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ABSTRACT

In unsupervised domain adaptation (UDA), classifiers for the target domain (TD) are
trained with clean labeled data from the source domain (SD) and unlabeled data from TD.
However, in the wild, it is hard to acquire a large amount of perfectly clean labeled data in
SD given limited budget. Hence, we consider a new, more realistic and more challenging
problem setting, where classifiers have to be trained with noisy labeled data from SD and
unlabeled data from TD—we name it wildly UDA (WUDA). We show that WUDA ruins
all UDA methods if taking no care of label noise in SD, and to this end, we propose a
Butterfly framework, a powerful and efficient solution to WUDA. Butterfly maintains four
models (e.g., deep networks) simultaneously, where two take care of all adaptations (i.e.,
noisy-to-clean, labeled-to-unlabeled, and SD-to-TD-distributional) and then the other two
can focus on classification in TD. As a consequence, Butterfly possesses all the conceptually
necessary components for solving WUDA. Experiments demonstrate that under WUDA,
Butterfly significantly outperforms existing baseline methods.

1 INTRODUCTION

Domain adaptation (DA) aims to learn a discriminative classifier in the presence of a shift between training
data in source domain and test data in target domain (Ben-David et al., 2010; Ganin and Lempitsky, 2015;
Xiao and Guo, 2015; Zhang et al., 2015; 2013). Currently, DA can be divided into three categories: supervised
DA (Tzeng et al., 2015), semi-supervised DA (Guo and Xiao, 2012) and unsupervised DA (UDA) (Saito et al.,
2017). When the number of labeled data is few in target domain, supervised DA is also known as few-shot
DA (Motiian et al., 2017). Since unlabeled data in target domain can be easily obtained, UDA exhibits the
greatest potential in the real world (Ganin and Lempitsky, 2015; Ganin et al., 2016; Gong et al., 2012; 2016;
Long et al., 2015; Saito et al., 2017; 2018).

UDA methods train with clean labeled data in source domain (i.e., clean source data) and unlabeled data
in target domain (i.e., unlabeled target data) to obtain classifiers for the target domain (TD), which mainly
consist of three orthogonal techniques: integral probability metrics (IPM) (Ghifary et al., 2017; Gong et al.,
2016; Gretton et al., 2012; Lee and Raginsky, 2018; Long et al., 2015), adversarial training (Ganin et al.,
2016; Gong et al., 2018; Hoffman et al., 2018; Li et al., 2018; Saito et al., 2018; Tzeng et al., 2017) and
pseudo labeling (Saito et al., 2017). Compared to IPM- and adversarial-training-based methods, the pseudo-
labeling-based method (i.e., asymmetric tri-training domain adaptation (ATDA) (Saito et al., 2017)) can
construct a high-quality target-specific representation, providing a better classification performance.

However, in the wild, the data volume of source domain tends to be large. To avoid the expensive labeling
cost, labeled data in source domain normally come from amateur annotators or the Internet (Lee et al., 2018;
Schroff et al., 2011; Tommasi and Tuytelaars, 2014). This brings us a new, more realistic and more challenging
problem, wildy unsupervised domain adaptation (abbreviated as WUDA, Figure 1). This adaptation aims to
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The blue line denotes that UDA transfers knowledge from
clean source data (Ps) to unlabeled target data (Pxt ). How-
ever, perfectly clean data is hard to acquire. This brings wildly
unsupervised domain adaptation (WUDA), namely transfer-
ring knowledge from noisy source data (P̃s) to unlabeled target
data (Pxt ). Note that label corruption process (black dash line)
is unknown in practice. To handle WUDA, a compromise so-
lution is a two-step approach (green line), which sequentially
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and existing UDA (P̂s → Pxt ). This paper proposes a ro-
bust one-step approach called Butterfly (red line, P̃s → Pxt
directly), which eliminates noise effects from P̃s.

Figure 1: Wildly unsupervised domain adaptation (WUDA).
transfer knowledge from noisy labeled data in source domain (P̃s, i.e., noisy source data) to unlabeled target
data (Pxt

). Unfortunately, existing UDA methods share an implicit assumption that there are no noisy source
data. Namely, these methods focus on transferring knowledge from clean source data (Ps) to unlabeled target
data (Pxt

). Therefore, these methods cannot well handle the WUDA.

To validate this fact, we empirically reveal the deficiency of existing UDA methods (Figure 2). To improve
these methods, a straightforward solution is a two-step approach. In Figure 1, we can first use label-noise
algorithms to train a model on noisy source data, then leverage this trained model to assign pseudo labels
for noisy source data. Via UDA methods, we can transfer knowledge from pseudo-labeled source data (P̂s)
to unlabeled target data (Pxt

). Nonetheless, pseudo-labeled source data are still noisy, and such two-step
approach may not eliminate noise effects.

To circumvent the issue of two-step approach, we present a robust one-step approach called Butterfly. In
high level, Butterfly directly transfers knowledge from P̃s to Pxt

, and uses the transferred knowledge to
construct target-specific representations. In low level, Butterfly maintains four networks dividing two branches
(Figure 3): Two networks in Branch-I are jointly trained on noisy source data and pseudo-labeled target data
(data in mixture domain (MD)); while two networks in Branch-II are trained on pseudo-labeled target data.

The reason why Butterfly can be robust takes root in the dual-checking principle (DCP): Butterfly checks
high-correctness data out, from not only the data in MD but also the pseudo-labeled target data. After cross-
propagating these high-correctness data, Butterfly can obtain high-quality domain-invariant representations
(DIR) and target-specific representations (TSR) simultaneously in an iterative manner. If we only check
data in MD (i.e., single checking), the error existed in pseudo-labeled target data will accumulate, leading to
low-quality DIR and TSR.

We conduct experiments on simulated WUDA tasks, including 4 MNIST-to-SYND tasks, 4 SYND-to-MNIST
tasks and 24 human-sentiment tasks. Besides, we conduct experiments on 3 real-world WUDA tasks.
Empirical results demonstrate that Butterfly can robustly transfer knowledge from noisy source data to
unlabeled target data. Meanwhile, Butterfly performs much better than existing UDA methods when source
domain (SD) suffers the extreme (e.g., 45%) noise.

2 WILDLY UNSUPERVISED DOMAIN ADAPTATION

In this section, we first define a new, more realistic and more challenging setting called wildly unsupervised
domain adaptation (WUDA), and explain the nature of WUDA. Then, we empirically show that representative
UDA methods cannot handle WUDA well, which motivates us to propose Butterfly (see Section 3).

Definition 1 (Wildly Unsupervised Domain Adaptation). Let Xt be a multivariate random variable defined
on the space X with respective a probability density pxt , (Xs, Ys) be a multivariate random variable defined
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(a) Symmetry-flip noise: S→M (left), M→S (right) (b) Pair-flip noise: S→M (left), M→S (right)

Figure 2: WUDA ruins representative UDA methods. Representative UDA methods includes deep adaptation
networks (DAN, a IPM based method (Long et al., 2015)), domain-adversarial neural network (DANN, a
adversarial training based method (Ganin et al., 2016)), asymmetric tri-training domain adaptation (ATDA, a
pseudo-label based method (Saito et al., 2017)) and transferable curriculum learning (TCL, a robust UDA
method (Shu et al., 2019)). B-Net is our proposed WUDA method. We report target-domain accuracy of all
methods when the noise rate of source domain changes (a) from 5% to 70% (symmetry-flip noise) and (b)
from 5% to 45% (pair-flip noise). Clearly, when the noise rate of source domain increases, target-domain
accuracy of representative UDA methods drops quickly while that of B-Net keeps stable consistently.

on the space X ×C with respective a probability density p̃s, where C = {1, . . . ,K}. Let pxs
be the marginal

probability density of p̃s. Given i.i.d. data D̃s = {(xsi, ỹsi)}ns
i=1 and Dt = {xti}nt

i=1 drawn from P̃s and
Pxt

, in wildly unsupervised domain adaptation, we aim to train with D̃s and Dt to accurately annotate data
drawn from Pxt

, where pxs
6= pxt

.

Remark 1. In Definition 1, D̃s is noisy source data, Dt is unlabeled target data, and P̃s and Pxt are two
probability measures corresponding to densities p̃s(xs, ỹs) and pxt(xt).

Nature of WUDA. Specifically, there are five distributions involved in WUDA setting: 1) a marginal
distribution on source data, i.e., pxs in Definition 1; 2) a marginal distribution on target data, i.e., pxt in
Definition 1; 3) an incorrect conditional distribution of label given xs, q(ys|xs); 4) a correct conditional
distribution of label given xs, p(ys|xs) and 5) a correct conditional distribution of label given xt, p(yt|xt).

Based on Definition 1 and Appendix A.2, noisy source data D̃s are drawn from p̃s(xs, ys) = pxs
(xs)((1−

ρ)p(ys|xs) + ρq(ys|xs)), where ρ is the noise rate in source data. Namely, source data D̃s are mixture of
correct source data from pxs(xs)p(ys|xs) and incorrect data from pxs(xs)q(ys|xs). Target data Dt are drawn
from pxt . In WUDA setting, we aim to train a classifier with D̃s and Dt. This classifier is expected to
accurately annotate data from pxt

, i.e., to accurately simulate distribution 5).
WUDA ruins representative UDA methods. We take a simple example to illustrate why WUDA ruins
representative UDA methods. We corrupt source data using symmetry flipping (Patrini et al., 2017) and pair
flipping (Han et al., 2018) (Appendix B). Namely, the corrupted source data (D̃s in Definition 1) are drawn
from P̃s whose density is p̃s(xs, ys) = pxs

(xs)((1− ρ)p(ys|xs) + ρq(ys|xs)). We draw the target data Dt

from Pxt whose density is pxt . To instantiate source and target data, we leverage MNIST and SYND (Figure 6
in Appendix C), respectively.

Thus, we first construct two WUDA tasks with symmetry-flip noise: corrupted SYND→MNIST (S→M) and
corrupted MNIST→SYND (M→S). In Figure 2 (a), we report target-domain accuracy of representative UDA
methods, when the noise rate ρ of SD changes from 5% to 70%. It is clear that target-domain accuracy of these
representative UDA methods drops quickly when ρ increases. This means that WUDA ruins representative
UDA methods. Then, we construct another two WUDA tasks with pair-flip noise. In Figure 2 (b), we report
target-domain accuracy, when the noise rate ρ of SD changes from 5% to 45%. Again, WUDA still ruins
representative UDA methods. Note that pair-flip noise is much harder than symmetry-flip noise, and its noise
rate cannot be over 50% in practice (Han et al., 2018).
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Figure 3: Butterfly Framework. Two networks in Branch-I are jointly trained on noisy source data and
pseudo-labeled target data (mixture domain). Two networks in Branch-II are trained on pseudo-labeled
target data. By using dual-checking principle, Butterfly checks high-correctness data out from both mixture
and pseudo-labeled target data. After cross-propagating checked data, Butterfly can obtain high-quality
domain-invariant representations (DIR) and target-specific representations (TSR) simultaneously in an
iterative manner. Note that TSR naturally refines DIR via sharing weights in CNN.
However, the proposed Butterfly network (abbreviated as B-Net, Figure 3) performs robustly when ρ increases
(blue lines in Figure 2). In following sections, we will introduce Butterfly framework, and explain why
Butterfly achieves better target-domain accuracy consistently.

3 BUTTERFLY: TOWARDS ROBUST ONE-STEP APPROACH

To realize a robust WUDA approach, we propose a Butterfly framework (a one-step approach, Algorithm 1),
which trains four networks dividing into two branches (Figure 3). By using DCP, Branch-I checks which data
is correct in MD; while Branch-II checks which pseudo-labeled target data is correct. To ensure these checked
data highly-correct, we apply the small-loss trick based on memorization effects of deep learning (Arpit et al.,
2017). After cross-propagating these checked data (Bengio, 2014), Butterfly can obtain high-quality DIR and
TSR simultaneously in an iterative manner.
Loss function in Butterfly. Four networks trained by Butterfly share the same loss function but with
different inputs.

L(θ, u;F,D) =
1∑n
i=1 ui

n∑
i=1

ui`(F (xi), y̌i), (1)

where n is the batch size, and F represents a network (e.g., F1, F2, Ft1 and Ft2). D = {(xi, y̌i)}ni=1 is a
mini-batch for training a network, where {xi, y̌i}ni=1 could be data in MD or TD (Figure 3), and θ represents
parameters of F and u = [u1, ..., un]T is an n-by-1 vector whose elements equal 0 or 1. For two networks in
Branch-I, following Saito et al. (2017), we also add a regularizer |θTf11θf21| in their loss functions, where
θf11 and θf21 are weights of the first fully-connect layer of F1 and F2. With this regularizer, F1 and F2 will
learn from different features.
Training procedure of Butterfly. For two networks in each branch, they will first check high-correctness
data out and then cross update their parameters using these data.

Based on loss function defined in Eq. (1), entire training procedures of Butterfly are shown in Algorithm 1.
First, we initialize training data for two branches (D̃ for Branch-I and D̃l

t for Branch-II), four networks
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Algorithm 1 Butterfly Framework: quadruple training for WUDA problem
1: Input D̃s, Dt, learning rate η, fixed τ , fixed τt, epoch Tk and Tmax, iteration Nmax, # of pseudo-labeled target data
ninit, max of ninit nlt,max;
2: Initial F1, F2, Ft1, Ft2, D̃l

t = D̃s, D̃ = D̃s, nlt = ninit;
for T = 1, 2, . . . , Tmax do

3: Shuffle training set D̃; // Noisy dataset
for N = 1, . . . , Nmax do

4: Fetch mini-batch Ď from D̃;
5: Update Branch-I: F1, F2 = Checking(F1, F2, Ď, η, R(T )); // Check data in MD using Algorithm 2
6: Fetch mini-batch Ďt from D̃l

t;
7: Update Branch-II: Ft1, Ft2 = Checking(Ft1, Ft2, Ďt, η, Rt(T )); // Check data in TD using Algorithm 2

end
8: Obtain D̃l

t = Labelling(F1, F2, Dt, n
l
t); // Label Dt, following Saito et al. (2017)

9: Obtain D̃ = D̃s ∪ D̃l
t; // Update MD

10: Update nlt = min{T/20 ∗ nt, nlt,max};
11: Update R(T ) = 1−min{ T

Tk
τ, τ}, Rt(T ) = 1−min{ T

Tk
τt, τt};

end
12: Output Ft1 and Ft2

(F1, F2, Ft1 and Ft2) and the number of pseudo labels (line 2). In the first epoch (T = 1), D̃ and D̃l
t are the

same with D̃s because there are only unlabeled target data. After mini-batch Ď is fetched from D̃ (line 4), F1

and F2 check high-correctness data out and update their parameters (lines 5) using Algorithm 2 (Appendix D).
Using similar procedures, Ft1 and Ft2 also update their parameters using Algorithm 2 (lines 6-7).

In each epoch, after Nmax mini-batch updating, we randomly select nlt unlabeled target data and assign them
pseudo labels using F1 and F2 (lines 8). Following Saito et al. (2017), the Labeling function in Algorithm 1
(line 8) assigns pseudo labels for unlabeled target data, when predictions of F1 and F2 agree and at least
one of them is confident about their predictions (probability above 0.9 or 0.95). Using this function, we can
obtain the pseudo-labeled target data D̃l

t for training Branch-II in the next epoch. Then, we merge D̃l
t and

D̃s to be D̃ for training Branch-I in the next epoch (line 9). Finally, we update nlt, R(T ) and Rt(T ) in lines
10-11 according to Saito et al. (2017) and Han et al. (2018).

In Algorithm 1, we use τ to represent the noise rate (i.e., the ratio of data with incorrect labels) in MD and use
τt to represent the noise rate in TD. However, in WUDA, we cannot obtain the ground-truth τ and τt. Thus,
we regard τ and τt as hyper-parameters. Note that τ and τt are robustly set to 0.4 and 0.05 in experiments.

4 BUTTERFLY VS. TWO-STEP APPROACH

This section analyzes why Butterfly is better than two-step approach using theoretical results in Appendix E.
Practitioner may safely skip it. Following Ben-David et al. (2010), we derive an upper bound of target-domain
risk for WUDA. Compared to existing UDA bounds, the WUDA bound has two extra terms (see Eq. (6)): ∆s

(noise effect from source data), and ∆t (noise effects from pseudo labels of target data). We will use ∆s and
∆t to show why Butterfly (a one-step approach) can eliminate noise effects while two-step methods cannot.

Two-step approach (a compromise solution). To reduce noise effects, a straightforward solution is two-
step approach. In the first step, we can train a classifier with noisy source data using Co-teaching (Han et al.,
2018) and use this classifier to annotate pseudo labels for source data. In the second step, we use ATDA
(Saito et al., 2017) to train a target-domain classifier with pseudo-label-source data and target data.

However, two-step approach may not reduce noise effects ∆s (i.e., not alleviating noise effects from source
data). In two-step approach, after using Co-teaching, ∆s will become pseudo-label-source effects ∆′s (see
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Eq. (7)). The first part of ∆′s may be less than that of ∆s due to Co-teaching, but the second term of ∆′s may
be higher than that of ∆s since Co-teaching does not consider to minimize it. Thus, it is hard to say whether
∆′s < ∆s. This means that, the two-step approach may not really reduce noise effects ∆s. Besides, two-step
approach does not take care of eliminating ∆t explicitly. Based on above analysis, we can find that a two-step
approach cannot eliminate ∆s and ∆t.

One-step approach (Butterfly). To eliminate noise effects ∆ = ∆s + ∆t, Butterfly aims to select correct
data simultaneously from noisy source data and pseudo-labeled target data (see Section 3). Let ρs01 be the
probability that incorrect data is selected from noisy source data, and ρt01 be the probability that incorrect data
is selected from pseudo-labeled target data. Theorem 3 shows that ∆→ 0 if ρs01 → 0 and ρt01 → 0. Since
Butterfly can select correct data with a high probability (i.e., ρs01 → 0 and ρt01 → 0), noise effects will be
eliminated (∆→ 0).

5 EXPERIMENTS

Simulated WUDA tasks. We verify the effectiveness of our approach on three benchmark datasets (vision
and text), including MNIST, SYN-DIGITS (SYND) and human-sentiment analysis (i.e., Amazon products
reviews on book, dvd, electronics and kitchen). They are used to construct 14 basic tasks: MNIST→SYND
(M→S), SYND→MNIST (S→M), book→dvd (B→D), book→electronics (B→E), . . . , and kitchen→ elec-
tronics (K→E). These tasks are often used for evaluation of UDA methods (Ganin et al., 2016; Saito et al.,
2017; 2018). Since all source datasets are clean, we corrupt source data using symmetry flipping (Patrini et al.,
2017) and pair flipping (Han et al., 2018) (Appendix B) with noise rate ρ chosen from {0.2, 0.45}. So, for
each basic task, we have four kinds of noisy source data: Pair-45% (P45), Pair-20% (P20), Symmetry-45%
(S45), Symmetry-20% (S20). Namely, we evaluate the performance of each method using 32 simulated
WUDA tasks: 8 digit tasks and 24 human-sentiment tasks. Note that the human-sentiment task is a binary
classification problem, so pair flipping is equal to symmetry flipping. Thus, we only have 24 human-sentiment
tasks. Results on human-sentiment tasks are reported in Appendix F.

Real-world WUDA tasks. We also verify the efficacy of our approach on “cross-dataset benchmark”
including Bing, Caltech256, Imagenet and SUN (Tommasi and Tuytelaars, 2014). In this benchmark, Bing,
Caltech256, Imagenet and SUN contain common 40 classes. Since Bing dataset was formed by collecting
images retrieved by Bing image search, it contains rich noisy data, with presence of multiple objects in the
same image and caricaturization (Tommasi and Tuytelaars, 2014). We use Bing as noisy source data, and
Caltech256, Imagenet and SUN as unlabeled target data, which can form three real-world WUDA tasks.

Baselines. We realize Butterfly using four networks (abbreviated as B-Net) and compare B-Net with
following baselines: 1) ATDA: representative pseudo label based UDA method (Saito et al., 2017); 2)
deep adaptation networks (DAN): representative IPM based UDA method (Long et al., 2015); 3) DANN:
representative adversiral training based UDA method (Ganin et al., 2016); 4) TCL: an existing robust UDA
method; 5) Co teaching+ATDA (Co+ATDA): a two-step method (see Section 4). Implementation details are
demonstrated in Appendix G.

Results on simulated WUDA (including 8 tasks). Table 1 reports the accuracy on the unlabled target data
(i.e., target-domain accuracy) in 8 tasks. As can be seen, average target-domain accuracy of B-Net is higher
than those of all baselines. On S20 case (the easiest case), most methods work well. ATDA has a satisfactory
performance although it does not consider the noise effects explicitly. Then, when facing harder cases (i.e.,
P20 and P45), ATDA fails to transfer useful knowledge from noisy source data to unlabeled target data. When
facing the hardest cases (i.e., M→S with P45 and S45), DANN has higher accuracy than DAN and ATDA
have. However, when facing the easiest cases (i.e., S→M with P20 and S20), the performance of DANN is
worse than that of DAN and ATDA. Although two-step method Co+ATDA outperforms ATDA in all 8 tasks,
it cannot beat one-step method: B-Net in terms of average target-domain accuracy. This result is an evidence
for the claim in Section 4. In the task S→M with P20, Co+ATDA outperforms all methods (slightly higher
than B-Net), since pseudo-labeled source data are almost correct.
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(a) S20 (b) S45 (c) P20 (d) P45

Figure 4: Target-domain accuracy vs. number of epochs on four SYND→MNIST WUDA tasks.

(a) S20 (b) S45 (c) P20 (d) P45

Figure 5: Target-domain accuracy vs. number of epochs on four MNIST→SYND WUDA tasks.

Table 1: Target-domain accuracy on 8 digit WUDA tasks (SYND↔MNIST). Bold value represents the highest
accuracy in each row.

Tasks Type DAN DANN ATDA TCL Co+ATDA B-Net

S→M

P20 90.17% 79.06% 55.95% 80.81% 95.37% 95.29%
P45 67.00% 55.34% 53.66% 55.97% 75.43% 90.21%
S20 90.74% 75.19% 89.87% 80.23% 95.22% 95.88%
S45 89.31% 65.87% 87.53% 68.54% 92.03% 94.97%

M→S

P20 40.82% 58.78% 33.74% 58.88% 58.02% 60.36%
P45 28.41% 43.70% 19.50% 45.31% 46.80% 56.62%
S20 30.62% 53.52% 49.80% 56.74% 56.64% 57.05%
S45 28.21% 43.76% 17.20% 49.91% 54.29% 56.18%

Average 58.16% 58.01% 50.91% 62.05% 71.73% 75.82%

Figures 4 and 5 show the target-domain accuracy vs. number of epochs among ATDA, Co+ATDA and
B-Net. Besides, we show the accuracy of ATDA trained with clean source data (ATDA-TCS) as a reference
point. When accuracy of one method is close to that of ATDA-TCS (red dash line), this method successfully
eliminates noise effects. From our observations, it is clear that B-Net is very close to ATDA-TCS in 7 out of
8 tasks (except for S→M task with P45, Figure 4-(d)), which is an evidence that Butterfly can eliminate noise
effects. Since P45 case is the hardest one, it is reasonable that B-Net cannot perfectly eliminate noise effects.
An interesting phenomenon is that, B-Net outperforms ATDA-TCS in 2 M→S tasks (Figure 5-(a), (c)). This
means that B-Net transfers more useful knowledge (from noisy source data to unlabeled target data) even
than ATDA-TCS (from clean source data to unlabeled target data).

Results on real-world WUDA (including 3 tasks). Table 2 reports the target-domain accuracy for 3 tasks.
B-Net enjoys the best performance on all tasks. It should be noted that, in both Bing→Caltech256 and
Bing→ImageNet tasks, ATDA is slightly worse than B-Net. However, in Bing→SUN task, ATDA is much
worse than B-Net. The reason is that the DIR between Bing and SUN are more affected by noisy source
data. This phenomenon is also observed when comparing DANN and TCL. Compared to Co+ATDA, ATDA
is slightly better than Co+ATDA. This abnormal phenomenon can be explained using ∆ (see Section 4),

7



Under review as a conference paper at ICLR 2020

Table 2: Target-domain accuracy on 3 real-world WUDA tasks. The source domain is the Bing dataset that
contains noisy information from the Internet. Bold value represents the highest accuracy in each row.

Target DAN DANN ATDA TCL Co+ATDA B-Net

Caltech256 77.83% 78.00% 80.84% 79.35% 79.89% 81.71%
Imagenet 70.29% 72.16% 74.89% 72.53% 74.73% 75.00%
SUN 24.56% 26.80% 26.26% 28.80% 26.31% 30.54%

Average 57.56% 58.99% 60.66% 60.23% 60.31% 62.42%

Table 3: Results of ablation study. Average target-domain accuracy on 8 simulated digit WUDA tasks (Digit),
24 simulated human-sentiment WUDA tasks (Sentiment) and 3 real-world WUDA tasks (Real-world). Bold
value represents the highest accuracy in each row.

Datasets B w/o C DCP-D DCP-M B-Net-S B-Net-T B-Net-ST B-Net-M B-Net

Digit 74.52% 59.19% 70.85% 71.93% 52.00% 72.27% 73.89% 75.82%
Sentiment 63.57% 61.37% 63.39% 61.49% 61.12% 61.73% 62.21% 63.77%
Real-world 62.27% 59.82% 62.34% 61.91% 60.87% 62.24% 62.17% 62.42%

after using Co-teaching to assign pseudo labels for noisy source data, the second term in ∆s may increase,
which results in that ∆ increases, i.e., noise effects actually increase. This phenomenon is an evidence that a
two-step method may not really reduce noise effects.
Ablation study. Finally, we conduct thorough experiments to show the contribution of individual compo-
nents in B-Net. We report average target-domain accuracy on 32 simulated WUDA tasks (8 digit and 24
human-sentiment WUDA tasks) and 3 real-world WUDA tasks. We consider following baselines: 1) B w/o
C: train B-Net by Algorithm 1, without adding |θTf11θf21| into the loss function of B-Net. 2) DCP-D: realize
DCP via Decoupling (Malach and Shalev-Shwartz, 2017) to check data in MD and TD. 3) DCP-M: realize
DCP via MentorNet (Jiang et al., 2018) to check data in MD and TD. 4) B-Net-S: train B-Net where the
check is turned on for Source data in MD. 5) B-Net-T: train B-Net where the check is turned on for Target
data in TD. 6) B-Net-ST: train B-Net where the checks are turned on for Source data in MD and Target data
in TD. 7) B-Net-M: train B-Net where the check is turned on for all data in MD. Note that in the full B-Net,
the checks are turned on for all data in MD and Target data in TD.

Comparing B-Net with B w/o C reveals whether the constraint |θTf11θf21| takes effects. Comparing B-Net
with DCP-D and DCP-M shows whether realizing DCP via Co-teaching is the optimal way. Comparing
B-Net with B-Net-S, B-Net-T, B-Net-ST and B-Net-M reveals whether DCP is necessary. Table 3 reports
average target-domain accuracy of above baselines and B-Net. As can be seen, 1) B-Net benefits from adding
the constraint to the loss function L; 2) realizing DCP by Co-teaching is better than using Decoupling or
MentorNet; and 3) DCP is necessary since accuracy of B-Net is higher than those of B-Net-S, B-Net-T,
B-Net-ST and B-Net-M.

6 CONCLUSIONS

This paper opens a new problem called wildly unsupervised domain adaptation (WUDA). However, existing
UDA methods cannot handle WUDA well. To address this problem, we propose a robust one-step approach
called Butterfly. Butterfly maintains four deep networks simultaneously: Two take care of all adaptations;
while the other two can focus on classification in target domain. We compare Butterfly with existing UDA
methods on 32 simulated and 3 real-world WUDA tasks. Empirical results demonstrate that Butterfly can
robustly transfer knowledge from noisy source data to unlabeled target data. In future, we will extend our
Butterfly framework to address open-set UDA when source domain contains noisy data.
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A REVIEW OF GENERATION OF NOISY LABELS

This section presents a review on two label-noise generation processes.

A.1 TRANSITION MATRIX

We assume that there is a clean multivariate random variable (Xs, Ys) defined on X × Y with a probability
density ps(xs, ys), where Y = {1, ...,K} is a label set with K labels. However, samples of (Xs, Ys) cannot
be directly obtained and we only can observe noisy source data from the multivariate random variable
(Xs, Ỹs) defined on X × Y with a probability density p̃s(xs, ỹs). p̃s(xs, ỹs) is generated by a transition
probability Pr(Ỹs = j|Ys = i), i.e., the flip rate from a clean label i to a noisy label j. When we generate
p̃s(xs, ỹs) using Q, we often assume that

∑K
ys=1 ps(xs, ys) =

∑K
ỹs=1 p̃s(xs, ỹs), i.e., the class conditional

noise (Liu and Tao, 2016). All these transition probabilities are summarized into a transition matrix Q, where
Qij = Pr(Ỹs = j|Ys = i).

The transition matrix Q is easily estimated in certain situations (Liu and Tao, 2016). However, in more
complex situations, such as clothing1M dataset (Xiao et al., 2015), noisy source data is directly generated by
selecting data from a pool, which mixes correct data (data with correct labels) and incorrect data (data with
incorrect labels). Namely, how the correct label i is corrupted to j (i 6= j) is unclear.

A.2 SAMPLE SELECTION

Formally, there is a multivariate random variable (Xs, Ys, Vs) defined on X ×Y×V with a probability density
ppo
s (xs, ys, vs), where V = {0, 1} and Vs = 1 means “correct” and Vs = 0 means “incorrect”. Nonetheless,

samples from (Xs, Ys, Vs) cannot be obtained and we can only observe (Xs, Ỹs) from a distribution with the
following density.

p̃s(xs, ỹs) =

1∑
vs=0

ppo
Xs,Ys|Vs

(xs, ys|vs)ppo
Vs

(vs), (2)

where ppo
Vs

(vs) =
∫
X
∑K
ys=1 p

po
s (xs, ys, vs)dxs. The density in Eq. (2) means that we lost the information

from Vs. If we uniformly select samples drawn from p̃s(xs, ỹs), the noise rate of these samples is ppo
Vs

(0). It is
clear that the multivariate random variable (Xs, Ys|Vs = 1) is the clean multivariate random variable (Xs, Ys)
defined in Appendix A.1. Then, qs(xs, ys) is used to describe the density of incorrect multivariate random
variable (Xs, Ys|Vs = 0). Using ps(xs, ys) and qs(xs, ys), p̃s(xs, ỹs) can be expressed by the following
equation.

p̃s(xs, ỹs) = (1− ρ)ps(xs, ys) + ρqs(xs, ys), (3)

where ρ = ppo
Vs

(0). Here, we do not assume
∑K
ys=1 ps(xs, ys) =

∑K
ys=1 qs(xs, ys). To reduce noise effects

from incorrect data, scholars aim to recover the information of Vs, i.e., to select correct data from data drawn
from p̃s(xs, ỹs) (Han et al., 2018; Jiang et al., 2018; Malach and Shalev-Shwartz, 2017).

11



Under review as a conference paper at ICLR 2020

(a) MNIST (b) SYND

Figure 6: Visualization of MNIST and SYND.

B TRANSITION MATRIX Q

Precise definitions of Symmetry flipping and Pair flipping are presented below, where ρ is the noise rate and
K is the number of labels.

Symmetry flipping: Q =


1− ρ ρ

K−1 . . . ρ
K−1

ρ
K−1

ρ
K−1 1− ρ ρ

K−1 . . . ρ
K−1

...
. . .

...
ρ

K−1 . . . ρ
K−1 1− ρ ρ

K−1
ρ

K−1
ρ

K−1 . . . ρ
K−1 1− ρ

 ,

Pair flipping: Q =


1− ρ ρ 0 . . . 0

0 1− ρ ρ 0
...

. . . . . .
...

0 1− ρ ρ
ρ 0 . . . 0 1− ρ

 .

Following Han et al. (2018); Jiang et al. (2018), we can corrupt clean-label datasets manually using the noise
transition matrix Q .

C DATASETS VISUALIZATION

Figure 6 shows datasets: MNIST and SYND. Figure 7 shows datasets: Bing, Caltech256, Imagenet and SUN
(taking “horse” as the common class).
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(a) Bing provided by Bergamo and Torresani (2010) (b) Caltech256 provided by Griffin et al. (2007)

(c) ImageNet provided by Deng et al. (2009) (d) SUN provided by Xiao et al. (2010)

Figure 7: Visualization of Bing, Caltech256, ImageNet and SUN (taking “horse” as the common class).

D CHECKING ALGORITHM

Algorithm 2 shows the checking algorithm in Algorithm 1.

Algorithm 2 Checking(F1, F2, D, η, α)
1: Input networks F1, F2, mini-batch D, learning rate η, remember rate α;
2: Obtain u1 = arg minu′

1:1u
′
1>α|D| L(θ1, u

′
1;F1, D); // Check high-correctness data

3: Obtain u2 = arg minu′
2:1u

′
2>α|D| L(θ2, u

′
2;F2, D); // Check high-correctness data

4: Update θ1 = θ1 − η∇L(θ1, u
′
2;F1, D); // Update θ1

5: Update θ2 = θ2 − η∇L(θ2, u
′
1;F2, D); // Update θ2

6: Output F1 and F2
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E THEORETICAL ANALYSIS

This section presents some interesting theoretical findings related to WUDA problem. We use following
notations in this section: 1) a space X ⊂ Rd and Y = {1, 2, . . . ,K} as a label set; 2) p̃s(xs, ỹs), ps(xs, ys)
and qs(xs, ys) represent densities of noisy, correct and incorrect multivariate random variables (m.r.v.) defined
on X ×Y , respectively1, and p̃xs

(xs), pxs
(xs) and qxs

(xs) are their marginal densities; and 3) pxt
(xt) repre-

sents density of m.r.v. xt defined on X ; and 4) we use `(h(x), h′(x)) to represent loss function between two
labelling functions; and 5) we use R̃s(h) = Ep̃s(xs,ỹs)[`(h(xs), ỹs)] and Rs(h) = Eps(xs,ys)[`(h(xs), ys)] to
represent expected risks on the noisy and correct m.r.v.; and 6) we use R̃s(h, h′) = Ep̃xs (xs)[`(h(xs), h

′(xs))],
Rs(h, h

′) = Epxs (xs)[`(h(xs), h
′(xs))] and Rt(h, h′) = Epxt (xt)[`(h(xt), h

′(xt))] to represent expected
discrepancy between two labelling functions h, h′ under different marginal densities; 7) the ground-truth and
pseudo labeling function of the target domain are denoted by ft(xt) and f̃t(xt).

E.1 WUDA RUINS UDA METHODS

Theoretically, we analyze why existing UDA methods cannot well transfer useful knowledge from noisy
source data D̃s to unlabelled target data Dt directly. We first present a theorem to show relations between
Rs(h) and R̃s(h).

Theorem 1. For any labelling function h : X → Y , if p̃s(xs, ỹs) is generated by a transition matrix Q as
demonstrated in Appendix A.1, we have

R̃s(h) = Rs(h) + Epxs (xs)[η
T (xs)(Q− I)`(h(xs))], (4)

where `(h(xs)) = [`(h(xs), 1), ..., `(h(xs),K)]T and η(xs) = [pYs|Xs
(1|xs), ..., pYs|Xs

(K|xs)]T . If
p̃s(xs, ỹs) is generated by sample selection as described in in Appendix A.2, we have

R̃s(h) = (1− ρ)Rs(h) + ρEqxs (xs)[η
T
q (xs)`(h(xs))], (5)

where ηq(xs) = [qYs|Xs
(1|xs), ..., qYs|Xs

(K|xs)]T .

Remark 2. In Eq. (5), Eqxs (xs)[η
T
q (xs)`(h(xs))] represents the expected risk on the incorrect m.r.v.. To en-

sure to obtain useful knowledge from P̃s, we need to avoid R̃s(h) ≈ Eqxs (xs) [ηTq (xs)`(h(xs))]. Specifically,
we assume: there is a constant 0 < Ms <∞ such that Eqxs (xs)[η

T
q (xs)`(h(xs))] ≤ Rs(h) +Ms.

Theorem 1 shows that the expected risk R̃s(h) only equals Rs(h) when two cases happen: 1) Q = I and
ρ = 0 and 2) some special combinations (e.g., special pxs , qxs , Q, η and `) to make the second term in Eq. (4)
equal zero or to make the second term in Eq. (5) equal ρRs(h). Case 1) means that data in source domain
is clean, which is not real in the wild. Case 2) almost never happens, since it is hard to find such special
combinations when pxs

, qxs
, Q and η are unknown. Thus, R̃s(h) has an essential difference with Rs(h).

Then, following proof skills in Ben-David et al. (2010), we derive the upper bound of Rt(h) as follows.

Theorem 2. For any labelling function h : X → Y , we have

Rt(h, ft) ≤ R̃s(h)︸ ︷︷ ︸
(i) risk on noisy data

+ |Rt(h, f̃t)− R̃s(h, f̃t)|︸ ︷︷ ︸
(ii) discrepancy between distributions

+ |Rs(h, f̃t)−Rs(h)|︸ ︷︷ ︸
(iii) domain dissimilarity

+ |R̃s(h)−Rs(h)|+ |R̃s(h, f̃t)−Rs(h, f̃t)|︸ ︷︷ ︸
(iv) noise effects from source ∆s

+ |Rt(h, ft)−Rt(h, f̃t)|︸ ︷︷ ︸
(v) noise effects from target ∆t

. (6)

1There are two common ways to express the density of noisy m.r.v. (see Appendix A). One way is to use a mixture of
densities of correct and incorrect m.r.v..
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Remark 3. To ensure that we can gain useful knowledge from f̃t(xt), we assume: there is a constant 0 <

Mt <∞ such that Eqxs (x)[`(h(x), f̃t(x))] ≤ Rs(h, f̃t)+Mt and Eqxt (x)[`(h(x), f̃t(x))] ≤ Rt(h, ft)+Mt,
where qxt

(x) = pxt
(x)1A(x)/Pxt

(A) and A = {x : f̃t(x) 6= ft(x)}.

It is clear that the upper bound of Rt(h, ft), shown in Eq. (6), has 5 components. However, existing UDA
methods only focus on minimizing (i) + (ii) (Ganin et al., 2016; Ghifary et al., 2017; Long et al., 2015) or
(i) + (ii) + (iii) (Saito et al., 2017), which ignores terms (iv) and (v) (i.e., ∆ = ∆s + ∆t). Thus, in theory,
existing UDA methods cannot handle wildly unsupervised domain adaptation well.

E.2 TWO-STEP APPROACH IS A COMPROMISE SOLUTION

To reduce noise effects, a straightforward solution is two-step approach. In the first step, we can train a
classifier with noisy source data using Co-teaching (Han et al., 2018) and use this classifier to annotate pseudo
labels for source data. In the second step, we use ATDA (Saito et al., 2017) to train a target-domain classifier
with pseudo-label-source and target data.

Nonetheless, the pseudo-labeled source data is still noisy. Let labels of noisy source data ỹs be replaced with
pseudo labels ỹ′s after pre-processing. Noise effects ∆ will become pseudo-label effects ∆p as follows.

∆p = |R̃′s(h)−Rs(h)|+ |R̃′s(h, f̃t)−Rs(h, f̃t)|︸ ︷︷ ︸
pseudo-label-source effects ∆′

s

+∆t, (7)

where R̃′s(h) and R̃′s(h, f̃t) correspond to R̃s(h) and R̃s(h, f̃t) in ∆s. It is clear that the difference between
∆p and ∆ is ∆′s −∆s. The first term in ∆′s may be less than that in ∆s due to Co-teaching, but the second
term in ∆′s may be higher than that in ∆s since Co-teaching does not consider to minimize it. Thus, it is hard
to say whether ∆′s < ∆s (i.e., ∆p < ∆). This means that two-step approach may not really reduce noise
effects.

E.3 WHY DOES BUTTERFLY CAN ELIMINATE NOISE EFFECT?

To eliminate noise effects ∆, we aim to select correct data simultaneously from noisy source data and
pseudo-labeled target data. In theory, we prove that noise effects will be eliminated if we can select correct
data with a high probability. Let ρs01 represent the probability that incorrect data is selected from noisy source
data, and ρt01 represent the probability that incorrect data is selected from pseudo-labeled target data. Theorem
3 shows that ∆→ 0 if ρs01 → 0 and ρt01 → 0 and presents a new upper bound of Rt(h, ft).

Theorem 3. Given two m.r.v. (Xs, Ys, Us) defined on X × Y × V and (Xt, Ut) defined on X × V , under
the assumptions in Remarks 2 and 3, ∀ε ∈ (0, 1), there are δs and δt, if Ep′xt

(xt)[`(h(xt), ft(xt))] ≤
Rt(h, ft) + ρs01Mt, ρs01 < δs and ρt01 < δt, for any labeling function h, we will have

|R̃po
s (h, f̃t, us)−Rs(h, f̃t)|+ |R̃po

s (h, us)−Rs(h)| < 2ε. (8)
Moreover, if ρs01 ≤ δs and ρt01 ≤ δt, we will have

Rt(h, ft) ≤ R̃po
s (h, us)︸ ︷︷ ︸

(i) risk on noisy data

+ |R̃po
t (h, f̃t, ut)− R̃po

s (h, f̃t, us)|︸ ︷︷ ︸
(ii) discrepancy between distributions

+ |Rs(h, f̃t)−Rs(h)|︸ ︷︷ ︸
(iii) domain dissimilarity

+ 2ε︸︷︷︸
(iv) noise effects from source ∆s

+ 2ε︸︷︷︸
(v) noise effects from target ∆t

, (9)

where p′xt
(x) = pxt

(x)1B(x)/Pxt
(B), R̃po

s (h, us) = (1 − ρus
)−1Ep̃po

s (xs,ys,us)[us`(h(xs), ys)],
R̃po
t (h, f̃t, ut) = (1 − ρut)

−1Ep̃po
t (xt,ut)[ut`(h(xt), f̃t(xt))], R̃po

s (h, f̃t, us) = (1 − ρus)−1
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Ep̃po
s (xs,ys,us)[us`(h(xs), f̃t(xs))], p̃po

s (xs, ys, us) is the density of (Xs, Ys, Us), p̃po
t (xt, ut) is the density of

(Xt, Ut), ρus
=
∫
X
∑K
ys=1 p̃

po
s (xs, ys, 0)dxs < 1, ρut

=
∫
X p̃

po
t (xt, 0)dxt < 1, B = X/A and V = {0, 1}.

Remark 4. In Appendix I.3.1, we give precise definitions of ρs01 and ρt01 and demonstrate the meaning of
Ep′xt

(xt)[`(h(xt), ft(xt))] ≤ Rt(h, ft) + ρs01Mt (Remark 5).

Data drawn from the distribution of (Xs, Ys, Us) can be regarded as a pool that mixes the selected (us = 1)
and unselected (us = 0) noisy source data. Data drawn from the distribution of (Xt, Ut) can be regarded
as a pool that mixes the selected (ut = 1) and unselected (ut = 0) pseudo-labeled target data. Theorem 3
shows that if selected data have a high probability to be correct ones (ρs01 → 0 and ρt01 → 0), then ∆s and ∆t

approach 0, meaning that noise effects are eliminated. This motivates us to find a reliable way to select correct
data from noisy source data and pseudo-labeled target data and build up a one-step approach for WUDA.

Why Butterfly? Guided by Theorem 3, a robust approach should check high-correctness data out (meaning
ρs01 → 0 and ρt01 → 0). This checking process will make (iv) and (v), 2ε + 2ε, become 0. Then, we can
obtain gradients of R̃po

s (h, us), R̃s(h, f̃t, us) and R̃po
t (h, f̃t, ut) w.r.t. parameters of h and use these gradients

to minimize them, which minimizes (i) and (ii) as (i) + (ii) ≤ R̃po
s (h, us) + R̃s(h, f̃t, us) + R̃po

t (h, f̃t, ut).
Note that (iii) cannot be directly minimized since we cannot pinpoint clean source data. However, following
Saito et al. (2017), we can indirectly minimize (iii) via minimizing R̃po

s (h, us) + R̃po
s (h, f̃t, us), as (iii) ≤

Rs(h, f̃t) +Rs(h) ≤ R̃po
s (h, us) + R̃po

s (h, f̃t, us) + 2ε, where the last inequality follows Eq. (8). This means
that a robust approach guided by Theorem 3 can minimize all terms in the right side of inequality in Eq. (9).

To realize this robust approach, we propose a Butterfly framework (Algorithm 1), which trains four networks
dividing into two branches (Figure 3). By using dual-checking principle, Branch-I checks which data is
correct in the mixture domain; while Branch-II checks which pseudo-labeled target data is correct. To
ensure these checked data highly-correct, we apply the small-loss trick based on memorization effects of
deep learning Arpit et al. (2017). After cross-propagating these checked data Bengio (2014), Butterfly can
obtain high-quality DIR and TSR simultaneously in an iterative manner. Theoretically, Branch-I minimizes
(i) + (ii) + (iii) + (iv); while Branch-II minimizes (ii) + (v). This means that Butterfly can minimize all
terms in the right side of inequality in Eq. (9). Note that empirical estimators of R̃po

s (h, us), R̃po
t (h, f̃t, ut)

and R̃po
s (h, f̃t, us) (in Theorem 3) can be expressed using the loss function of Butterfly (see Eq. (1)).

Relations to Co-teaching. As Butterfly is related to Co-teaching, we discuss their major differences here.
Although Co-teaching (Han et al., 2018) applies the small-loss trick and the cross-update technique to train
deep networks against noisy data, it can only deal with one-domain problem instead cross-domain problem.
Besides, we argue that Butterfly is not a simple mixtrue of Co-teaching and ATDA for two reasons.

First, network structure of Butterfly is different with that of ATDA and Co-teaching: Butterfly maintains four
networks; while ATDA maintains three and Co-teaching maintains two. We cannot simply combine ADTA
and Co-teaching to derive Butterfly. Second, we have justified that the sequential mixture of Co-teaching
and ATDA (i.e., two-step method) cannot eliminate noise effects caused by noisy source data (see Section 4).
Specifically, two-step methods only take care of part of noise effects but Butterfly takes care of the whole
noise effects. Thus, Butterfly is the first method to eliminate noise effects rather than alleviate it.

Relations to TCL. Recently, transferable curriculum learning (TCL) is a robust UDA method to handle
noise Shu et al. (2019). TCL uses small-loss trick to train the domain-adversarial neural network (DANN)
Ganin et al. (2016). However, TCL can only minimize (i) + (ii) + (iv), while Butterfly can minimize all
terms in the right side of Eq. (9).
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F RESULTS ON HUMAN-SENTIMENT WUDA TASKS

Tables 4 and 5 report the target-domain accuracy of each method for 24 human-sentiment WUDA tasks. For
these tasks, B-Net has the highest average accuracy. It should be noted that two-step method does not always
perform better than existing UDA methods, such as for 20%-noise situation. The main reason is Co-teaching
performs poorly when pinpointing clean source data from noisy source data. Another observation is that
noise effects is not eliminated like classification results on digit WUDA tasks. The main reason is that these
datasets provide fixed features and we cannot extract better features in the training process. However, in digit
WUDA tasks, we can gradually obtain better features for each domain and finally eliminate noise effects.

Table 4: Target-domain accuracy on 12 human-sentiment WUDA tasks with the 20% noise rate. Bold values
mean the highest values in each row.

Tasks DAN DANN ATDA TCL Co+ATDA B-Net

B→D 68.28% 68.08% 70.31% 71.40% 66.70% 71.84%
B→E 63.78% 63.53% 72.79% 65.08% 68.89% 75.92%
B→K 65.48% 64.63% 71.79% 66.80% 66.51% 76.32%
D→B 64.63% 64.52% 70.25% 67.33% 68.04% 70.56%
D→E 65.33% 65.16% 69.99% 66.74% 67.32% 73.73%
D→K 65.68% 66.28% 74.53% 68.82% 72.20% 77.97%
E→B 60.41% 60.15% 63.89% 63.13% 61.08% 62.22%
E→D 62.35% 61.67% 62.30% 62.93% 59.77% 63.53%
E→K 72.05% 71.51% 74.00% 75.36% 70.85% 78.96%
K→B 59.94% 59.40% 63.53% 62.77% 61.22% 63.36%
K→D 61.46% 61.51% 64.66% 64.16% 64.94% 66.98%
K→E 70.60% 72.23% 74.75% 74.14% 69.69% 76.96%

Average 65.00% 64.89% 69.40% 67.39% 66.43% 71.53%

Table 5: Target-domain accuracy on 12 human-sentiment WUDA tasks with the 45% noise rate. Bold values
mean the highest values in each row.

Tasks DAN DANN ATDA TCL Co+ATDA B-Net

B→D 52.43% 52.98% 53.56% 54.44% 54.32% 56.59%
B→E 52.17% 53.50% 55.14% 54.14% 57.34% 55.74%
B→K 52.89% 51.84% 51.14% 53.32% 53.28% 57.00%
D→B 53.11% 53.04% 54.48% 53.27% 55.95% 55.15%
D→E 51.30% 53.04% 54.21% 53.77% 56.08% 58.91%
D→K 52.15% 53.17% 57.99% 52.45% 59.94% 66.20%
E→B 51.38% 51.08% 52.54% 52.14% 53.30% 54.93%
E→D 52.83% 51.24% 49.02% 52.57% 49.62% 52.88%
E→K 54.21% 53.58% 51.66% 55.04% 52.10% 56.12%
K→B 50.44% 51.77% 51.96% 51.50% 52.59% 51.39%
K→D 52.20% 51.45% 52.86% 53.19% 54.52% 53.53%
K→E 54.72% 53.33% 52.11% 53.46% 52.62% 53.71%

Average 52.49% 52.50% 53.65% 53.06% 54.31% 56.01%

G EXPERIMENTAL SETTINGS

G.1 NETWORK STRUCTURE AND OPTIMIZER

We implement all methods on Python 3.6 with a NIVIDIA P100 GPU. We use MomentumSGD for opti-
mization in digit and real-world tasks, and set the momentum as 0.9. We use Adagrad for optimization in
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Figure 8: The architecture of B-Net for digit WUDA tasks SYND↔MNIST. We added BN layer in the last
convolution layer in CNN and FC layers in F1 and F2. We also used dropout in the last convolution layer in
CNN and FC layers in F1, F2, Ft1 and Ft2 (dropout probability is set to 0.5).
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Figure 9: The architecture of B-Net for human-sentiment WUDA tasks. We added BN layer in the first FC
layers in F1 and F2. We also used dropout in the first FC layers in F1, F2, Ft1 and Ft2 (dropout probability is
set to 0.5).

human-sentiment tasks because of sparsity of review data (Saito et al., 2017). F1, F2, Ft1 and Ft2 are 6-layer
CNN (3 convolutional layers and 3 fully-connected layers) for digit tasks; and are 3-layer neural networks
(3 fully-connected layers) for human-sentiment tasks; and are 4-layer neural networks (4 fully-connected
layers) for real-world tasks. The ReLU active function is used as avtivation function of these networks.
Besides, dropout and batch normalization are also used. The network topology is shown in Figures 8, 9 and
10. As deep networks are highly nonconvex, even with the same network and optimization method, different
initializations can lead to different local optimal. Thus, following Malach and Shalev-Shwartz (2017), we
also take four networks with the same architecture but different initializations as four classifiers.
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Figure 10: The architecture of B-Net for real-world WUDA tasks. We added BN layer in the first FC layers in
F1, F2, Ft1 and Ft2. We also used dropout in the first FC layers in F1, F2, Ft1 and Ft2 (dropout probability
is set to 0.5).

G.2 EXPERIMENTAL SETUP

For all 35 WUDA tasks, Tk is set to 5, Tmax is set to 30. Learning rate is set to 0.01 for simulated tasks and
0.05 for real-world tasks, γt is set to 0.05 for simulated tasks and 0.02 for real-world tasks. Confidence level
of labelling function in line 8 of Algorithm 1 is set to 0.95 for 8 digit tasks, and 0.9 for 24 human-sentiment
tasks and 0.8 for 3 real-world tasks. γ is set to 0.4 for digit tasks, 0.1 for human-sentiment tasks and 0.2
for real-world tasks. nlt,max is set to 15, 000 for digit tasks, 500 for human-sentiment tasks and 4000 for
real-world tasks. Nmax is set to 1000 for digit tasks and 200 for human-sentiment and real-world tasks. Batch
size is set to 128 for digit and real-world tasks and 24 for human-sentiment tasks. Penalty parameter is set to
0.01 for digit and real-world tasks and 0.001 for human-sentiment tasks.

To fairly compare all methods, they have the same network structure. Namely, ATDA, DAN, DANN, TCL and
B-Net adopt the same network structure for each dataset. Note that DANN and TCL use the same structure
for their discriminate networks. All experiments are repeated ten times and we report the average accuracy
value and standard deviation (STD) of accuracy values of ten experiments.

G.3 LINKS TO DATASETS

Digit datasets (MNIST and SYN Digit (SYND)) can be downloaded from official code of ATDA. The link is
https://github.com/ksaito-ut/atda.

Sentiment datasets (Amazon products reviews) can be downloaded from the official code of marginal-
ized Stacked Denoising Autoencoder (mSDA). The link is https://www.cse.wustl.edu/~mchen/
code/mSDA.tar.

Real-world datasets (BCIS) can be downloaded from the website of the project “A Testbed for Cross-Dataset
Analysis”: https://sites.google.com/site/crossdataset/home/files ("setup DENSE
decaf7", 1.3GB, decaf7 features).
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H RUNNING TIME

Table 6 shows the average running time of each method on the task SYND→MNIST. Although B-Net trains
four networks, its running time is still comparable to most baselines.

Table 6: Running time for each method on the task SYND→MNIST (minutes).
Methods DAN DANN ATDA TCL Co+ATDA B-Net

Time 17.17 9.02 17.17 14.04 18.28 20.55

I PROOFS

This section provides proofs of theorems demonstrated in the supplementary.

I.1 PROOF OF THEOREM 1

Proof. We will fist prove Eq. (4) (Case 1) and then prove Eq. (5) (Case 2).

Case 1. According to definition of R̃s(h), we have

R̃s(h) = Ep̃s(xs,ỹs)[`(h(xs), ỹs)]

=

∫
X

K∑
ỹs=1

`(h(xs), ỹs)p̃s(xs, ỹs)dxs

=

∫
X

K∑
ỹs=1

`(h(xs), ỹs)p̃Ỹs|Xs
(ỹs|xs)pxs

(xs)dxs

=

∫
X
η̃T (xs)`(h(xs))pxs

(xs)dxs, (10)

where `(h(xs)) = [`(h(xs), 1), ..., `(h(xs),K)]T and η̃(xs) = [p̃Ỹs|Xs
(1|xs), . . . , p̃Ỹs|Xs

(K|xs)]T . Ac-
cording to definition of the transition matrix Q, we know that

η̃T (xs) = ηT (xs)Q, (11)

where η(xs) = [pYs|Xs
(1|xs), ... , pYs|Xs

(K|xs)]T . Substituting Eq. (11) into Eq. (10), we have

R̃s(h) =

∫
X
ηT (xs)Q`(h(xs))pxs

(xs)dxs

=

∫
X
ηT (xs)I`(h(xs))pxs(xs)dxs +

∫
X
ηT (xs)(Q− I)`(h(xs))pxs(xs)dxs

= Rs(h) + Epxs (xs)[η
T (xs)(Q− I)`(h(xs))].

Hence, Case 1 is proved.
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Case 2. According to definition of R̃s(h) and Eq. (3), we have

R̃s(h) = Ep̃s(xs,ỹs)[`(h(xs), ỹs)]

=

∫
X

K∑
ỹs=1

`(h(xs), ỹs)p̃s(xs, ỹs)dxs

=

∫
X

K∑
ys=1

`(h(xs), ys)
(
(1− ρ)ps(xs, ys) + ρqs(xs, ys)

)
dxs

= (1− ρ)

∫
X

K∑
ys=1

`(h(xs), ys)ps(xs, ys)dxs + ρ

∫
X

K∑
ys=1

`(h(xs), ys)qs(xs, ys)dxs

= (1− ρ)Rs(h) + ρ

∫
X

K∑
ys=1

`(h(xs), ys)qYs|Xs
(ys|xs)qxs

(xs)dxs. (12)

Let ηq(xs) = [qYs|Xs
(1|xs), ..., qYs|Xs

(K|xs)]T , we have

R̃s(h) = (1− ρ)Rs(h) + ρEqxs (xs)[η
T
q (xs)`(h(xs))].

Hence, Case 2 is proved.

I.2 PROOF OF THEOREM 2

Proof. For any labelling function h, we have

Rt(h, ft) = Rt(h, ft) + R̃s(h)− R̃s(h) +Rs(h, ft)−Rs(h, ft)
= R̃s(h) +Rt(h, ft)− R̃s(h, ft) +Rs(h, ft)−Rs(h) +Rs(h)− R̃s(h)

+ R̃s(h, ft)−Rs(h, ft). (13)

Since we do not know ft, we substitute following equations into Eq. (13),

Rt(h, ft) = Rt(h, f̃t) +Rt(h, ft)−Rt(h, f̃t),
R̃s(h, ft) = R̃s(h, f̃t) + R̃s(h, ft)− R̃s(h, f̃t),
Rs(h, ft) = Rs(h, f̃t) +Rs(h, ft)−Rs(h, f̃t).

Then, we have

Rt(h, ft) = R̃s(h) +Rt(h, f̃t)− R̃s(h, f̃t) +Rs(h, f̃t)−Rs(h)

+ Rs(h)− R̃s(h) + R̃s(h, f̃t)−Rs(h, f̃t) +Rt(h, ft)−Rt(h, f̃t)
≤ R̃s(h) + |Rt(h, f̃t)− R̃s(h, f̃t)|+ |Rs(h, f̃t)−Rs(h)|

+ |R̃s(h)−Rs(h)|+ |R̃s(h, f̃t)−Rs(h, f̃t)|+ |Rt(h, ft)−Rt(h, f̃t)|.
Hence, this theorem is proved.

I.3 PROOF OF THEOREM 3

I.3.1 PRELIMINARY

Before stating the proof, we first present a random variable below.
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Let (Xt, Vt) be a m.r.v. defined on X × V with respective a density ppo
t (xt, vt), where V = {0, 1}. Vt can

be regarded as perfect-selection random variables. Namely, Vt = 1 means ft(xt) = f̃t(xt) and Vt = 0

means ft(xt) 6= f̃t(xt). Let ppo
Vt

(vt) be the marginal density of ppo
t (xt, vt). It is clear that, higher value of

ppo
Vt

(Vt = 1) means that f̃t is more like ft. In following, we use 1− ρvt to represent ppo
Vt

(Vt = 1).

Then, we will show 1) relation between (Xs, Ys, Vs) and (Xs, Ys, Us), 2) relation between (Xt, Vt) and
(Xt, Ut) and definitions of ρs01 and ρt01. Based on (Xt, Vt) and (Xs, Ys, Vs) defined in Appendix A.2, the
densities of (Xs, Ys, Us) and (Xt, Ut) can be expressed as follows.

p̃po
Xs,Ys|Us

(xs, ys|i) =ρs0ip
po
Xs,Ys|Vs

(xs, ys|0) + ρs1ip
po
Xs,Ys|Vs

(xs, ys|1),

p̃po
Xt|Ut

(xt|i) = ρt0ip
po
Xt|Vt

(xt|0) + ρt1ip
po
Xt|Vt

(xt|1),

where ρsji = Pr(Vs = j|Us = i) represents the probability of the event: Vs = j given Us = i, ρtji = Pr(Vt =
j|Ut = i) represents the probability of the event: Vt = j given Ut = i (i, j = 0, 1). Since ps(xs, ys) =
ppo
Xs,Ys|Vs

(xs, ys|1), qs(xs, ys) = ppo
Xs,Ys|Vs

(xs, ys|0), ppo
Xt|Vt

(xt|0) = pxt
(xt)1A(xt)/Pxt

(A) = qxt
(xt)

and ppo
Xt|Vt

(xt|1) = pxt
(xt)1B(xt)/Pxt

(B) = p′xt
(xt) (A = {x : f̃t(x) 6= ft(x)}, B = X/A), we have

p̃po
Xs,Ys|Us

(xs, ys|i) = ρs0iqs(xs, ys) + ρs1ips(xs, ys), (14)

p̃po
Xt|Ut

(xt|i) = ρt0iqxt
(xt) + ρt1ip

′
xt

(xt). (15)

Next, we give a lemma to show relation between R̃po
s (h, us) and Rs(h).

Lemma 1. Given the multivariate random variable (Xs, Ys, Us) with the probability p̃po
s (xs, ys, us) and

Eq. (14), we have

|R̃po
s (h, us)−Rs(h)| ≤ ρs01 max{Eqs(xs,ys)[`(h(xs), ys)], Rs(h)}. (16)

Proof. According to definition of R̃po
s (h, us) in Theorem 3, we have

R̃po
s (h, us) = (1− ρus)−1

∫
X

1∑
us=0

K∑
ys=1

us`(h(xs), ys)p̃
po
s (xs, ys, us)dxs

= (1− ρus
)−1

∫
X

K∑
ys=1

`(h(xs), ys)p̃
po
Xs,Ys|Us

(xs, ys|1)p̃po
Us

(1)dxs

(a)
= (1− ρus)−1(1− ρus)

∫
X

K∑
ys=1

`(h(xs), ys)
(
ρs01qs(xs, ys) + ρs11ps(xs, ys)

)
dxs

= ρs01Eqs(xs,ys)[`(h(xs), ys)] + ρs11Rs(h),

where (a) is based on the definition of ρus
and Eq. (14). Thus, we have

|R̃po
s (h, us)−Rs(h)| = |ρs01Eqs(xs,ys)[`(h(xs), ys)]− (1− ρs11)Rs(h)|

≤ ρs01 max{Eqs(xs,ys)[`(h(xs), ys)], Rs(h)}.
This lemma is proved.

Similar with Lemma 1, we can obtain
|R̃po
s (h, f̃t, ut)−Rs(h, f̃t)| ≤ ρs01 max{Eqxs (xs)[`(h(xs), f̃t(xs))], Rs(h, f̃t)}. (17)

Then, we give another lemma to show relation between R̃po
t (h, f̃t, us) and Rt(h, f̃t).
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Lemma 2. Given the multivariate random variable (Xt, Ut) with the probability p̃po
s (xt, ut) and Eq. (15), if

Ep′xt
(xt)[`(h(xt), ft(xt))] ≤ Rt(h, ft) + ρs01Mt, then we have

|R̃po
t (h, f̃t, ut)−Rt(h, ft)| ≤ ρt01 max{Eqxt (xt)[`(h(xt), f̃t(xt))], Rt(h, ft)}+ ρt11ρ

s
01Mt. (18)

Proof. According to definition of R̃po
t (h, f̃t, ut) in Theorem 3, we have

R̃po
t (h, f̃t, ut) = (1− ρut

)−1

∫
X

1∑
ut=0

ut`(h(xt), f̃t(xt))p̃
po
t (xt, ut)dxt

= (1− ρut
)−1

∫
X
`(h(xt), f̃t(xt))p̃

po
Xt|Ut

(xt|1)p̃po
Ut

(1)dxt

(a)
= (1− ρut)

−1(1− ρut)

∫
X
`(h(xs), f̃t(xt))

(
ρt01qxt(xt) + ρt11p

po
Xt|Vt

(xt|1)
)
dxt

= ρt01Eqxt (xt)[`(h(xt), f̃t(xt))] + ρt11

∫
X
`(h(xt), f̃t(xt))p

po
Xt|Vt

(xt|Vt = 1)dxt

(b)
= ρt01Eqxt (xt)[`(h(xt), f̃t(xt))] + ρt11

∫
X
`(h(xt), ft(xt))p

po
Xt|Vt

(xt|Vt = 1)dxt

= ρt01Eqxt (xt)[`(h(xt), f̃t(xt))] + ρt11

∫
X
`(h(xt), ft(xt))p

′
xt

(xt)dxt

= ρt01Eqxt (xt)[`(h(xt), f̃t(xt))] + ρt11Ep′xt
(xt)[`(h(xt), ft(xt))], (19)

where (a) is based on the definition of ρus
and Eq. (14) and (b) is based on the definition of Vt (ft(xt) = f̃t(xt)

when Vt = 1). Since Ep′xt
(xt)[`(h(xt), ft(xt))] ≤ Rt(h, ft) + ρs01Mt, we have

R̃po
t (h, f̃t, ut) ≤ ρt01Eqxt (xt)[`(h(xt), f̃t(xt))] + ρt11(Rt(h, ft) + ρs01Mt). (20)

Thus, we have

|R̃po
t (h, f̃t, ut)−Rt(h, ft)| = |ρt01Eqxt (xt)[`(h(xt), f̃t(xt))] + ρt11Ep′xt

(xt)[`(h(xt), ft(xt))]

−Rt(h, ft)|
≤ |ρt01Eqxt (xt)[`(h(xt), f̃t(xt))] + ρt11(Rt(h, ft) + ρs01Mt)

−Rt(h, ft)|
= |ρt01(Eqxt (xt)[`(h(xt), f̃t(xt))]−Rt(h, ft)) + ρt11ρ

s
01Mt|

≤ ρt01 max{Eqxt (xt)[`(h(xt), f̃t(xt))], Rt(h, ft)}+ ρt11ρ
s
01Mt.

This lemma is proved.

Remark 5. In Lemma 2, the assumption Ep′xt
(xt)[`(h(xt), ft(xt))] ≤ Rt(h, ft) + ρs01Mt means that the

expect risk restricted in B (i.e., Ep′xt
(xt)[`(h(xt), ft(xt))]) can represent the true risk Rt(h, ft) when ρs01 is

small, where B = {x : f̃t(x) = ft(x)}. In Butterfly, it is equivalent to that pseudo labels provided by noisy
source data are more useful if we can select more correct data from noisy source data. If this assumption fails,
we cannot gain useful knowledge from f̃t even when we can perfectly select correct data from pseudo-labeled
target data (ρt01 = 0).
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Inequalities (16), (17) and (18) show that if we can avoid to annotate incorrect data as “correct”
(ρs01 = 0 and ρt01 = 0), we have R̃po

s (h, us) = Rs(h), R̃po
s (h, f̃t, ut) = Rs(h, f̃t) and R̃po

t (h, f̃t, ut) =

Rt(h, ft). Nonetheless, ρs01 and ρt01 never equal 0, and Eqs(xs,ys)[`(h(x), y)], Eqxs (xs)[`(h(xs), f̃t(xs))] and
Eqxt (xt)[`(h(xt), f̃t(xt))] may equal +∞ for some h. In next section, we prove that, under the assumption
in Remarks 2 and 3, R̃po

s (h, us) → Rs(h), R̃po
s (h, f̃t, ut) → Rs(h, f̃t) and R̃po

t (h, f̃t, ut) → Rt(h, ft) if
ρs01 → 0 and ρt01 → 0. Moreover, we give a new upper bound of Rt(h, ft).

I.3.2 PROOF OF THEOREM 3

Now, we prove Theorem 3 as follows.

Proof. We first prove upper bounds of |R̃po
s (h, us)−Rs(h)|, |R̃po

s (h, f̃t, ut)−Rs(h, f̃t)| and |R̃po
t (h, f̃t, ut)−

Rt(h, ft)| under assumptions in Theorem 3.

Based on Lemma 1, we have

|R̃po
s (h, us)−Rs(h)| = |ρs01Eqs(xs,ys)[`(h(xs), ys)]− (1− ρs11)Rs(h)|

≤ |ρs01(Rs(h) +Ms)− ρs01Rs(h)|
= ρs01Ms.

Similar, we have

|R̃po
s (h, f̃t, ut)−Rs(h, f̃t)| ≤ ρt01Mt,

|R̃po
t (h, f̃t, ut)−Rt(h, ft)| ≤ ρt01Mt + ρt11ρ

s
01Mt.

Since Ms and Mt are positive constants, it is clear that R̃po
s (h, us) → Rs(h), R̃po

s (h, f̃t, ut) → Rs(h, f̃t)

and R̃po
t (h, f̃t, ut)→ Rt(h, ft) when ρs01 → 0 and ρt01 → 0.

Specifically, ∀ε ∈ (0, 1), let δt = ε/Mt and δs = ε/max{Ms, ρ
t
11Mt}. When ρs01 < δs and ρt01 < δt, we

have

|R̃po
s (h, us)−Rs(h)|+ |R̃po

s (h, f̃t, ut)−Rs(h, f̃t)| < 2ε

|R̃po
t (h, f̃t, ut)−Rt(h, ft)| < 2ε.

Hence, we prove the Eq. (8). In following, we give a new upper bound of Rt(h, ft). Call back to Theorem
2, we replace 1) R̃s(h) with R̃po

s (h, us), 2) R̃s(h, f̃t) with R̃po
s (h, f̃t, ut), 3) Rs(h, f̃t) with R̃po

t (h, f̃t, ut).
Then, we have

Rt(h, ft) ≤ R̃po
s (h, us) + |R̃po

t (h, f̃t, ut)− R̃po
s (h, f̃t, ut))|+ |Rs(h, f̃t)−Rs(h)|

+ |R̃po
s (h, us)−Rs(h)|+ |R̃po

s (h, f̃t, ut)−Rs(h, f̃t)|+ |Rt(h, ft)− R̃po
s (h, f̃t, ut)|.

Let ρs01 ≤ δs and ρt01 ≤ δt, we have

Rt(h, ft) ≤ R̃po
s (h, us)︸ ︷︷ ︸

(i) risk on noisy data

+ |R̃po
t (h, f̃t, ut)− R̃po

s (h, f̃t, us)|︸ ︷︷ ︸
(ii) discrepancy between distributions

+ |Rs(h, f̃t)−Rs(h)|︸ ︷︷ ︸
(iii) domain dissimilarity

+ 2ε︸︷︷︸
(iv) noise effects from source ∆s

+ 2ε︸︷︷︸
(v) noise effects from target ∆t

,

Hence, we prove this theorem.
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