L] L] 2 %
L] S [- = . .
L4 ° . o P ep ® o .\'
. . ° o
(c) GCN on the noisy network
1-layer 2-layer 3-layer 4-layer
L]
L]
[2
2 » o ® LR 1) e °
s :' ® e o -
. oy L o L] pe (3 Te °
.] ° \ :I . L & B
é ?
L] (] o

(d) GCN-LPA on the noisy network

Figure 5: Visualization of GCN and GCN-LPA with 1 ~ 4 layers on karate club network.

F HYPER-PARAMETER SETTINGS

The detailed hyper-parameter settings for all datasets are listed in Table 3. In GCN-LPA, we use
the same dimension for all hidden layers. Note that the number of GCN layers and the number of
LPA iterations can actually be different since GCN and LPA are implemented as two independent
modules. We use grid search to determine hyper-parameters on Cora, and perform fine-tuning on

14

Under review as a conference paper at ICLR 2020

Cora Citeseer Pubmed Coauthor-CS Coauthor-Phy
Dimension of hidden layers 32 16 32 32 32
GCN layers 5 2 2 2 2
LPA iterations 5 5 1 2 3
L2 weight 1x107* 5x107* 2x107* 1x1074 1x1074
LPA weight (\) 10 1 1 2 1
Dropout rate 0.2 0 0 0.2 0.2
Learning rate 0.05 0.2 0.1 0.1 0.05

Table 3: Hyper-parameter settings for all datasets.

other datasets, i.e., varying one hyper-parameter per time to see if the performance can be further
improved. The search spaces for hyper-parameters are as follows:

Dimension of hidden layers: {8, 16, 32};

GCN layers: {1,2,3,4,5,6};

LPA iterations: {1,2,3,4,5,6,7,8,9};

L2 weight: {1077,2 x 1077,5 x 10=7,1075,2 x 107%,5 x 107%,1075,2 x 107°,5 x
1075,1074,2 x 1074,5 x 1074,1073};

LPA weight (\): {0, 1,2, 5,10, 15,20};
Dropout rate: {0,0.1,0.2,0.3,0.4,0.5};
Learning rate: {0.01,0.02,0.05,0.1,0.2,0.5};

15

	Introduction
	Unifying GCN and LPA
	Problem Formulation and Preliminaries
	Feature Smoothing and Label Smoothing
	Feature Influence and Label Influence
	The Unified Model
	Analysis of GCN-LPA Model Behavior

	Connection to Existing Work
	Experiments
	Datasets
	Baselines
	Experimental Setup
	Results

	Conclusion and Future Work
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	More Visualization Results on Karate Club Network
	Hyper-parameter Settings

