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ABSTRACT

In this work, we develop the theory for analyzing the generalization performance
of recurrent neural networks. We first present a new generalization bound for
recurrent neural networks based on matrix-1 norm and Fisher-Rao norm. The
definition of Fisher-Rao norm relies on a structural lemma about the gradient of
RNNs. This new generalization bound assumes that the covariance matrix of the
input data is positive definite, which might limit its use in practice. To address
this issue, we propose to add random noise to the input data and prove a general-
ization bound for training with random noise, which is an extension of the former
one. Compared with existing results, our generalization bounds have no explicit
dependency on the size of networks. We also discover that Fisher-Rao norm for
RNNs can be interpreted as a measure of gradient, and incorporating this gradient
measure not only can tighten the bound, but allows us to build a relationship be-
tween generalization and trainability. Based on the bound, we analyze the effect
of covariance of features on generalization of RNNs theoretically and discuss how
weight decay and gradient clipping in the training can help improve generaliza-
tion.

1 INTRODUCTION

The Recurrent Neural network (RNN) is a neural sequence model that has achieved state-of-the-art
performance on numerous tasks, including natural language processing (Yang et al., 2018; Mikolov
& Zweig, 2012), speech recognition (Chiu et al., 2018; Graves, 2013) and machine translation (Wu
et al., 2016; Kalchbrenner & Blunsom, 2013). Unlike feed forward neural networks, RNNs allow
connections among hidden units associated with a time delay. Through these connections, RNNs can
maintain a ”memory” that summarizes the past sequence of inputs, enabling it to capture correlations
between temporally distant events in the data.

RNNs are very powerful, and empirical studies have shown that they have a very good generalization
property. For example, Graves (2013) showed that deep LSTM RNNs achieved a test error of 17.7%
on TIMT phoneme recognition benchmark after training with only 462 speech samples. Despite
of the popularity of RNNs in practice, their theory is still not well understood. Some theoretical
investigation into RNNs are in progress, especially about training recurrent neural networks. For
example, Oymak (2018) studied the state equation of recurrent neural networks and showed that
SGD can efficiently learn the unknown dynamics from few observations under proper assumptions.
Miller & Hardt (2019) tried to explain why feed-forward neural networks are competitive with re-
current networks in practice. They identified stability as a necessary condition and proved that stable
recurrent neural networks are well approximated by feed-forward networks for the purpose of both
inference and training by gradient descent. Despite of these impressive progress in understanding
the training behavior of RNNs, there are no generalization guarantees in these works.

Understanding the generalization performance in machine learning has been a central problem for
many years and revived in recent years with the advent of deep learning. One classical approach
to proving generalization bound is via notions of complexity. For deep neural networks, numer-
ous complexity measures have been proposed to capture the generalization behavior such as VC
dimension (Harvey et al., 2017) and norm-based capacity including spectral norm (Bartlett et al.,
2017; Neyshabur et al., 2019), Frobenius norm (Neyshabur et al., 2015b;a; 2018) and lp-path norm
(Neyshabur et al., 2015b; Bartlett & Mendelson, 2002; Golowich et al., 2018). These existing norm-
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based complexity measures increase with the size of the network as they depend on the number
of hidden units of the network explicitly and thus can not explain why neural networks generalize
so well in practice, despite that they operate in an overparametrized setting (Zhang et al., 2017).
Neyshabur et al. (2019) proved generalization bounds for two layer ReLU feedforward networks,
which decreased with the increasing number of hidden unit in the network. However their results
only applied to two layer ReLU networks and some specific experiments. More recently, a new
generalization bound based on Fisher-Rao norm was proposed (Liang et al., 2017). This notion of
Fisher-Rao norm is motivated by information geometry and has good invariance properties. But
they proved the bound only for linear deep neural networks. There are also some works about the
generalization of recurrent neural networks (Zhang et al., 2018; Chen et al., 2019; Allen-Zhu & Li,
2019). However these bounds also depend on the size of networks, which make them vacuous for
very large neural networks.

Our main contributions are summarized as follows.

• We define the Fisher-Rao norm for RNNs based on its gradient structure and derive new
Rademacher complexity bound and generalization bound for recurrent neural networks
based on Fisher-Rao norm and matrix-1 norm. In contrast to existing results such as spec-
tral norm-based bounds, our bound has no explicit dependence on the size of networks.

• We prove a generalization bound for RNNs when training with random noises. Our bound
applies to a general class of noises and can potentially explain the effect of noise training
on generalization of recurrent neural networks as demonstrated by our empirical results.

• We propose a new technique to decompose RNNs with ReLU activation into a sum of linear
network and difference terms. As a result, each term in the decomposition can be treated
independently and easily when estimating the Rademacher complexity. This decomposi-
tion technique can potentially be applied to other neural networks architectures such as
convolutional neural networks, which might be of independent interest.

The remainder of this paper is structured as follows. We define the problem and notations in Section
2. The notion of Fisher-Rao norm for RNNs is introduced in Section 3.1. We prove the general-
ization bound for RNNs and the generalization bound for training with random noise in Section 3.2
and 3.3. Section 3.4 gives a detailed analysis of the generalization bound for RNNs. Finally we
conclude and discuss future directions.

2 PRELIMINARIES

We focus on the vanilla RNNs with ReLU activation. Let U ∈ Rm×d, V ∈ Rk×m and W ∈ Rm×m
be the weight matrices. Given the input sequence x = (x1, x2, · · · , xL) ∈ RLd where each xi ∈ Rd
and L is the input sequence length, the vanilla RNNs can be described as follows.

gt = Uxt +Wht−1

ht = ρ(gt)
yt = V ht

, (1)

where gt and ht ∈ Rm represents the input and output of hidden layer at step t, ρ(·) is the ReLU
function and yt ∈ Rk denotes the output value at step t.

For simplicity, in this paper, we only consider the final output yL. We assume that data (x, y) is
drawn i.i.d. from some unknown distribution D over RLd × Y where Y represents the label space
{1, 2, · · · , k}. The RNNs above define a mapping yL(x) from RLd → Rk, where k is the number
of classes. We convert yL(x) to a classifier by selecting the output coordinate with the largest
magnitude, meaning

x→ argmaxi[yL(x)]i,

where [·]i represents the i-th element of a vector. This naturally leads to the definition of margin
MyL(x, y) of the output yL at a labeled example (x, y):

MyL(x, y) = [yL(x)]y −max
y′ 6=y

[yL(x)]y′ .

Thus, yL misclassifies (x, y) iff MyL(x, y) ≤ 0. The quality of the prediction made by yL is
measured by the expected risk defined as

E(x,y)∼D[1MyL
(x,y)≤0].
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Without knowing the underlying distribution D, it is impossible to compute the expected risk. In-
stead, we consider the empirical error on sample data given by

1

n

n∑
i=1

(1MyL
(xi,yi)≤α).

The generalization error is then the difference between expected risk and empirical risk, defined as

E(x,y)∼D[1MyL
(x,y)≤0]− 1

n

n∑
i=1

(1MyL
(xi,yi)≤α).

And our goal is to study the generalization error for RNNs theoretically.

To establish the generalization bound, a little bit of notations are necessary. For a vector, we
denote the lp norm by ||v||p = (

∑
|vi|p)1/p and the l∞ norm by ||v||∞ = max |vi|. For

a matrix, we denote the matrix p-norm as ||A||p = max|x|p=1 |Ax|p, the matrix-1 norm by
||A||1 = maxj{

∑
i |aij |} and the Frobenius norm by ||A||2F = trace(AAT ). The smallest eigen-

value of a matrix A is given by λmin(A). The activation function ρ and its derivative ρ′ are entry-
wise, i.e., ρ(A) = (ρ(aij))ij and ρ′(v) = (ρ′(vi))i. We denote c = (L + 1, L, · · · , 2)T , η(θ) =
[V diag(ρ′(gL))...Wdiag(ρ′(g1))Ux1, V diag(ρ′(gL))...Wdiag(ρ′(g2))Ux2, · · · , V diag(ρ′(gL))
UxL] ∈ Rk×L and τ(θ) = (VWL−1Ux1, V W

L−2Ux2, · · · , V UxL) where θ = (U,W, V ) and
diag converts a vector into a diagonal matrix.

3 MAIN RESULT

In this section, we prove the generalization bound for RNNs with ReLU activation. Our new bound
is based on Fisher-Rao norm and matrix-1 norm. We first define the Fisher-Rao norm for RNNs.

3.1 FISHER-RAO NORM FOR RNNS

We adapt the notion of Fisher Rao norm to recurrent neural networks. To begin with, we establish
the following structural result for RNNs.

Lemma 1. Given an input x = (x1, x2, · · · , xL), consider the recurrent neural network in (1), we
have the identity ∑

a,b

∂yL
∂vab

vab +
∑
i,j

∂yL
∂wij

wij +
∑
p,q

∂yL
∂upq

upq = η(θ)c.

The notion of Fisher-Rao norm is motivated by Fisher-Rao metric of information geometry and is
defined as follows.

Definition 1 ((Liang et al., 2017), Definition 2). The Fisher-Rao norm for a parameter θ is defined
as

||θ||2fr :=< θ, I(θ)θ >,

where I(θ) = E(∇l(yLθ(x), y)⊗∇l(yLθ(x), y)) and l(., .) is the loss function.

The following lemma gives the explicit formula of Fisher-Rao norm in RNNs. We can see that the
notion of Fisher-Rao norm relies mainly on the gradient structure of RNNs.

Lemma 2. Assume that the loss function l(., .) is smooth in the first argument. Then the following
identity holds for the RNN in (1).

||θ||2fr = E
(〈
η(θ)c,

∂l(yLθ(x), y)

∂yLθ

〉2)
.

Remark 1. We observe that each term V diag(ρ′(gL))...Wdiag(ρ′(gi))Uxi in η(θ) is actually the
gradient component in Backpropagation through time (BPTT). Therefore the Fisher-Rao norm can
be regarded as a measures of the gradient. As will be shown later, we can build a relationship
between generalization and trainability in RNNs via Fisher-Rao norm.
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For the linear activation function and margin loss l(yLθ(x), y) = Φα(MyL(x, y)) where α > 0 is
the margin parameter, one might upper bound the Fisher-Rao norm in Lemma 2 by

||θ||2fr ≤
4

α2
E
(

max
i

[(τ(θ)c)i]
2
)

since
〈
τ(θ)c,

∂l(yLθ(x), y)

∂yLθ

〉2 ≤ 4
α2 maxi[(τ(θ)c)i]

2 by definition of MyL(x, y) and lipschitz

property of Φα(·). We define this upper bound as

||θ||2fs := E
(

max
i

[(τ(θ)c)i]
2
)
, (2)

and still call it ”Fisher-Rao norm” in the paper by slightly abusing the terminology as they are
equivalent for k = 1. In the rest of the paper, we will use this Fisher-Rao norm || · ||fs to derive
generalization bound for RNNs.

3.2 GENERALIZATION BOUND FOR RNNS

We use matrix 1-norm and Fish-Rao norm together to derive the generalization bound for RNNs.
Since it is very challenging to bound the Radermacher complexity of ReLU networks directly in
terms of the Fisher-Rao norm, we consider decomposing the ReLU network into the sum of a linear
network and a difference term, i.e., yL = ψ(θ)x + (yL − ψ(θ)x). For the linear network part
ψ(θ)x, the Rademacher complexity can be bounded directly by Fisher-Rao norm. For the difference
term (yL − ψ(θ)x), we notice that it can be further decomposed into a sum of simpler terms, and
we bound the Rademacher complexity of these simpler terms by matrix 1-norm. We first give the
results for the linear network part.

Lemma 3. Define Fr := {x → [ψ(θ)x]y : ||θ||fs ≤ r, y ∈ Y} where x ∈ RLd and ψ(θ) :=
(VWL−1U, V WL−2U, · · · , V U). For any data x1, x2, · · · , xn drawn i.i.d from the distribution D,
collect them as columns of a matrix X ∈ RLd×n. Then we have

R̂n(Fr) ≤
r||X||F

2n

√
1

λmin(E(xxT ))
,

assuming that E(xxT ) is positive definite.

Remark 2. If E(x) = 0, then E(xxT ) is the covariance matrix of random variable x.

Remark 3. We should mention that our assumption that E(xxT ) is positive definite is not so restric-
tive and usually holds in practice. For example, for the case that x is continuous random variable,
we can prove that E(xxT ) is positive definite as follows. Suppose that x is a continuous random
variable in the n-dimensional subspaceX ⊂ Rn. If there exists u ∈ Rn such that uTE(xxT )u = 0,
then for any x ∈ X we have uTx = 0, i.e., u ⊥ X . Since X is n-dimensional, the only u that satis-
fies is that u = 0. Therefore, by definition, E(xxT ) is positive definite. As we will show in section
3.3, this assumption can be removed, and a more general generalization bound will be presented.

Now we bound the Rademacher complexity of the difference term yL − ψ(θ)x. With a slight abuse
of notations, given input data x1, x2, · · · , xn ∈ RLd, the corresponding g1, g2, · · · , gn ∈ RLm

and h1, h2, · · · , hn ∈ RLm is calculated by (1). We collect all input data as a matrix denoted by
X , all input data at time t as a matrix denoted by Xt, all input of the hidden layer at time t as a
matrix denoted by Gt and all output of hidden layer at time t denoted by Ht, where X ∈ RLd×n,
Xt ∈ Rd×n, Gt ∈ Rm×n, Ht ∈ Rm×n and t = 1, · · · , L. The difference term can be decomposed
by the following lemma.

Lemma 4. Define H ′′t := Ht −Gt. Then the following equality holds

V HL − ψ(θ)X =

L∑
i=1

VWL−iH ′′i .

To bound the Rademacher complexity of each term in the above decomposition, we need a technical
lemma given as follows.
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Lemma 5. For any p ≥ 1, ||H ′′t ||p ≤ m
1
p (1− 1

p )n
1
p (1− 1

p )||Gt||p.

As we will see, the operator norm in Lemma 5 will be instantiated for the case of p = 1. The use
of || · ||1 helps avoid the appearance of the dimension m when upper bounding the Rademacher
complexity. Also it guarantees that Rademacher complexity has a convergence rate O(1/n). The
upper bound for the Rademacher complexity of these individual term is given by the following
lemma.
Lemma 6. Let Ω := {θ = (U,W, V ) : ||V T ||1 ≤ βV , ||WT ||1 ≤ βW , ||UT ||1 ≤ βU}. Then for
any i = 1, · · · , L, we have

Eσ
(

sup
θ∈Ω,y∈Y

1

n
[VWL−iH ′′i ]y,σ

)
≤ 1

n
βV βU

i∑
j=1

βL−jW ||Xj
T ||1,

where σ = (σ1, σ2, · · · , σn)T is Rademacher random variable and [·]y, represents the y-th row of
the matrix.

We are now ready to put the ingredients together to prove our main theorem.
Theorem 1 (Rademacher complexity of RNNs). Let Ω := {θ = (U,W, V ) : ||V T ||1 ≤
βV , ||WT ||1 ≤ βW , ||UT ||1 ≤ βU , ||θ||fs ≤ r}. Then, the empirical Rademacher complexity of
RNNs with ReLU can be bounded as follows

Eσ
(

sup
θ∈Ω,y∈Y

1

n

∑n
i=1[yLθ(xi)]yσi

)
≤ r||X||F

2n

√
1

λmin(E(xxT ))
+

1

n
βV βU ||XT ||1Λ ,

where Λ := 1
1−βW

(1− βLW
1− βW

− LβLW
)

if βW 6= 1 and Λ := L+L2

2 for βW = 1.

To establish the generalization bound for RNNs, we need the following classical results for multi-
class margin bounds.
Lemma 7 ((Kuznetsov et al., 2015), Theorem 2). Let H ⊆ RX×Y be a hypothesis set with Y =
{1, 2, · · · , k}. Fix α > 0. Then, for any δ > 0, with probability at least 1 − δ, the following
multi-class classification generalization bound holds for all h ∈ H:

R(h) ≤ 1

n

n∑
i=1

Φα(Mh(xi, yi)) +
4k

α
R̂n(Π1(H)) + 3

√
log 2

δ

2n
,

where Π1(H) = {x→ h(x, y) : y ∈ Y, h ∈ H}.

The generalization bound for RNNs follows from combining Theorem 1 and Lemma 7.
Theorem 2. Fix margin parameter α, then for any δ > 0, with probability at least 1− δ, the follow-
ing holds for every RNN whose weight matrices θ = (U,W, V ) satisfy ||V T ||1 ≤ βV , ||WT ||1 ≤
βW , ||UT ||1 ≤ βU and ||θ||fs ≤ r:

E[1MyL
(x,y)≤0] ≤ 1

n

∑
1MyL

(xi,yi)≤a +
4k

α

(r||X||F
2n

√
1

λmin(E(xxT ))
+

1

n
βV βU ||XT ||1Λ

)
+

3

√
log 2

δ

2n

.

(3)

Comparison with existing results. We compare our result with the existing generalization bounds
(Zhang et al., 2018; Chen et al., 2019). In comparison with the bound in Zhang et al. (2018), which

is of the order Õ(
max{d,m, k}L2||U ||2||V ||2 max{1, ||W ||L2 }√

nα
: There is no explicit appearance of

the network size parameters d and m in our bound. As we have mentioned before, the reason that
we can avoid these dimensional factors is that we use matrix-1 norm instead of the spectral norm in
their bound to upper bound the Rademacher complexity of the network. There is always a L2 factor
in their bound. However the L2 term only occurs in our bound when ||WT ||1 = 1. For the case
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that ||WT || > 1, our bound only has a linear dependence on L, and for the case that ||WT ||1 < 1,
by simple calculation, we can show that Λ ≤ 1

(1−βW )2 and the dependence on L would vanish.
Both our bounds have an exponential term ||W ||L, which would make the bound become vacuous
for ||W || > 1. It should also be pointed out that our bound scales linearly with the number of
classes since we handle multiclass on each coordinate of a k-tuple of functions and pay a factor of
k. Chen et al. (2019) also derived generalization bound for RNNs in terms of the spectral norm
and the total number of parameters of the network by using covering number analysis. Since their
work assumed that the activation function in the hidden layers was bounded rather than the ReLU
activation function considered in our paper, their bound is not directly comparable to ours, and we
do not make a comparison here due to the page limit. We should emphasis that our proof technique
is totally different from the PAC-Bayes approach (Zhang et al., 2018) and covering number analysis
(Chen et al., 2019). In particular, we work on the Rademacher complexity of RNNs directly with no
invocation of complicated tools such as covering number, which makes our analysis conceptually
much simpler. There is also an additional bonus of our proof technique. As we will see in the next
section, our proof technique allows us to derive a generalization bound for RNNs when training with
random noise.

3.3 GENERALIZATION BOUND FOR TRAINING WITH RANDOM NOISE

The generalization bound in Theorem 2 requires that the input covariance matrix E(xxT ) be positive
definite and would become very poor when the smallest eigenvalue is close to 0, which greatly
limits the power of our bound. To address this issue, we consider adding random noise to the input
data. We notice that after adding random noise with mean 0 and variance σε the term E(xxT )
in the bound becomes E((x + ε)(x + ε)T ) and the smallest eigenvalue of E((x + ε)(x + ε)T ) is
(λmin(E(xxT ))+σ2

ε ), which is greater than σ2
ε . Therefore our bound still can be applied even when

the covariance matrix of original input data is rank-deficient. Involving noise variables have been
widely used in recurrent neural networks as a regularization technique (Bayer et al., 2013; Zaremba
et al., 2014; Dieng et al., 2018; Gal & Ghahramani, 2016). For example, Bayer et al. (2013) claimed
that conventional dropout did not work well with RNNs because the recurrence amplified noise,
which in turn hurt learning. To fix this problem, Zaremba et al. (2014) proposed to inject noise only
to the input and output of RNNs. Despite that their method greatly reduced overfitting on a variety
of tasks, the generalization guarantee was not provided. In this section, we present a generalization
bound of noise training for RNNs. For simplicity, we assume that the noise is drawn i.i.d. from a
Gaussian distribution with zero mean and variance σ2

ε . Let εi denotes the d-dimensional gaussian
noise generated at step i and ε = (ε1, ε2, · · · , εL) ∈ RLd. We collect all noise data as a matrix
denoted by Xε. To prove the generalization bound, we need to use the Lipschitz property of RNNs
given by the following lemma.
Lemma 8. For every RNN in (1) with weight matrices θ = (U,W, V ), yL is Lipschitz with respect
to || · ||∞, i.e.,

||yL(x)− yL(x′)||∞ ≤
∑
i

||V T ||1||UT ||1||WT ||L−i1 ||xi − x′i||∞

for any x = (x1, x2, · · · , xL), x′ = (x′1, x
′
2, · · · , x′L) ∈ RLd.

The generalization bound for training with random noise is described as follows.
Theorem 3. Fix margin parameter α, then for any δ > 0, with probability at least 1 − δ over a
sample ((x1, ε1, y1), (x2, ε2, y2), · · · , (xn, εn, yn)), the following holds for every RNN whose weight
matrices θ = (U,W, V ) satisfy ||V T ||1 ≤ βV , ||WT ||1 ≤ βW , ||UT ||1 ≤ βU and ||θ||fs ≤ r:

E[1MyL
(x,y)≤0] ≤ 1

n

∑
Φα(MyL(xi + εi, yi)) +

2

α

∑
i βV βUβ

L−i
W σε

√
2 log(2d) + 3

√
log 2

δ

2n
+

4k

α

(r||X +Xε||F
2n

√
1

λmin(E(xxT )) + σ2
ε

+
1

n
βV βU ||XT +XT

ε ||1Λ
) .

Remark 4. The above bound can be easily extended to other kinds of noises by replacing
σε
√

2 log(2d) by Eε||εi||∞.

Remark 5. The bound in Theorem 3 is an extension of that in Theorem 2 and can be applied even
when the smallest eigenvalue of E(xxT ) is very close to 0. For example, when λmin(E(xxT ) =
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1 × 10−6, applying Theorem 2 directly might lead to a vacuous bound. But if we use Theorem 3
by choosing a small noise with mean 0 and variance 0.01, we might obtain a better bound since the
term

√
1

λmin(E((xxT )))+σ2
ε
≤ 10. Notice that adding noise can not always guarantee an improved

generalization especially when λmin(E(xxT )) is not so small since it incurs an additional linear

term
2

α

∑
i βV βUβ

L−i
W σε

√
2 log(2d) to the bound and might also increase other parameters in the

bound such as ||X + Xε||F . Therefore we suggest adding noise only when the smallest eigenvalue
of E(xxT ) is very small. For this case, a small noise such as σε = 0.1 not only can greatly improve

the term
√

1

λmin(E(xxT ))
but also ensure that the extra cost σε

√
2 log(2d) and ||X +Xε||F /n be

small enough especially considering that there is a factor of 1/n since ||X+Xε||F /n ≤ ||X||F /n+
||Xε||F /n and ||Xε||F /n would be small when the noise is small.

Remark 6. If we remove the constraint condition ||θ||fs ≤ r, which means that we do not
have any knowledge about the gradients, the generalization bound in Theorem 2 and Theo-
rem 3 still holds by substituting r with βV βUB( 1

(1−βW )2 + 1
1−βW ) when βW < 1, where

||xT ||1 ≤ B. But with this extra gradient measure, the bound can become much tighter, es-
pecially when λmin(E(xxT ) is small. Please refer to the detailed analysis in the next section.

Figure 1: Generalization error for training with
noise.

Experiments. We now study the effect of ran-
dom noise on generalization of RNNs empir-
ically. For simplicity, we consider the IMDB
dataset, a collection of 50K movie reviews for
binary sentiment classification. We use GloVe
word embedding to map each word to a 50-
dimensional vector. We fit vanilla RNNs with
ReLU activation with sequence length L =
100. The smallest eigenvalue of E(xxT ) is
approximated by using the total training data,
which is 4 × 10−4 for L = 100. We add
Gaussian noise to the input data in the train-
ing process with σε = 0.1, 0.2, 0.3 and 0.4.
Generalization errors which is the gap between
test error without noise and training error with
noise for different combination of L and σε are
shown in Figure 1. We observe that the gener-
alization error is worse at σε = 0, since the
smallest eigenvalue of the covariance matrix is
very small. Then as we start injecting noise, the generalization error becomes better. But when
the deviation of noise keeps growing, the generalization error shows an increasing tendency. This
behavior is consistent with the prediction made by our bound.

3.4 ANALYSIS OF GENERALIZATION BOUND

Our theoretical results give a lot of implications for the generalization performance in RNNs, and
some of them have been observed in empirical studies. We summarize these implications as follows.

3.4.1 GENERALIZATION AND SMALLEST EIGENVALUE OF E(xxT )

According to our result, the generalization performance in RNNs is influenced by the smallest eigen-
value of E(xxT ). Since the smaller eigenvalues usually contribute to high frequency components of
the input signal, our bound suggests that high frequency information is often more difficult to gen-
eralize, which is consistent with intuition. There are many factors that might impact on the smallest
eigenvalue and therefore the generalization performance in RNNs. In particular, we study the effect
of the correlation between features on the generalization in RNNs. The exact answer for this problem
may be complicated. Here we provide an initial attempt. We claim that weaker correlation would
help improve the generalization, and a non-rigorous proof is given as follows. Denote the covariance
matrix E(xxT ) by Ξ where each element ξij in Ξ represents the covariance between feature i and j.
Suppose that ||Ξ − I||1 ≤ ζ with ζ < 1. By definition of || · ||1 matrix norm, we immediately get
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|ξii − 1|+
∑
j 6=i |ξij | ≤ ζ for any i. Then by simple derivation, we obtain ξii −

∑
j 6=i |ξij | ≥ 1− ζ

for any i. Applying Gershgorin circle theorem, we have that the smallest eigenvalue must be greater
or equal than 1 − ζ. Since the element ξij with i 6= j represents the covariance between feature i
and j, a weaker correlation between feature i and j means a smaller value of |ξij | and we need a
smaller ξ to upper bound ||Ξ−I||1, which gives us a bigger lower bound on the smallest eigenvalue.
Therefore the generalization bound become better.

3.4.2 GENERALIZATION AND TRAINABILITY

The generalization in RNNs also depends on parameters βU , βV , βW and r, where βU , βV and βW
control the weight matrices and r represents the gradient measure. It has a natural relationship with
the training process. The normal procedure in training RNNs is to use weight decay for regulariza-
tion and gradient clipping to avoid the exploding gradients problems (Bengio et al., 1994; Pascanu
et al., 2013). From the perspective of generalization, these strategies can decrease the value of these
parameters βU , βV , βW and r and thus improves the generalization. For example, if βW ≤ 1, we

have Λ ≤ 1
(1−βW )2 , and the second term

1

n
βV βU ||XT ||1Λ in the generalization bound would be

small when βW is not so close to 1. Similarly, if λmin(E(xxT )) is very small, by setting the gra-
dient clipping value in the training procedure, we can achieve a smaller value of r and thus good
generalization. Therefore our bound partially explains why training RNNs in this way can achieve
good performance in practice.

3.4.3 GENERALIZATION AND GRADIENT MEASURE

We are interested in how the gradient measure contributes to generalization. Suppose now that we
only have the weights, i.e., the parameters βU , βW and βV and the gradient measure parameterized
by r is unknown to us. To apply our bound, a natural idea is to infer the gradient measure parameter
r based on the known weight parameters. And an upper bound for r in terms of βU , βW and βV can
be given as follows. Under the same conditions as Corollary 1, if we further assume that the data x
be given with ||xT ||1 ≤ B, by the definition of || · ||fs in (2), for any y ∈ Y , we have

((τ(θ)c)y
)2

= ((L+ 1)[V ]y,W
L−1Ux1 + L[V ]y,W

L−2Ux2 + · · ·+ 2[V ]y,UxL)2

≤ (|(L+ 1)[V ]y,W
L−1Ux1|+ |L[V ]y,W

L−2Ux2|+ · · ·+ |2[V ]y,UxL|)2

≤ ((L+ 1)βV βUBβ
L−1
W + LβV βUBβ

L−2
W + 2βV βUB)2

= (βV βUB(
βW−βLW
(1−βW )2 +

2−(L+1)βLW
1−βW ))2 ≤ (βV βUB( 1

(1−βW )2 + 1
1−βW ))2

,

for βW < 1, and ((τ(θ)c)y
)2 ≤ (βV βUB

3L+L2

2 )2 for βW = 1. The above inequality holds for

any x and y. So we can get ||θ||fs = E
(

maxi[(τ(θ)c)i]
2
)1/2 ≤ βV βUB( 1

(1−βW )2 + 1
1−βW ) for

βW < 1. By replacing r with βV βUB( 1
(1−βW )2 + 1

1−βW ), the inequality (3) also holds. But
notice that this bound is obtained without any knowledge about the gradients. If we happen to
know that the parameter r is much smaller than βV βUB( 1

(1−βW )2 + 1
1−βW ), for example, by setting

the gradient clipping value to be small in training process. Using this extra gradient measure can
provide us with a better generalization bound, especially when the smallest eigenvalue of E(xxT )
is small. Therefore the introduction of Fisher-Rao norm can help eliminate the negative effect of
λmin(E(xxT )) and thus improve the generalization bound.

4 CONCLUSION

In this paper, we propose a new generalization bound for RNNs in terms of matrix-1 norm and
Fisher-Rao norm, which has no explicit dependence on the size of networks. Based on the bound,
we analyze the influence of covariance of features on generalization of RNNs and discuss how
weight decay and gradient clipping in the training can help improve generalization. While our
bound is useful for analyzing generalization performance of RNNs, it would become vacuous when
||WT ||1 > 1. It is of interest to get a tighter bound which can avoid this exponential dependence.
Moreover, our bound only apply to vanilla RNNs with ReLU activation, and extending the results to
other variants of RNNs like LSTM and MGU might be an interesting topic for future research.
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A PROOFS IN SECTION 3.1

A.1 PROOF OF LEMMA 1

Proof. To begin with, by equation (1), we have yL = V hL. Then the derivative of yL with respect
to vab can be calculated as

∂yL
∂vab

= (0, 0, · · · , [hL]b, · · · , 0)T ,

i.e., a k-dimensional vector with a-th element [hL]b and all other elements zero. Multiplying both
sides by vab and summing them up, we get∑

a,b

∂yL
∂vab

vab = V hL = yL.

The derivative of yL with respect to W and U can be derived by using chain rule in the similar way
as follows.

∂yL
∂wij

= V
∂hL
∂wij

∂hL
∂wij

= diag(ρ′(gL))(0, · · · , [hL−1]j , · · · , 0)T + diag(ρ′(gL))W
∂hL−1

∂wij

and
∂yL
∂upq

= V
∂hL
∂upq

∂hL
∂upq

= diag(ρ′(gL))(0, · · · , [xL]q, · · · , 0)T + diag(ρ′(gL))W
∂hL−1

∂upq

,

where we use the property of ReLU activation function that ρ(z) = ρ′(z)z. Summing up these terms
immediately gives us the following equality.∑
i,j

∂hL
∂wij

wij +
∑
p,q

∂hL
∂upq

upq

= diag(ρ′(gL))(
∑
i,j

(0, · · · , [hL−1]j , · · · , 0)Twij +
∑
p,q

(0, · · · , [xL]q, · · · , 0)Tupq) + diag(ρ′(gL))

W (
∑
i,j

∂hL−1

∂wij
wij +

∑
p,q

∂hL−1

∂upq
upq)

= diag(ρ′(gL))(WhL−1 + UxL) + diag(ρ′(gL))W (
∑
i,j

∂hL−1

∂wij
wij +

∑
p,q

∂hL−1

∂upq
upq)

= hL + diag(ρ′(gL))W (
∑
i,j

∂hL−1

∂wij
wij +

∑
p,q

∂hL−1

∂upq
upq)

.

For ease of exposition, define fL :=
∑
i,j

∂hL
∂wij

wij +
∑
p,q

∂hL
∂upq

upq . Then the above equality can be

rewritten as
fL = hL + diag(ρ′(gL))WfL−1.

By induction, we have

fL = hL + diag(ρ′(gL))WhL−1 + diag(ρ′(gL))Wdiag(ρ′(gL−1))WhL−2+
diag(ρ′(gL))Wdiag(ρ′(gL−1))...Wdiag(ρ′(g2))Wh1

.

Multiplying both sides by V and using some basic calculation, we can show that V fL = LyL −
η(θ)(0, 1, · · · , L− 1)T . Therefore,∑
a,b

∂yL
∂vab

vab +
∑
i,j

∂yL
∂wij

wij +
∑
p,q

∂yL
∂upq

upq = yL + V fL = (L+ 1)yL − η(θ)(0, 1, · · · , L− 1)T .

And substituting yL = η(θ)(1, 1, · · · , 1)T into the above equality leads to the desired result∑
a,b

∂yL
∂vab

vab +
∑
i,j

∂yL
∂wij

wij +
∑
p,q

∂yL
∂upq

upq = η(θ)c .
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A.2 PROOF OF LEMMA 2

Proof. Using the definition of Fisher-Rao norm,

||θ||2fr = E(< θ,∇l(yLθ, y) >2) = E(< θ,∇yLθ(x)
∂l(yLθ, y)

∂yLθ
>2)

= E((θT∇yLθ(x)
∂l(yLθ, y)

∂yLθ
)2) = E(< ∇yLθ(x)T θ,

∂l(yLθ, y)

∂yLθ
>2)

.

By Lemma 1, we have∇yLθ(x)T θ = η(θ)c. Substituting it into the above equality gives us

||θ||2fr = E(< η(θ)c,
∂l(yLθ(x), y)

∂yLθ
>2).

B PROOFS IN SECTION 3.2

B.1 PROOF OF LEMMA 3

The proof of Lemma 3 relies on the following result in Saniuk & Rhodes (1987).
Proposition 1. Let X, Y∈ Rn×n with Y symmetric and nonnegative definite. Then,

trace(XY ) ≤ ||X||2 · trace(Y ).

Now we are ready to prove Lemma 3.

Proof. Denote A := E(((L+ 1)xT1 , Lx
T
2 , · · · , 2xTL)T ((L+ 1)xT1 , Lx

T
2 , · · · , 2xTL)). By the defini-

tion of ||θ||fs, for any y ∈ Y , we have

||[ψ(θ)]y,
T ||2A

= [ψ(θ)]y,E(((L+ 1)xT1 , Lx
T
2 , · · · , 2xTL)T ((L+ 1)xT1 , Lx

T
2 , · · · , 2xTL))[ψ(θ)]y,

T

= E([ψ(θ)]y,((L+ 1)xT1 , Lx
T
2 , · · · , 2xTL)T ((L+ 1)xT1 , Lx

T
2 , · · · , 2xTL)[ψ(θ)]y,

T
)

= E([(τ(θ)c)y]2) ≤ ||θ||2fs

,

where [ψ(θ)]y, represents the y-th row of ψ(θ). On the other hand, from the definition of
Rademacher complexities,

R̂n(Fr) = Eσ( sup
f∈Fr

1

n

∑n
i=1 f(xi)σi) = Eσ(sup

θ,y

1

n

∑n
i=1[ψ(θ)xi]yσi) = Eσ(sup

θ,y

1

n

∑n
i=1[ψ(θ)]y,xiσi)

= Eσ(sup
θ,y

<
1

n

∑n
i=1 xiσi, [ψ(θ)]y,

T
>) ≤ Eσ(sup

θ,y
(|| 1
n

∑n
i=1 xiσi||A−1 ||[ψ(θ)]y,

T ||A))

≤ rEσ(|| 1
n

∑n
i=1 xiσi||A−1) = rEσ

√
< (

1

n

∑n
i=1 xiσi)(

1

n

∑n
i=1 x

T
i σi), A

−1 >

≤ r
√

Eσ < (
1

n

∑n
i=1 xiσi)(

1

n

∑n
i=1 x

T
i σi), A

−1 > = r

√
1

n2
<
∑n
i=1 xix

T
i , A

−1 >

=
r

n

√
< XXT , A−1 > =

r

n

√
< XXT , (CE(xxT )C)−1 > =

r

n

√
trace(XXTC−1(E(xxT ))−1C−1)

,

where the first inequality uses Cauchy-Schwarz inequality andC := diag((L+1)Id, LId, · · · , 2Id).

Since C−1 and E(xxT ) are positive definite, we have

trace(XXTC−1(E(xxT ))−1C−1) = trace(C−1(E(xxT ))−1C−1XXT )
≤ ||C−1(E(xxT ))−1C−1||2trace(XXT ) ≤ ||C−1||2||(E(xxT ))−1||2||C−1||2trace(XXT )

= 1
4 ||(E(xxT ))−1||2||X||2F ≤

1

4

||X||2F
λmin(E(xxT ))

,

where the first inequality is by Proposition 1 and the last inequality uses trace(XXT ) = ||X||2F .

Therefore,

R̂n(Fr) ≤
r||X||F

2n

√
1

λmin(E(xxT ))
.

12



Under review as a conference paper at ICLR 2020

B.2 PROOF OF LEMMA 4

Proof. Denote H ′t := UXt +WH ′t−1 and H ′1 := UX1. By the definition of HL, we have

HL −H ′L = ρ(UXL +WHL−1)− UXL −WH ′L−1
= ρ(UXL +WHL−1)− UXL −WHL−1 +W (HL−1 −H ′L−1) = H ′′L +W (HL−1 −H ′L−1)

,

which by induction gives

HL −H ′L = H ′′L +WH ′′L−1 + · · ·+WL−1(H1 −H ′1) =
∑L
i=1W

L−iH ′′i .

So the difference term can be rewritten as

V HL − ψ(θ)X = V HL − V H ′L =
∑L
i=1 VW

L−iH ′′i ,

where the second equality uses ψ(θ)X = V H ′L.

B.3 PROOF OF LEMMA 5

Proof. Using Riesz-Thorin Theorem, we have ||H ′′t ||p ≤ ||H ′′t ||
1/p
1 ||H ′′t ||

1−1/p
∞ . And since H ′′t =

ρ(Gt) − Gt, by the definition of the induced L1 and L∞ matrix norm, we know ||H ′′t ||1 ≤ ||Gt||1
and ||H ′′t ||∞ ≤ ||Gt||∞. Therefore,

||H ′′t ||p ≤ ||H ′′t ||
1/p
1 ||H ′′t ||

1−1/p
∞ ≤ ||Gt||1/p1 ||Gt||

1−1/p
∞ ≤ m

1
p (1− 1

p )n
1
p (1− 1

p )||Gt||p ,

where the last inequality uses some basic facts about matrix norm that ||Gt||1 ≤ m1−1/p||Gt||p and
||Gt||∞ ≤ n1/p||Gt||p.

B.4 PROOF OF LEMMA 6

Proof. For any y ∈ Y , by Hölder’s inequality, for any p, q ≥ 1 with 1
p + 1

q = 1,

1
n [VWL−iH ′′i ]y,σ = 1

n [V ]y,W
L−iH ′′i σ ≤ 1

n ||H
′′
i
T
WT L−i[V ]y,

T ||p||σ||q
= ||[V ]y,

T ||p||WT ||L−ip ||H ′′i
T ||pn1/q−1 ≤ ||[V ]y,

T ||p||WT ||L−ip m
1
p (1− 1

p )n
− 1
p2 ||GiT ||p

.

In order to eliminate the dimension dependency on m and simultaneously enjoy a faster
convergence rate with respect to n, we choose p = 1. Then the above inequality re-
duces to 1

n [VWL−iH ′′i ]y,σ ≤ ||[V ]y,
T ||1||WT ||L−i1 n−1||GiT ||1 ≤ βV β

L−i
W n−1||GiT ||1 ≤

βV β
L−i
W n−1(βU ||Xi

T ||1 + βW ||Hi−1
T ||1). For ||Hi−1

T ||1, we have

||Hi−1
T ||1 = ||ρ(Xi−1

TUT +Hi−1
TWT )||1 ≤ ||Xi−1

TUT +Hi−2
TWT ||1

≤ βU ||Xi−1
T ||1 + βW ||Hi−2

T ||1
,

which by induction gives

||Hi−1
T ||1 ≤ βU

i−1∑
j=1

βi−1−j
W ||Xj

T ||1.

Therefore,

Eσ
(

sup
θ∈Ω,y∈Y

1

n
[VWL−iH ′′i ]y,σ

)
≤ 1

n
βV βU

i∑
j=1

βL−jW ||Xj
T ||1.
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B.5 PROOF OF THEOREM 1

Proof. Using the notations that we have introduced earlier, the empirical Rademacher complexity
can be rewritten as

Eσ
(

sup
θ∈Ω,y∈Y

1

n

∑n
i=1[yLθ(xi)]yσi

)
= Eσ

(
sup

θ∈Ω,y∈Y

1

n
[V HL]y,σ

)
= Eσ

(
sup

θ∈Ω,y∈Y

1

n
[
∑L
i=1 VW

L−iH ′′i + ψ(θ)X]y,σ
)

≤
∑L
i=1 Eσ

(
sup

θ∈Ω,y∈Y

1

n
[VWL−iH ′′i ]y,σ

)
+ Eσ

(
sup

θ∈Ω,y∈Y

1

n
[ψ(θ)X]y,σ

)
≤
∑L
i=1 Eσ

(
sup

θ∈Ω,y∈Y

1

n
[VWL−iH ′′i ]y,σ

)
+ Eσ

(
sup

||θ||fs≤r,y∈Y

1

n
[ψ(θ)X]y,σ

)
,

where the second equality uses Lemma 4 and the last inequality is due to the fact that Ω ⊆ Ω and
Ω ⊆ {θ : ||θ||fs ≤ r}.
For the last term, by Lemma 3, we have

Eσ
(

sup
||θ||fs≤r,y∈Y

1

n
[ψ(θ)X]y,σ

)
≤ r||X||F

2n

√
1

λmin(E(xxT ))
.

The other terms can be handled by Lemma 6 in the following way.∑L
i=1 Eσ

(
sup

θ∈Ω,y∈Y

1

n
[VWL−iH ′′i ]y,σ

)
≤
∑L
i=1

(
1
nβV βU

∑i
j=1 β

L−j
W ||Xj

T ||1
)

≤
∑L
i=1

(
1
nβV βU

∑i
j=1 β

L−j
W ||XT ||1

)
=

1

n

βV βU ||XT ||1
1− βW

(1− βLW
1− βW

− LβLW
)

for βW 6= 1, and
∑L
i=1 Eσ

(
sup

θ∈Ω,y∈Y

1

n
[VWL−iH ′′i ]yσ

)
≤ 1

nβV βUB2
L+L2

2 for βW = 1, where the

second inequality uses the definition of matrix norm || · ||1.

Collecting all terms, we establish

Eσ
(

sup
θ∈Ω,y∈Y

1

n

∑n
i=1[yLθ(xi)]yσi

)
≤ r||X||F

2n

√
1

λmin(E(xxT ))
+

1

n
βV βU ||XT ||1Λ.

C PROOFS IN SECTION 3.3

This section includes the full proofs of the generalization bound for training with random noise.

C.1 LIPSCHITZ PROPERTIES OF RELU NONLINEARITIES AND MARGIN OPERATOR

We first establish the Lipschitz properties of the ReLU activation function and margin operator
M(yL(x), y) :=MyL(x, y).
Lemma 9. Let ρ : Rn → Rn be the coordinate-wise ReLU function, then it is 1−Lipschitz accord-
ing to || · ||p for any p ≥ 1.

Proof. For any x, x′ ∈ Rn,

||ρ(x)− ρ(x′)||p =
(∑

|ρ(x)i − ρ(x′)i|p
)1/p ≤ (∑ |xi − x′i|p

)1/p
= ||x− x′||p

14
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Lemma 10. For every j and every p ≥ 1,M(·, j) is 2−Lipschitz wrt || · ||p..

Proof. Let y, y′, j be given, and suppose thatM(y, j) ≤M(y′, j) without loss of generality. Select
coordinate i 6= j so thatM(y, j) = yj − yi. Then

M(y′, j)−M(y, j) = y′j−max
l 6=j

y′l−yj +yi ≤ (y′j−yj)+(yi−y′i) ≤ 2||y′−y||∞ ≤ 2||y−y′||p.

C.2 PROOF OF LEMMA 8

Proof. We prove this Lemma by induction. Let x = (x1, x2, · · · , xL) and x′ = (x′1, x
′
2, · · · , x′L).

Denote g′t := Ux′t +Wh′t−1, h
′
t := ρ(g′t) and y′t := V h′t. Then we have

||ht − h′t||∞ = ||ρ(gt)− ρ(g′t)||∞ ≤ ||gt − g′t||∞ = ||Uxt +Wht−1 − Ux′t −Wh′t−1||∞
≤ ||UT ||1||xt − x′t||∞ + ||WT ||1||ht−1 − h′t−1||∞,

where the first inequality uses Lemma 9 and the second inequality uses basic properties of || · ||∞.
By induction, we get

||hL − h′L||∞ ≤
∑
i

||UT ||1||WT ||L−i1 ||xi − x′i||∞.

Therefore,

||yL−y′L||∞ = ||V hL−V h′L||∞ ≤ ||V ||∞||hL−h′L||∞ ≤
∑
i

||V T ||1||UT ||1||WT ||L−i1 ||xi−x′i||∞.

C.3 PROOF OF THEOREM 3

We begin by establishing two auxiliary lemmas that we will need for the subsequent theorem.
Lemma 11. For every RNNs in (1) with weight matrices θ = (U,W, V ), the following inequality
holds

|Eε[Φα(MyL(x, y))− Φα(MyL(x+ ε, y))]| ≤ 2

α

∑
i

||V T ||1||UT ||1||WT ||L−i1 (Eε||εi||∞)

for any x = (x1, x2, · · · , xL) and y.

Proof. For any fixed x and y,

|Eε[Φα(MyL(x, y))− Φα(MyL(x+ ε, y))]| ≤ Eε|Φα(MyL(x, y))− Φα(MyL(x+ ε, y))|
≤ 2

α
Eε||yL(x)− yL(x+ ε)||∞ ≤

2

α
Eε(
∑
i ||V T ||1||UT ||1||WT ||L−i1 ||εi||∞)

=
2

α

∑
i ||V T ||1||UT ||1||WT ||L−i1 (Eε||εi||∞)

,

where the first inequality uses Jensen’s inequality, the second inequality follows from the 1
α -

Lipschitz property of Φα(·) and Lemma 10 and the last inequality is by Lemma 8.

Lemma 12. Let {εi}di=1 be an i.i.d sequence of N (0, σ2) variables, then E[maxi |εi|] ≤
σ
√

2 log(2d)

Proof. Define Z = [maxi |εi|]. For any t > 0, by Jensen’ inequality, we have

etE(Z) ≤ E(etZ) = E(max
i
et|εi|) ≤

∑
i

E(et|εi|) = 2dΦ(σt)eσ
2t2/2 ≤ 2deσ

2t2/2,

where the second inequality uses the definition of normal distribution and Φ is the cumulative dis-
tribution function of the standard normal distribution. Taking logs on both sides and dividing by t,
we get

E(Z) ≤ log(2d)

t
+
σ2t

2
.

15
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Choosing t =

√
2log(2d)

σ
leads to the desired result,

E(Z) ≤ σ
√

2 log(2d).

We now return to the proof of Theorem 3.

Proof. For any RNNs with weight matrices θ = (U,W, V ) satisfying ||V T ||1 ≤ βV , ||WT ||1 ≤
βW , ||UT ||1 ≤ βU , we have

|Ex,y[Φα(MyL(x, y))]− Ex,ε,y[Φα(MyL(x+ ε, y))|
= |Ex,y(Φα(MyL(x, y))− Eε[Φα(MyL(x+ ε, y))])|
≤ Ex,y|Φα(MyL(x, y))− Eε[Φα(MyL(x+ ε, y))]| ≤ 2

α

∑
i βV βUβ

L−i
W (Eε||εi||∞)

,

where the first equality is due to the fact that the input x and noise ε are independent, the first
inequality uses Jensen’s inequality and the last inequality follows from Lemma 10. The inequality
above can be rewritten as follows.

Ex,y[Φα(MyL(x, y))] ≤ Ex,ε,y[Φα(MyL(x+ ε, y)) +
2

α

∑
i βV βUβ

L−i
W (Eε||εi||∞) .

For the first term in the right hand side of the above inequality, by Corollary 1, we have

Ex,ε,y[Φα(MyL(x+ ε, y))

≤ 4k

α

(r||X +Xε||F
2n

√
1

λmin(E((x+ ε)(x+ ε)T ))
+

1

n
βV βU ||XT +XT

ε ||1Λ
)

+ 3

√
log 2

δ

2n
+

1

n

∑
Φα(MyL(xi + εi, yi))

=
4k

α

(r||X +Xε||F
2n

√
1

λmin(E(xxT ) + E(εεT ))
+

1

n
βV βU ||XT +XT

ε ||1Λ
)

+ 3

√
log 2

δ

2n
+

1

n

∑
Φα(MyL(xi + εi, yi))

=
4k

α

(r||X +Xε||F
2n

√
1

λmin(E(xxT ) + σ2
ε I)

+
1

n
βV βU ||XT +XT

ε ||1Λ
)

+ 3

√
log 2

δ

2n
+

1

n

∑
Φα(MyL(xi + εi, yi))

=
4k

α

(r||X +Xε||F
2n

√
1

λmin(E(xxT )) + σ2
ε

+
1

n
βV βU ||XT +XT

ε ||1Λ
)

+ 3

√
log 2

δ

2n
+

1

n

∑
Φα(MyL(xi + εi, yi))

.

holds with probability at least 1− δ. By combing the above two inequalities together, we get

E[1MyL
(x,y)≤0] ≤ Ex,y[Φα(MyL(x, y))]

≤ 1

n

∑
Φα(MyL(xi + εi, yi)) +

2

α

∑
i βV βUβ

L−i
W (Eε||εi||∞)+

4k

α

(r||X +Xε||F
2n

√
1

λmin(E(xxT )) + σ2
ε

+
1

n
βV βU ||XT +XT

ε ||1Λ
)

+ 3

√
log 2

δ

2n

,

where the first inequality makes use of the fact that 1u ≤ Φα(u). Therefore, the desired result can
be immediately obtained by substituting Eε||εi||∞ with σε

√
2 log(2d) according to Lemma 12.
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