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ABSTRACT

Learning diverse and natural behaviors is one of the longstanding goal for creating
intelligent characters in the animated world. In this paper, we propose “COmpos-
able Semi-parametric MOdelling” (COSMO), a method for generating long range
diverse and distinctive behaviors to achieve a specific goal location. Our proposed
method learns to model the motion of human by combining the complementary
strengths of both non-parametric techniques and parametric ones. Given the start-
ing and ending state, a memory bank is used to retrieve motion references that are
provided as source material to a deep network. The synthesis is performed by the
deep network that controls the style of the provided motion material and modifies
it to become natural. On skeleton datasets with diverse motion, we show that the
proposed method outperforms existing parametric and non-parametric baselines.
We also demonstrate the generated sequences are useful as subgoals for actual
physical execution in the animated world. Please refer to our project page 1 for
more synthesised results.

1 INTRODUCTION

When faced with a specific goal in another location, humans can effortlessly find multiple distinctive
trajectories and control their body to approach the goal with diverse and natural behaviours. However,
we are still at the early stage for such sophisticated controlling of simulated characters. Recent
reinforcement learning approaches (Peng et al., 2018) struggle to generate diverse motion. Other
methods like imitation learning (Ye & Alterovitz, 2017; Aleotti & Caselli, 2006; Lawitzky et al.,
2012) generalize badly to large scale demonstration data. The heart of this challenge lies in that
real-world human behaviours are inherently multi-modal distributed. Direct behaviour learning is
difficult without access to the explicit distribution of motion states.

In this paper, we take a step toward generating long-range, diverse and physically plausible motion
sequences given starting and ending states, rather than learning a policy for a physical simulator.
Meanwhile, we expect the model could generate novel behaviour, i.e., unseen motion in training set.
This has several valuable applications: (1) Synthesised vivid motion for animation production without
excessive human labor. (2) Generated novel behaviours for player customization of action skills
in video games. (3) Interpolated sequences as subgoals for policy training through reinforcement
learning (Peng et al., 2018).

To fulfil the above requirements, we need to address the following difficulties: (1) How to guarantee
both diversity and naturalness, which is usually trade-off in the domain of generation (Srivastava et al.,
2015)? (2) How to achieve long-range behaviour synthesis, which is stuck by error accumulation
problem in many temporal modelling tasks (Denton & Fergus, 2018)? (3) How to generate unseen
behaviours without loss of diversity or naturalness, which is hardly addressed in previous researches?
As shown in Fig 1, the current two main branches of motion generation methods, i.e., parametric and
non-parametric, are yet to deal with these difficulties properly. Parametric (Goodfellow et al., 2014)
(e.g., GAN) methods could not maintain the reality/naturalness of generated sequences, and diversity
(e.g., VAE) is hard to preserve. Non-parametric methods (Haarbach et al., 2018) involving motion clip
copy/paste or blending has less superiority in smooth transition based on diverse reference sequences.

1https://sites.google.com/view/cosmo-supp/home
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Figure 1: Comparison of different motion generation schemes. Three rows from top to bottom corre-
spond to generated results of parametric, non-parametric and semi-parametric modelling respectively.
Parametric model like GAN is prone to generate unnatural motion (twisted body in top row). Mean-
while the modal collapse is another longstanding issue for parametric model. Non-parametric model
like simply copy and paste is infeasible to get visually smooth and long-range motion (second row).
On the contrary, Our proposed semi-parametric model i.e., COSMO, is able to generate long-range
motion sequences with diverse behaviours.

In this work, we propose COmposable Semi-parametric MOdelling (COSMO), which is a method
that can leverage the large spectrum of motion skills from unlabeled data in a semi-parametric
manner. Our method combines the complementary strengths of both non-parametric techniques
and parametric ones. First, to avoid mode collapse in the sequences, we initially sample reference
subsequences from a held-out reference set to encourage multi-modal behaviors in the generated
sequence, which is mainly inspired from non-parametric methods (Haarbach et al., 2018). Second,
we propose a self-supervised disentanglement model for extracting the content and style from each
reference subsequence respectively. Here content refers to the characteristic of state at each time step,
e.g., moving speed, direction, and general gesture of upper body, while style refers to the long-range
motion pattern which keeps relative constant across whole subsequence. An embedded latent space is
constructed where the learned style vectors could be combined to obtain novel style feature. A new
subsequence is obtained by composing content and style freely from different reference subsequences.
Considering that this operation only produces a single subsequence, we refer this step as local motion
composition. Finally, for all new sequences, we compose them along the temporal direction in a
sequential order. However, from a hodgepodge of reference segments, it is non-trivial to generate
natural and meaningful behaviors. To guarantee naturalness at long-range scale, we then propose to
use goal conditioned bi-directional interpolation for modeling the long-range nature needed in the
task. This step is regarded as global motion composition, which covers the whole temporal scale
(often more than 100 steps). On two human motion datasets, we show that the proposed method
outperforms existing parametric and non-parametric baselines. We also demonstrate the generated
sequences are useful as subgoals for actual physical execution in the animated world.

Our paper makes three contributions. First, we proposed COmposable Semi-parametric MOtion
generation (COSMO), a method that can generate the required sequences in a semi-parametric,
composed way. Second, we conducted experiments on CMU Mocap dataset 2 and SFU Mocap
dataset 3 and shows our method outperforms strong baselines such as VAEs and GANs significantly.
Third, we proved empirically that the generated sequences can serve as subgoals to learn an actual
policy.

2 METHOD

2.1 SEMI-PARAMETRIC MODELLING FOR MOTION GENERATION

Given starting and ending states (denoted as s0 and sL respectively) as inputs, our goal is to synthesize
intermediate states that have natural transition and diverse behaviors. As illustrated in Fig 2, NR refer-
ence subsequences (denoted as Ri, i = 1, .., NR) are sampled and fed into local motion composition

2http://mocap.cs.cmu.edu/
3http://mocap.cs.sfu.ca/
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Figure 2: Proposed framework for motion generation. Step 1: We search for reference subsequences
within a held-out set. Step 2: A novel subsequence is then generated based on reference one with
local motion composition. Step 3: All edited subsequences are connected together in temporal order
with global motion composition.

sub-module φloc. Invalid subsequences are first filtered out with predefined requirements and please
refer to appendix 6 for detailed description. φloc is used for altering the motion style of reference
subsequence Ri based on another sequence R as input or directly sampling a style feature from
learned latent space: R̂i = φloc(R

i,R), where R is optional input. With this in hand, we compose
edited subsequences {R̂i}NR

i=1 along temporal direction smoothly. Concretely, we generate a new
clip R̃i−1:i = φglo(R̂i−1, R̂i) which bridges the gap between R̂i−1 and R̂i. The final composed
sequence is obtained through concatenation along the temporal direction for all subsequences and
generated clips.

Why semi-parametric modelling? Regarding both motion category and transition dynamics (from
current to next state), human behaviors are intrinsically multi-modal distribution (Holden et al., 2017).
Parametric models (e.g., VAE (Kingma & Welling, 2014) or GAN (Goodfellow et al., 2014)) assume
prior distribution to be uni-modal and predefined, which is not suitable to handle real world motion
sequences (Kingma & Welling, 2014; Arora & Zhang, 2017). Non-parametric model does not require
explicit prior distribution but not able to deal with long-range and highly diverse motion properly,
mainly restricted by modelling capability. We also conduct targeted comparison experiments in
Section 4. Compared to parametric methods, semi-parametric modelling naturally guarantees motion
diversity by introducing reference sequence also maintaining a large degree of freedom for generation.
Moreover, semi-parametric modelling does not require access to or a model of data distribution. It
implies that our method is also directly applicable for unseen motion sequence.

Constrained by starting and ending states with unchangeable locations, it is not feasible to randomly
sample reference subsequences for generation. To construct a complete motion sequence, we execute
a manually designed procedure for searching reference subsequences. For detailed description, please
refer to appendix 6

2.2 LOCAL MOTION COMPOSITION WITH CONTENT/STYLE DISENTANGLEMENT

Local motion composition stands for generating a relative short-range of motion clip based on
reference subsequences as inputs. Content and style features are learned jointly, whose free-form
composition is used for synthesising new motion sequence. We first describe the motion style
modelling part.

Motion Style Modelling. Style is considered as motion information which stays the same throughout
the whole subsequence. To this end, we extract style pattern by conducting feature fusion along the
temporal direction. More specifically, for a sequence with T frames, we gradually fuse all frames into
one constant feature with Cs channels (denoted as hs). We adopt 1D convolution along the temporal
direction for each operation. Three convolution layers are stacked together with a kernel size of
(T/2, T/4, T/8) respectively, where large kernel size facilitates capturing motion style throughout
the whole subsequence.
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To get better generalization ability for unseen reference or starting/ending states, we propose to
construct an embedding space for style pattern modelling. More specifically, a set of embedding
vectors (denoted as Hs = {hi

s}Mi=1) are learned together with above convolution layers (denoted as
ψsty). The corresponding outputs (denoted as As ∈ RM ) of ψsty are a family of coefficients for a
weighted sum of Hs. This is mainly inspired by the intuition that complex human activity could be
considered as a combination of several simple actions. When trained with sufficiently large motion
data, the model tends to learn basic style patterns for human motion. Compared to directly outputting
a feature vector, this helps better generalize to unseen motion during testing. The final style feature
(denoted as fs ∈ RCs ) is generated as follows:

f is = ψsty(Ri)Hs. (2.1)

Motion Content Modelling. In this part, we focus on motion dynamics reflected by each single
state. To this end, 1D convolution layer with kernel size of 3, i.e., covering consecutive 3 states, is
adopted for content modelling. The output channel of this layer is designed less than original motion
dimension for extracting the most relevant information. This is empirically set to 5 as a design choice.
Meanwhile, velocity, position for root joint and step pattern for foot joint are fed as inputs. We denote
all the above factors as fc with T steps and Cc channels. During local motion composition, style
feature fs is combined with content feature fc through concatenating along the channel axis:

f ic = ψcnt(R
i), R̂i = ψrec(f

i
c , f

i
s), (2.2)

where fs is tiled T times to match with fc and ψrec outputs reconstructed R̂i. ψrec follows stacked
three layer 1D convolution operation with kernel size of 3. Finally, reconstruction loss is used to
learn the style and content feature jointly as follows:

LR
rec =

1

NR
ΣNR

i=1||R̂
i −Ri||22. (2.3)

2.3 GLOBAL MOTION COMPOSITION VIA GOAL CONDITIONED BI-DIRECTIONAL MODELLING

Global motion composition is connecting edited short-range subsequences into a completed
and lone-range one. Generating smooth and natural transition between R̂i and R̂i+1 is critical to
obtain a long-range sequence. The major challenge comes from large states variation between R̂i and
R̂i+1. Inspired by recent work of Bi-LSTM modelling (Ma & Hovy, 2016), bi-directional motion
composition is utilized for this part. More specifically, motion states are first mapped to a higher
dimensional space with ϕenc and ϕdec, which is defined as follows:

f it = ϕenc(r
i
t), r̂

i
t = ϕdec(f

i
t ). (2.4)

Both ϕenc and ϕdec are 1D convolution layers. Then we predict the possible states at both directions
with f it , where higher dimension (256) provides a sparser space enabling better composition results.
For forward prediction, we take f iT−4:T as inputs to obtain forward states f i:i+1

1 . Meanwhile, f i+1
1:5 are

fed as inputs treated as goal conditions. We conduct this procedure in a recurrent manner with P -step
prediction in total. Predicted f i:i+1

1 is concatenated with last four states forming next step inputs.
Backward direction takes exactly the reverse procedure, i.e., f i+1

T−4:T are treated as inputs while f i1:5
are as goal:

f i:i+1
p+1 = ϕfpre(f

i
p−4:p, f

i+1
1:5 ), f i+1:i

p+1 = ϕbpre(f
i+1
p−4:p, f

i
T−4:T ), (2.5)

where ϕfpre and ϕbpre share the same architecture.. Moreover, we utilize another model to produce
coefficients for the weighted sum of outputs. In this way, we are able to construct more flexible latent
space to facilitate composition:

c = ϕcom(f i:i+1
p , f i+1:i

P−p , p), f̂p = cf i:i+1
p + (1− c)f i+1:i

P−p . (2.6)

ϕcom is one layer 1D convolution with sigmoid function for producing c. More specifically we
introduce p and linearly map it to p̂ ∈ (−1, 1) and c = p̂+ 0.1 ∗ σ(conv([f i:i+1

p , f i+1:i
P−p ])). During

training, we randomly select a motion clip with a length of 10 + P . First as well as last 5 states are
fed as inputs to get intermediate P states. Reconstruction loss is used for training:

Lf
rec =

1

P
ΣP

t=1||r̂t − ϕdec(f̂
t)||22. (2.7)
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Compared with goal-conditioned single forward prediction model, the starting and ending states
are treated equally in our model, which avoids drifting away from the ending state. Meanwhile,
we provide corresponding empirical results in Section 4. After global motion composition, final
composed sequence is directly obtained by concatenating all edited subsequences (local part) as well
as transition clips (global part) along the temporal direction.

We use tensorflow (Abadi et al., 2015) to implement all our models. All activation function used in
our model is ReLU operation. During training, learning rate is set to 1e-4 and optimized with Adam
optimizer (Kingma & Ba, 2015). β1 and β2 are set as 0.9 and 0.999 respectively. All models are
trained with 30 epochs in total. Note that the local and global motion composition submodule do not
need joint training. They are used jointly during testing.

3 RELATED WORK

Motion Interpolation. Given start and end states, this task aims to synthesize intermediate states
which smoothly translate between them (Urtasun et al., 2008). For video interpolation (Liu et al.,
2017; Li et al., 2019; Meyer et al., 2015; Niklaus et al., 2017) where start and end states are two
consecutive frames, the final result is expected to increase frame rate of original video to a higher
value. Previous researches often utilize phase dynamics (Meyer et al., 2015), flow based feature (Liu
et al., 2017) and other motion information (Niklaus et al., 2017) to facilitate this task. Our work is
different from this branch of work because there exists large motion gap between start and end states
in our settings. Another branch of work is video completion (Cai et al., 2018; Li et al., 2019; Wexler
et al., 2007). It receives two nonconsecutive frames as input and aims to fill the motion gap between
start and end states. Cai et al. (2018) firstly attempts to solve this task and more specifically, propose
to select out a rational path in the latent space with BFGS (Byrd et al., 1995) algorithm. Li et al.
(2019) incorporates the 3D convolution layers and LSTM network into a unified model, which tries to
automatically find the optimal results for intermediate frames. Despite much progress has been made
in this filed, the high dimensional data (i.e., video frames) severely restricts video completion within
simple and seen motion categories. However, we do not limit the start and end states belonging to the
same sequence. Meanwhile, we expect the interpolated sequence as diverse as possible meanwhile
with natural transition between synthesised states. This has not been deeply addressed in previous
motion completion works (Xia et al., 2019). As a potential downstream application, our model
could be used to construct motion planning (Myers, 1983) algorithm. Compared to goal-driven
RL (Kulkarni et al., 2016), our model gets rid of requirements hard to achieve, i.e., known dynamics
of agent, which is more general and applicable to more motion planning scenarios.

Temporal Data Prediction. There have been many researches focusing on temporal data prediction.
This task aims to infer the future possible states conditioned on history states as input. Video predic-
tion (Srivastava et al., 2015) takes a major part in this field, which involves pixel-wise forecasting for
every following frames. Previous methods (Denton & Fergus, 2018; Babaeizadeh et al., 2018; Denton
& Birodkar, 2017; Finn et al., 2016) have made it to produce high quality prediction on bouncing
digits (Srivastava et al., 2015), robot motion (Finn et al., 2016) and semantic map (Jin et al., 2017).
However, recent work (Xu et al., 2018a) still encounters much difficulties in forecasting complex
movements involving articulated subject (Wichers et al., 2018). Moreover, these works are prone
to have motion blur (Finn et al., 2016) and error accumulation (Denton & Fergus, 2018) problems.
Out of above concerns it is more appropriate for us to formulate our method as interpolation instead
of prediction model. In terms of lower dimension data, human pose (Sun et al., 2019; Zhang et al.,
2019) as well as path trajectory (Xu et al., 2018b) are also hot spots in this task. Several works adopt
probabilistic Bayesian model (Bhattacharyya et al., 2019) to dig out latent factors which influence
future dynamics. Another branch of researches (Gupta et al.; Xu et al., 2018b) utilize deep recursive
model (e.g., LSTM Hochreiter & Schmidhuber (1997)) to extract critical feature for prediction.
Low dimension data enables all these works could easily scale to multi-target settings (Zhao et al.).
However, prediction model loses its power when encountering out of distribution data (e.g., unseen
motion category in test set). As comparison, our interpolation model could naturally generalize to
unseen motion facilitated by semi-parametric modelling, which gets rid of explicit representation for
future dynamics.

Generative Semi-parametric Modelling. For generative task such as image synthesis (Qi et al.,
2018), translation (Wang et al.) and inpainting (Iskakov, 2018), semi-parametric modelling achieves
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considerably more realistic visual quality and better style consistency between source and target
images. Semi-parametric modelling is also utilized in reinforcement learning (Kulkarni et al., 2016)
for navigation task (Eysenbach et al.). More specifically, it searches rational path on replay buffer,
which enables agents to solve sparse reward tasks over one hundred steps. In this work we use
semi-parametric modelling for two main reasons: (1) it could substantially increase the length of
interpolated sequence through acting as example guidance, (2) it enables our model to synthesise
visually appealing results even with out of distribution inputs. Meanwhile, we would like to highlight
that to our best knowledge this is the first attempt to use semi-parametric modelling on motion
interpolation task.

Motion Generation in Computer Graphics. In the context of computer graphics, there is a branch
of researches (Kovar & Gleicher, 2003; Park et al., 2002; Levine et al., 2012; Tan & Tai, 2012; Holden
et al., 2016) which also concentrate on motion generation, i.e., obtaining a continuous trajectory
from a discrete set of poses. Haarbach et al. (2018) provides a comprehensive study on this topic.
It analyzes the characteristics of higher order rigid body motion interpolation methods. Our works
shares similar target with this branch of work. However, we would like to emphasise that these
works (Tan & Tai, 2012; Kovar & Gleicher, 2003; Park et al., 2002) are in parallel with ours and
have completely different research routine on this task. More specifically, graphics methods focus on
finding a optimal and explicit mathematical solution regardless of input motion sequences. Different
from them, our work is data-driven and encourages both reality and diversity of interpolated results.

Imitation Learning. Imitation learning (Pomerleau, 1989; Ye & Alterovitz, 2017; Lawitzky et al.,
2012) is commonly adopted as a standard method in the domain of robotics and many other areas.
Behavioral Cloning (Osa et al., 2018) is one of the underlying approaches that utilize a demonstrations
as supervisory signal. The most relevant work to ours is (Peng et al., 2018) which leverages
reinforcement learning to imitate natural motions. However, our method does not imitate specific
motion trajectories but to generate natural and diverse actions that are reasonable between given
states. Our method can be further differentiated from past literature in two aspects: (1) our method is
orthogonal to imitation learning because it interpolates states rather than predicts actions when states
are given. More importantly, (2) the proposed method is able to produce between unseen states while
imitation learning focuses on imitating and capturing the demonstrated distribution.

4 EXPERIMENTS

4.1 EVALUATION SETTINGS

We use CMU Mocap 4 and SFU Mocap 5 datasets for evaluation. Both datasets contain diverse daily
human motion sequences which are suitable for training. Considering that the original sequences
possess different length, we get reference subsequence in a sliding window manner, where T = 120
and P = 40. For both datasets the dimension of state is 63, which is 21 joints with 3D coordinates.
Here we would like to emphasise that we keep a held-out reference set (denoted as DR) from
training data (denoted as DT ) for further testing, to demonstrate that our model could generate novel
behaviour never seen during training. More specifically, DR is used for sampling novel motion and
starting/ending states during testing. Note that the following all experiments are with SFU Mocap
datasets. For the visual results on CMU Mocap datasets, please refer to our project page.

For local motion composition, we compare our model with two strong parametric baselines:
VAE (Kingma & Welling, 2014) and GAN (Goodfellow et al., 2014). For fair comparison, we
train both models with all data, i.e., DT and DR. Meanwhile we follow Yan et al. (2018) and Bar-
soum et al. (2018) about the hyper-parameter setting of both models. But the input dimension is
adjusted to match our data. For global motion composition, we compare our model with temporal
prediction baselines: (1) Baseline1: ϕfpre without last 5 states as goal condition, (2) Baseline2:
ϕfpre with last 5 states as goal condition, (3) Baseline3: both ϕfpre and ϕbpre but without last/first
5 states as goal condition. All three baselines are trained with the same hyper-parameter setting as
our global composition model.

4http://mocap.cs.cmu.edu/
5http://mocap.cs.cfu.ca/
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Figure 3: Motion diversity evaluation. Figure 4: Style feature visualization
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Figure 5: Comparison of motion naturalness with VAE and GAN based models. Best view in color.

4.2 EVALUATION FOR LOCAL MOTION COMPOSITION

Is generated motion diverse enough? We compare our model with parametric model (i.e.,
VAE (Kingma & Welling, 2014) and GAN (Goodfellow et al., 2014)) in evaluation of motion
diversity. For the majority of generative models, the diversity of generated result is upper bounded
by training data Barratt & Sharma (2018). Motivated by this, we compare motion diversity with
VAE (Kingma & Welling, 2014) and GAN (Goodfellow et al., 2014) based models under different
percentages of data used for training. As illustrated in Fig 3, 10%, 30%, 50% and 100% training data
are used respectively. After training converged, we calculate the averaged standard deviation of all
joints with a higher value indicating more diverse. We can see that both parametric models keep
relative constant motion diversity which is comparable with training data used less than 30%, but
largely inferior to the diversity of full training data. On the contrary, with an increasing percentage of
data used for training, our model achieves higher motion diversity, which mainly benefits from the
general semi-parametric modelling framework.

Is generated motion visually natural? For evaluation of visual naturalness, we provide generated
motion results and compare with VAE (Kingma & Welling, 2014) and GAN (Goodfellow et al., 2014).
As shown Fig 5, from top to bottom generated motion sequences correspond to our model (COSMO),
GAN (Goodfellow et al., 2014) and VAE (Kingma & Welling, 2014), respectively. Note that all
three sequences are with a length of 440 time steps. Our model (COSMO) generate the sequence
with three reference subsequences. While both GAN (Goodfellow et al., 2014) and VAE (Kingma &
Welling, 2014) models directly produce the motion in a recurrent manner. The GAN based model
fails to synthesise a normal walking sequence with large pose distortion. The VAE based model
is able to generate a visually natural walking sequence facilitated by KL loss during training but
struggles to produce diverse motion behaviour. Different from all these parametric models, Fig 5
shows that our semi-parametric modelling based model achieves natural state transition throughout
the whole sequence, meanwhile provides natural and diverse motion (i.e., walking-turning-walking)
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(A) MSE for global composition (B) Foot height variation

End 
Interpolation

Start 
Interpolation

Figure 7: Evaluation of global composition in terms of training MSE and foot height variation.

behaviours during generation. We encourage readers to refer to our project page for more video
demonstrations.

Do proposed model learn a meaningful style space? Recall that we representation learning of style
feature, we construct an embedded space instead of directly generating style feature. In this way, we
expect our model able to map a novel style pattern into learned embedded space. For validation we
randomly select 10% training data then extract corresponding style feature (denoted as Strain) with
ϕsty. Regarding the held-out set (denoted as Sref ) we conduct the same operation for all reference
subsequences. We visualize the distribution of both Strn and Sref with t-SNE (van der Maaten &
Hinton, 2008) in a two-dimensional plane. As shown in Fig 4, the purple dots indicate training data
while green dots stand for reference data. We can see that the style feature of training data spread
evenly across the plane. Meanwhile, the majority of style of feature of reference subsequences is
covered by that of training data. Within the learned style space, embedded layer acts as a set of style
bases where novel style can be approximated by the combination of these bases.

Can COSMO compose two reference subsequences into a novel one? Part of the generation
diversity of our model results from free composition of reference subsequences. As shown in
Fig 6, we provide two edited sequence examples which possess the general motion style from one
subsequence, but detailed motion pattern from another one. Taking the second sequence (bottom
row in Fig 6) for example, the target style motion shows a spinning motion with both hands raised
up (style), while the reference motion is a regular walking sequence. We can notice that the final
edited reference motion (third column, bottom row) fully captures the style of upper body meanwhile
maintains the walking pattern from reference sequence. Moreover, both top and bottom rows use the
same reference motion, but with different style as inputs, our model can still produce highly diverse
behaviours. For the space restriction of paper writing, we provide more examples whose new style
features are sampled from constructed embedded space. We encourage readers to refer to our project
page for more video demonstrations.

4.3 EVALUATION FOR GLOBAL MOTION COMPOSITION

Do COSMO learn better motion transition than basic prediction models? Different from pre-
diction model, COSMO produces motion transition given starting or ending states from different

8



Under review as a conference paper at ICLR 2020

Figure 8: States transition visualization for evaluation of smoothness.

End Start Long-range Motion Generation

Figure 9: Left: Motion generation given the same starting and ending states. Right: Long-range
Motion generation with characteristic routes.

sequences, i.e., there is no ground truth for evaluation. To this end, we provide training error for
evaluation of motion transition. As shown in Fig 7(A), we can see that our model (COSMO) out-
performs other methods by a large margin. Base1 achieves lowest accuracy caused by no ending
states are provided during composition. Baseline2 and Baseline3 models perform better than base1
model, which indicates that both bi-directional and goal-conditional modelling scheme facilitates
motion composition by a large margin. Our global composition sub-module combines the strength of
both Baseline2 and Baseline3 models, which evenly utilize the information from starting and ending
states. However, merely considering the training error is not sufficient. Next, we further evaluate the
performance of our model given two different sequences.

Can COSMO guarantee smooth transition between two different sequences? Fig 8 demonstrates
motion transition results given starting and ending states from different reference subsequences,
respectively. Note that for all sequences shown in Fig 8, the starting as well as ending states are
from held-out reference set. We can observe that our model is able to generate smooth and natural
transition when starting and ending states are similar. Moreover, when encountered large motion
difference, e.g., from walking to greeting, turning back with a relatively large degree, our model still
makes it to generate visually natural transition sequence. We encourage readers to refer to our
project page for more video demonstrations.

Is global motion composition merely linear interpolation? One possible trivial solution learned
by our transition model is to simply linear interpolation between starting and ending states. However,
common human motion generally involves non-linear trajectories. Linear interpolation is prone to
produce unnatural motion which is easy to detect by human eyes. To valid that whether our model
conducts linear interpolation between two sequences, we record the height variation of the right foot
in a composed motion sequence. Meanwhile, we manually rotate the second sequence w.r.t. the final
state of the first sequence to show that our model is robust to a large range of direction difference
between two sequences. As shown in Fig 7(A), two black arrows indicate the starting and ending
steps for composition. Here we present multiple curves which correspond to different rotation angle
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Figure 10: Generated results as demonstration guidance for imitation learning.

mentioned earlier. All recorded curves are highly non-linear but smooth between starting and ending
points. Moreover, our model adaptively changes foot height with different rotation configurations,
which indicates smooth and natural motion for motion composition.

Visualization of final composed sequences. Combining local and global motion together, we are
able to generate final sequences. Recall that our model is constrained by given starting and ending
states based on motion interpolation. To this end, we present three composed sequences with a length
of 480 time steps, i.e., three edited reference sequences (length of 120) and four generated clips
for global motion composition. As shown in left part of Fig 9, starting from the same state, we
are able to generate long-range and visually natural motion boosted by the local and global motion
composition. Meanwhile, we are able to generate diverse behaviour (shown as complex hand and
foot motion) facilitated semi-parametric modelling. We encourage readers to refer to our project
page for more video demonstrations.

4.4 APPLICATION

In this section, we present several downstream applications related to our motion generation model.
The first one is diverse motion generation under fixed rout constrain. The second one is demonstration
motion guidance for imitation learning (Peng et al., 2018).

Diverse motion generation. As shown in the right part of Fig 9, we manually design four routes
for motion generation. We can see that our semi-parametric model is able to produce intermediate
motion states clearly following the predefined route. Note that the longest motion sequence indicating
character "R" is over 1500 time steps. We encourage readers to refer to our project page for
corresponding video demonstrations.

Expert demonstration guidance for imitation learning. Under a simulated environment with
gravity constrain (Peng et al., 2018), unnatural motion violating physical law (e.g., severe joint
twisting) is hard for a simulated agent to follow. To further show our model produces realistic motion,
generated results are used for demonstration guidance of imitation learning. As shown in Fig 10,
the left part is demonstration synthesised by COSMO (top) while the bottom one is learned policy
with Peng et al. (2018). We can see that the learned motion succeeds to follow the synthesised one.
The right part is return curve during training, which also shows that our generated motion is realistic
enough for the guidance of imitation learning. We encourage readers to refer to our project page
for corresponding video demonstrations.

5 CONCLUSION

In this work, we propose to generate long-range motion in a semi-parametric way. We first sample
reference motion subsequence from the held-out set and change the motion style with a local motion
composition scheme. We then compose all reference subsequences with the proposed global motion
composition scheme. Given the same starting and ending states, the proposed model is able to
generate long-range, diverse and natural motion sequences over 1000 time steps without loss of visual
quality.
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6 APPENDIX

Requirements for reference sequence Ri. Our model does not restrict the length of Ri, neither
any specific/predefined starting or ending states of it. However, there are still restrictions for Ri:

• Physically reachable. In this work we do not have access to the dynamics of other objects,
which should be excluded from candidate references if involved. For example, our model
does not intend for synthesising transition sequence from running to lifting. The latter be-
haviour needs dynamic information (bell) to model. Therefore, in our experiments reference
subsequence is first restricted to single character motion without external interaction.
• Moving on flat ground. Besides physically reachable, we also restrict the character moving

on flat ground. Because in our task there is no predefined ground information available
for modelling. To get rid of unexpected composition results, we filter out these sequences
recorded from uneven terrain.

Searching procedure for reference subsequences

• Step 0: Calculate overall root locations for all reference subsequences. We denote corre-
sponding minimum/maximum value as tmin/tmax respectively.
• Step 1: Given s0 and sL, extract corresponding root locations (l0 and lL) respectively. Here

root is defined by the ground projection of hip joint. Then sample NR + 1 mid locations,
which forms NR + 2 pairs, i.e, [l0, l1], ..., [lNR

, lL]. Distance defined by each pair dm is
bounded, i.e., tmin < dm < tmax.
• Step 2: For each location pair, we search reference subsequence for similar translation

defined by dm with maximum tolerance σt. We conduct local motion composition for
searched reference subsequence (in Section 2.2).
• Step 3: We sequentially conduct goal conditioned bi-directional motion interpolation for

two consecutive reference subsequences (in Section 2.3). As a preprocessing procedure, the
overall location and direction of latter sequence is adjusted w.r.t former one for interpolation.
The final sequence is obtained through concatenating all synthesised clips along temporal
axis.
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