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ABSTRACT

We address the problem of learning to discover 3D parts for objects in unseen cat-
egories. Being able to learn the geometry prior of parts and transfer this prior to
unseen categories pose fundamental challenges on data-driven shape segmentation
approaches. Formulated as a contextual bandit problem, we propose a learning-
based iterative grouping framework which learns a grouping policy to progres-
sively merge small part proposals into bigger ones in a bottom-up fashion. At
the core of our approach is to restrict the local context for extracting part-level
features, which guarantees the generalizability to novel categories. On a recently
proposed large-scale fine-grained 3D part dataset, PartNet, we demonstrate that
our method can transfer knowledge of parts learned from 3 training categories
to 21 unseen testing categories without seeing any annotated samples. Quantita-
tive comparisons against four strong shape segmentation baselines shows that we
achieve the state-of-the-art performance.

1 INTRODUCTION

Figure 1: Shape Segmentation Re-
sults. The first row is a chair from
training categories and the second
row is a bed from testing categories.
Left column shows PartNet-InsSeg
results and right is ours.

Perceptual grouping has been a long-standing problem in the
study of vision systems (Hoffman & Richards, 1984). The
process of perceptual grouping determines which regions of
the visual input belong together as parts of higher-order per-
ceptual units. Back to the 1930s, Wertheimer (1938) listed
several vital factors, such as similarity, proximity, and good
continuation, which lead to visual grouping. In the era of
deep learning, high-level cues can be learned from massive
annotated datasets. However, even to this day, learning-based
segmentation algorithms are still far inferior to human visual
systems when it comes to unseen categories. In this paper, we
present a new general learning-based framework for the per-
ceptual grouping task, focusing especially on the case of 3D
shape part discovery in the zero-shot learning setting.

With the power of big data, deep neural networks that learn
data-driven features to segment shape parts, such as (Kaloger-
akis et al., 2010; Graham et al., 2018; Mo et al., 2019), have
demonstrated the state-of-the-art performance on many shape
segmentation benchmarks (Yi et al., 2016; Mo et al., 2019).
The key to the success is to train with large-scale annotated
training samples and learn to extract features that maximally
exploit the data structure of the training categories. These networks usually have large receptive
fields that extract features from the whole input shape and take advantage of learning global context
for understanding part semantics and shape structures. While learning such features with global
contextual information leads to superior performance on the training categories, they often fail mis-
erably on unseen classes (Figure 1, row 2, column 1), as big domain gaps are observed across seen
and unseen categories.

On the contrary, classical shape segmentation methods, such as (Kaick et al., 2014), that use manu-
ally designed features with relatively more local context, though giving inferior segmentation results,
can perform much better for unseen object classes. In fact, many globally different shapes share sim-
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ilar parts locally. For example, airplanes, cars, and swivel chairs all have wheels as sub-components,
even though the global geometry are totally different. Having the knowledge of wheels learned from
airplanes should help recognize wheels for cars and swivel chairs, since the local geometry and se-
mantic functionality of wheels share across the boundary of object classes. Also, automatic part
discovery for unseen categories is more favorable than collecting manually labeled ground-truth for
every new categories for shape segmentation.

In this paper, we aim to combine the benefits of learning data-driven part priors and extracting local-
context features to perform part discovery across object categories in a zero-shot setting. We start
from learning to propose a pool of superpixel-like sub-parts within local context for each shape.
Then, we learn a grouping policy that seek to gradually increase the part local context and merge
sub-parts for final part proposals. What lies in the heart of our algorithm is to learn a function
to assess whether two parts should be merged. Different from prior deep segmentation work that
learns point features, our formulation essentially learns part-level features. Borrowing ideas from
Reinforcement Learning (RL), we formalize the process as a contextual bandit problem and train a
local grouping policy to iteratively pick a pair of sub-parts to merge. In both steps, we learn features
within part local context aiming for generalizing to unseen categories. Our learning-based agglom-
erative clustering framework deviates drastically from the prevailing deep segmentation pipelines
and makes one step towards generalizable part discovery in unseen object categories.

To summarize, we make the following contributions:

• We formulate the task of zero-shot part discovery on a large-scale fine-grained shape seg-
mentation benchmark PartNet (Mo et al., 2019);

• We propose a learning-based agglomerative clustering framework that learns to do part
proposal and grouping from training categories and generalizes to unseen novel categories;

• We quantitatively compare our approach to several baseline methods and demonstrate the
state-of-the-art results for part discovery in unseen object categories.

2 RELATED WORK

Shape segmentation has been a classic and fundamental problem in computer vision and graphics.
Dated back to 1990s, researchers have started to design heuristic geometric criterion for segmenting
3D meshes, including methods based on morphological watersheds (Mangan & Whitaker, 1999),
K-means (Shlafman et al., 2002), core extraction (Katz et al., 2005), graph cuts (Golovinskiy &
Funkhouser, 2008), random walks (Lai et al., 2008), spectral clustering (Liu & Zhang, 2004) and
primitive fitting (Attene et al., 2006a), to name a few. See Attene et al. (2006b); Shamir (2008); Chen
et al. (2009) for more comprehensive surveys on mesh segmentation. Many papers study mesh co-
segmentation that discover consistent part segmentation over a collection of shapes (Golovinskiy &
Funkhouser, 2009; Huang et al., 2011; Sidi et al., 2011; Hu et al., 2012; Wang et al., 2012; Van Kaick
et al., 2013). Our approach takes point clouds as inputs as they are closer to the real-world scanners.
Different from meshes, point cloud data lacks the local vertex normal and connectivity informa-
tion. Kaick et al. (2014) segments point cloud shapes under the part convexity constraints. Our
work learns shared part priors from training categories and thus can adapt to different segmentation
granularity required by different end-stream tasks.

In recent years, with the increasing availability of annotated shape segmentation datasets (Chen
et al., 2009; Yi et al., 2016; Mo et al., 2019), many supervised learning approaches succeed in re-
freshing the state-of-the-arts. Kalogerakis et al. (2010); Guo et al. (2015); Wang et al. (2018a) learn
to label mesh faces with semantic labels defined by human. See Xu et al. (2016) for a recent survey.
More recent works propose novel 3D deep network architectures segmenting shapes represented as
2D images (Kalogerakis et al., 2017), 3D voxels (Maturana & Scherer, 2015), sparse volumetric
representations (Klokov & Lempitsky, 2017; Riegler et al., 2017; Wang et al., 2017; Graham et al.,
2018), point clouds (Qi et al., 2017a;b; Wang et al., 2018b; Yi et al., 2019) and graph-based rep-
resentations (Yi et al., 2017). These methods take advantage of sufficient training samples of seen
categories and demonstrate appealing performance for shape segmentation. However, they often
perform much worse when testing on unseen categories, as the networks overfit their weights to the
global shape context in training categories. Our work focus on learning context-free part knowledges
and perform part discovery in a zero-shot setting on novel object classes.
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There are also a few relevant works trying to reduce supervisions for shape part segmentation. Maka-
dia & Yumer (2014) learns from sparsely labeled data that only one vertex per part is given the
ground-truth. Yi et al. (2016) proposes an active learning framework to propogate part labels from
a selected sets of shapes with human labeling. Lv et al. (2012) proposes a semi-supervised Condi-
tional Random Field (CRF) optimization model for mesh segmentation. Shu et al. (2016) proposes
an unsupervised learning method for learning features to group superpixels on meshes. Our work
processes point cloud data and focus on a zero-shot setting, while part knowledge can be learned
from training categories and transferred to unseen categories.

3 PROBLEM FORMULATION

We consider the task of zero-shot shape part discovery on 3D point clouds in unseen object
categories. For a 3D shape S (e.g. a 3D chair model), we consider the point cloud CS =
{p1, p2, · · · , pN} sampled from the surface of the 3D model. A part Pi = {pi1 , pi2 , · · · , pit} ⊆ CS
defines a group of points that has certain interesting semantics for some specific downstream task. A
set of part proposal PS = {P1, P2, · · · , PS} comprises of several interesting part regions on S that
are useful for various tasks. The task of shape part discovery on point clouds is to produce PpredS for
each input shape point cloud CS . Ground-truth proposal set PgtS is a manually labeled set of parts
that are useful for some human-defined downstream tasks. A good algorithm should predict PpredS

such that PgtS ⊆ P
pred
S within an upper-bound limit of part numbers M .

A category of shapes T = {S1, S2, · · · } gathers all shapes that belong to one semantic category. For
example, Tchair includes all chair 3D models in a dataset. Zero-shot shape part discovery considers
two sets of object categories Ttrain = {T1, T2, · · · , Tu} and Ttest = {Tu+1, Tu+2, · · · , Tv}, where
Ti ∩ Tj = ∅ for any i 6= j. For each shape S ∈ T ∈ Ttrain, a manually labeled part proposal
subset PgtS ⊆ PS is given for algorithms to use. It provides algorithms an opportunity to develop the
concept of parts in the training categories. No ground-truth part proposals are provided for shapes
in testing categories Ttest. Algorithms are expected to predict PpredS for any shape S ∈ T ∈ Ttest.

4 METHOD

Our method starts with proposing a set of small superpixel-like (Ren & Malik, 2003) sub-parts of
the given shape. We refer readers to Sec. B in appendix for more details. Given a set of sub-
part proposals, our method iteratively groups together the sub-parts belonging to the same parts in
ground-truth and produce bigger part proposals, until no sub-part can further merge each other. The
remaining sub-parts in the final stage become a pool of part proposals for the input shape.

Our perceptual grouping process is a sequential decision process. We formulate the perceptual
grouping process as a contextual bandit (one-step Markov Decision Process) (Langford & Zhang,
2007). We learn a policy network to select a pair of sub-parts to merge in each iteration, as shown
in Alg. 1. Our policy network is composed of two sub-modules: a purity module and a rectification
module. The purity module measures how likely two sub-parts belong to the same part in ground-
truth after merging and the rectification module further decides the best pair to merge. Finally,
we learn a termination module that judges when to stop the merging process. We describe more
technical network design choices in Sec. 4.1. To train the entire pipeline, we borrow the on-policy
training scheme from Reinforcement Learning (RL) to train these networks, in order to match the
data distribution during training and inference stages, as described in Sec.4.2.

4.1 NETWORK DESIGNS

Our iterative grouping procedure involves two networks: a policy network picking pairs of sub-parts
to group in each iteration, and a termination network controlling stopping criterion for the entire
grouping process. The policy network comprises of two sub-modules: a purity module that decides
if two sub-parts can merge, and a rectification module that selects the best pair to merge.

Purity Module. Two sub-parts that belong to the same ground-truth part should merge together.
We define purity score U(P ) for a sub-part P as the maximum ratio of the intersection of P with
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Algorithm 1 Sub-part Pair Selection and Grouping.
Input: A sub-parts pool P = {Pi}i≤n
Input: Purity network U ; Rectification network R; Termination network V

1: for i, j ≤ n do
2: Merge two shapes: P ′ij ← {Pi ∪ Pj}
3: Calculate the purity score ui,j ← U(P ′ij)
4: Calculate the rectification score rij ← R(Pi, Pj)
5: end for
6: Calculate policy π(Pi, Pj)← erijuij∑

i,j e
rijuij

7: if isTraining then
8: Sample pair Pi, Pj ∼ π(Pi, Pj)
9: else

10: Select the Pi, Pj = argmaxπ(Pi, Pj)
11: end if
12: if V (Pi, Pj) is True then
13: Delete Pi, Pj from the pool
14: Add P ′ij into the pool
15: end if
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Figure 2: Network Architectures for Three Network Modules.

the ground-truth parts {P gti }. More formally,

U(P ) = max
P gt

i

∑
p I[p ∈ P ]I[p ∈ P

gt
i ]∑

p I[p ∈ P ]
(1)

where p enumerates all points in the shape point cloud and I is the indicator function.

We train a purity network to predict the purity score. It employs a PointNet that takes as input a
merged sub-part Pij = Pi ∪ Pj and predicts the purity score. Fig. 2 (a) shows the architecture.

Rectification Module. We observe that a purity network is not enough to fully decide the best pair
of sub-parts to merge in practice. For example, when a big sub-part tries to merge with a small one
from a different ground-truth part, the part geometry of the merging outcome is primarily dominated
by the big sub-part, and thus the purity network tends to produce a high purity score, which results
in an incorrect grouping decision. To address this issue, we consider learning a rectification module
to correct the failure case given by the purity network.

We design the rectification module as in Fig. 2 (b). The rectification module takes two sub-parts as
inputs, extracts features using a shared PointNet, concatenates the two part features and outputs a
real valued rectification score R(P ), based purely on local information. Different from the purity
module that takes the merging result as input, the rectification module explicitly takes two sub-parts
as inputs in order to compare the two sub-part features for decision making.

Policy Network. We define policy score by making the product of purity score and rectification
score. We define the policy π(Pi, Pj |P) as a distribution over all possible pairs characterized by a
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Algorithm 2 RL On-policy Training Algorithm.
Input: Policy network πφ parameterized by φ; Purity network Uθ parameterized by θ; Verification

network V
1: Initialize buffer B and the networks
2: while True do
3: Sample shape S and its ground truth-label gt.
4: Preprocess S to get a sub-parts pool P = {Pi}i≤n
5: while ∃Mergable sub-parts do
6: Select and merge two sub-parts Pi, Pj with Algorithm 1
7: Store (Pi, Pj ,P) in B and update sub-part pool P
8: Sample batch of data (P ki , P

k
j ,Pk)k≤N from the buffer

9: Set purity score Ukgt = U(P ki ∪ P kj )
10: Set reward Mk

gt =M(P ki , P
k
j )

11: Update policy network with policy gradient:

∇φ ≈
1

N

∑
k≤N

∇ log πφ(P
k
i , P

k
j |Pk)Mk

gt

12: Update purity module by minimizing the l2 loss with purity score Ukgt:

Lpurity =
1

N

∑
k≤N

‖Uθ(P kij)− Ukgt‖22

13: Update termination network by minimizing the cross entropy loss :

Ltermination =
1

N

∑
k≤N

Mk
gt log V (P ki , P

k
j ) + (1−Mk

gt) log
(
1− V (P ki , P

k
j )
)

14: end while
15: end while

softmax layer as shown in line 6 of Algorithm 1. The goal of the policy is to maximize the objective

maximize
π

Ea∼π(Pi,Pj |P) [π(a|P)M(a)] .

The reward, or the merge-ability score M(Pi, Pj) defines whether we could merge two sub-parts Pi
and Pj . To compute the rewardM(Pi, Pj): we first calculate the instance label of the corresponding
ground-truth part for sub-parts Pi, Pj as li and lj . We set M(Pi, Pj) to be one if the two sub-parts
have the same instance label and the purity scores of two sub-parts are greater than 0.8.

Termination Network The iterative grouping process continues to merge small sub-parts into bigger
ones using the policy network described above. The entire merging process stops when there is no
pair of sub-parts that can be merged. Since the policy scores sum to one over all pairs of sub-parts,
there is no explicit signal from the policy network on when to stop. In consequences, we have to
train a separate termination network that is specialized to determine stopping criterion.

The termination network takes a pair of shape as input and outputs values from zero to one after
a Sigmoid layer. Fig. 2 (c) illustrates the network architecture: a PointNet first extracts part local
feature for each sub-part, then two sub-part point clouds are augmented with the extracted part
features and concatenated together to pass through another PointNet to obtain the final score. Notice
that our design of termination network is a combination of purity module and rectification module.
We want to extract both the input sub-part features and the part feature after merging.

4.2 NETWORK TRAINING

In this section, we illustrate how to train the two networks jointly as an entire pipeline. We use
Reinforcement Learning (RL) on-policy training and borrow the standard RL training techniques,
such as epilson-greedy exploration and replay buffer sampling. We also discuss the detailed loss
designs for training the policy network and the termination network.
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RL On-policy Training Borrowing ideas from the field of Reinforcement Learning (RL), we
train the policy network and the termination network in an on-policy fashion. On-policy training
alternates between the data sampling step and the network training step. The data sampling step fixes
the network parameters and then runs the inference-time pipeline to collect the grouping trajectories
including all pairs of sub-parts seen during the process and all the merging operations taken by the
pipeline. The network training step uses the trajectory data collected from the data sampling step to
compute losses for different network modules and performs steps of gradient descents to update the
network parameters. We fully describe the on-policy training algorithm in Alg. 2.

We adapt psilon-greedy strategy (Mnih et al., 2013) into the training stage. We start from involving
80% random sampling samples during inference as selected pairs and decay the ratio with 10% step
size in each epoch. We find that random actions not only improve the exploration in the action space
and but also serve as the data-augmentation role. The random actions collect more samples to train
the networks, which improves the transfer performance in unseen categories.

Also, purely on-policy training would drop all experience but only use the data sampled by current
policy. This is not data efficient, so we borrow the idea from DQN (Mnih et al., 2013) and use replay
buffer to store and utilize the experience. The replay buffer stores all the states and actions during
the inference stage. When updating the policy networks, we sample a batch of transitions, i.e. , the
merged sub-parts, and the sub-part pools when the algorithm merges the sub-parts from the replay
buffer. The batch data is used to compute losses and gradients to update the two networks.

Training Losses As shown in Algorithm 2, to train the networks, we sample a batch of data
(P ki , P

k
j ,Pk)k≤N from the replay buffer, where P ki , P

k
j is the merged pair and Pk is the corre-

sponding sub-parts pool. We first calculate the reward Mk
gt and ground-truth purity score Ukgt for

each data in the batch. For updating the rectification module, we fix the purity module and calculate
the policy gradient (Sutton et al., 2000) of the policy network with the reward Mk

gt shown in line 11.
As the rectification module is a part of the policy network, the gradient will update the rectification
module by backpropogation. We then use the l2 loss in line 12 to train the purity module and use
the cross entropy loss in line 13 to train the termination network.

5 EXPERIMENTS AND ANALYSIS

In this section, we conduct quantitative evaluations of our proposed framework and present extensive
comparisons to four previous state-of-the-art shape segmentation methods using PartNet dataset (Mo
et al., 2019) in zero-shot part discovery setting. We also show diagnostic analysis on how the dis-
covered part knowledge transfers across different object categories.

5.1 DATASET AND EVALUATION

We use the recently proposed PartNet dataset (Mo et al., 2019) as the main testbed. PartNet provides
fine-grained, hierarchical and instance-level part annotations for 26,671 3D models from 24 object
categories. PartNet defines up to three levels of non-overlapping part segmentation for each object
category, from coarse-grained parts (e.g. chair back, chair base) to fine-grained ones (e.g. chair back
vertical bar, swivel chair wheel). Unless otherwise noticed, we use 3 categories (i.e. chairs, storage
furnitures and lamps)1 for training and take the rest 21 categories as unseen categories for testing.

In zero-shot part discovery setting, we aim to propose parts that are useful under various different
use cases. PartNet provides multi-level human-defined semantic parts which can serve as a sub-
sampled pool of interesting parts. Thus, we adopt Mean Recall (Hosang et al., 2015; Sung et al.,
2018) as the evaluation metric to measure how predicted part pool covers the PartNet-defined parts.
To elaborate the calculation of Mean Recall, we first define Rt as the fraction of ground-truth parts
that have Intersection-over-Union (IoU) over t with any predicted part. Mean Recall is then defined
as the average values of Rt’s where t varies from 0.5 to 0.95 with 0.05 as a step size.
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P 18.2 9.7 40.7 73.5 30.3 30.4 43.6 32.1 16.5 16.6 52.5
S 21.4 7 46.7 53.3 27.7 8.7 34.8 28.9 25.5 20.0 37
G 34.4 8.4 46.9 72.8 42.3 40.6 57.8 37.4 28.4 25.3 31.7
W 43.1 8.73 59.1 69.8 38.7 27.5 64.1 32.3 38.0 47.8 53.4
O 38.1 15.2 52.8 77.4 43.9 36.6 68.7 40.5 25.3 31.2 54.3

NAvg.
P 0.4 33.6 82.1 29.6 33.0 25.0 0.8 38.9 13.6 36.8 29.5
S 0.4 31 67.3 7.2 13.3 5.9 6.4 34.8 7.75 27.5 26.3
G 0.4 18.9 92.9 39.2 40.6 26.4 3.7 34.6 12.7 41.4 27.9
W 0.3 62.4 62.1 30.0 52.6 19.9 46.3 30.2 23.3 33.0 27.1
O 0.4 26.9 96.7 37.8 53.3 30.0 8.5 43.3 15.2 42.9 35.1

Table 1: Quantitative Evaluation. Algorithm P, S, G, W, O refer to PartNet-InsSeg, SGPN, GSPN,
WCSeg and Ours, respectively. The number is the average among mean recall of three levels seg-
mentation results in PartNet. We put short lines for the levels that are not defined. NAvg. is average
among novel categories over shape numbers.

5.2 BASELINE METHODS

We compare our approach to four previous state-of-the-art methods as follows:

• PartNet-InsSeg: Mo et al. (2019) proposed a part instance segmentation network that
employs a PointNet++ (Qi et al., 2017b) as the backbone that takes as input the whole
shape point cloud and directly predicts 200 part instance masks. The method is a top-down
label-prediction method that uses the global shape information.

• SGPN: Wang et al. (2018b) presented a learning-based bottom-up grouping method, which
learns to extract per-point features and compute pairwise affinity matrix for point grouping.
The method also uses PointNet++ features with global shape context.

• GSPN: Yi et al. (2019) introduced a deep region-based method that learns generative
models for part proposals. The method proposes local part bounding boxes but still uses
globally-aware PointNet++ features for predicting part masks inside boxes.

• WCSeg: Kaick et al. (2014) is a non-learning based method based on the convexity as-
sumption of parts. The method leverages hand-engineered heuristics to segment shapes,
and thus is agnostic to the boundary of object categories.

All the three deep learning based methods take advantage of the global shape context to achieve
state-of-the-art shape part segmentation results on PartNet. However, these networks are prone
to over-fitting to training categories and have a hard time transferring part knowledge to unseen
categories. WCSeg, as a non-learning based method, demonstrates good generalization capability
to unseen categories, but is limited by the part convexity assumption.

5.3 RESULTS AND ANALYSIS

We compare our proposed framework to the four baseline methods under the Mean Recall met-
ric. There are up to three levels of semantic part segmentation for each object category in Part-
Net. Since the segmentation levels for different categories may not share consistent part gran-
ularity (e.g. display level-2 parts may correspond to chair level-3 parts), we have to gather to-
gether the part proposals predicted by networks at all three levels as a joint pool of propos-
als for evaluation on levels of unseen categories. Thus, for PartNet-InsSeg, SGPN, GSPN and
our method, we train three networks corresponding to three levels of segmentation for train-
ing categories (e.g. chairs, storage furnitures and lamps). We remove the part semantics pre-
diction branch from the three baseline methods for fair comparison to our method, as seman-
tics are not transferable to novel testing categories. For WCSeg, point normals are required
by the routine to check local patch continuity. PartNet experiments (Mo et al., 2019) usu-

1We pick the three categories because they are big categories with several thousands models per category
and provide a large variation of parts for learning.
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ally assume no such point normals as inputs. Thus, we approximately compute normals based
on the input point clouds by reconstructing surface with ball pivoting (Bernardini et al., 1999).

Figure 3: show qualitative results for 5 methods. From
left to right, we show GSPN, SGPN, WCSeg, PartNet-
InsSeg and ours performance on three testing unseen cat-
egories.

Then, to obtain three-levels of part pro-
posals for WCSeg, we manually tune
hyperparameters in the procedure at
each level of part annotations on training
categories to match the average part pre-
diction counts per level to the ground-
truth counts in PartNet.

We present quantitative and qualitative
evaluations to baseline methods in Ta-
ble 1 and Figure 3. For each testing cat-
egory, we report the average values of
Mean Recall scores at all levels. See
the appendix Table 3 for detailed num-
bers at all levels. We observe that our
approach achieves the best performance
on average among all testing novel cate-
gories, while championing 12 out of 21
categories.

5.4 PART KNOWLEDGE TRANSFER
ANALYSIS

Train Category

37.1 23.7 8.3

32.6 33.5 8.8

30.9 18.8 33.4

Table 2: Cross-validation experiments
for analyzing how part knowledge
transfers across category boundaries.

The core of our method is to learn local-context part
knowledge from training categories that is able to transfer
to novel unseen categories. Such learned part knowledge
may also include non-transferable category-specific infor-
mation, such as average size of parts, the part geometry,
and the part boundary types. Training our framework on
more various object categories is beneficial to learn more
generalizable knowledge that shares in common. How-
ever, due to the difficulties in acquiring human annotated
fine-grained parts (e.g. PartNet (Mo et al., 2019)), we
can often conduct training on a few training categories.
Thus, we are interested to know how to select categories
to achieve the best performance on all categories.

Different object categories have different part patterns that
block part knowledge transfers across category boundaries. However, presumably, similar cate-
gories, such as tables and chairs, often share common part patterns that are easier to transfer. For
example, tables and chairs are both composed of legs, surfaces, bar stretchers and wheels, which
offers a good opportunity for transferring local-context part knowledge. We analyze the capability
of transferring part knowledge across category boundaries under our framework. Table 2 presents
experimental results of doing cross-validation using chairs, tables and lamps by training on one cat-
egory and testing on another. We observe that, chairs and tables transfer part knowledge to each
other as expected, while the network trained on lamps demonstrates much worse performance on
generalizing to chairs and tables.

6 CONCLUSION

In this paper, we introduced an data-driven iterative perceptual grouping pipeline for the task of
zero-shot 3D shape part discovery. At the core of our method is to learn part-level features within
part local contexts, in order to generalize the part discovery process to unseen novel categories.
We conducted extensive evaluation and analysis of our method and presented thorough quantita-
tive comparisons to four state-of-the-art shape segmentation algorithms. We demonstrated that our
method successfully extracts locally-aware part knowledge from training categories and transfers
the knowledge to unseen novel categories. Our method achieved the best performance over all four
baseline methods on the PartNet dataset.
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A FULL EXPERIMENT RESULTS

We present the full table including Mean Recall scores at all levels and the performance on seen
categories in Table 3.

B SUB-PART PROPOSAL MODULE

Given a shape represented as a point cloud, we first propose a pool of small superpixel-like (Ren &
Malik, 2003) sub-parts as the building blocks. We employ furthest point sampling to sample 256
local seed points on each input shape. To capture the local part context, we extract PointNet (Qi
et al., 2017a) features within a local 0.02-radius2 neighborhood around each seed point. Then,
we train a local PointNet segmentation network that takes as inputs the points within a 0.2-radius
ball around every seed point and output a binary segmentation mask indicating a sub-part proposal.
Finally, every sub-part proposal is assigned a partness score to get rid of sub-parts that are actually
covering multiple parts in ground-truth. Figure 4 describes the process with more details.

C ABLATION STUDY

In order to justify the proposed design of modules and training strategies, we conduct experiments
to validate them and show the results in Table 4.

• Rectification The rectification module is involved to rectify the failure cases for purity
network. Our experiments shows that without the rectification module, our decision process
will easily converge to a trajectory that a pair of sub-part with in-balanced size will always
be chosen to merge results in situations that one huge sub-part dominate the sub-part pool
and bring in large performance drop as shown in Table 4, the ”no rectification” row.

2All shape point clouds are normalized into a unit-radius sphere.
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Seen Category Novel Category

SAvg.
P1 74.4 64.3 27.6 57.0 18.2 14.7 49.6 73.5 33.4 37.3 43.2 42.4 24.2
P2 40.2 23.2 54.7 39.6 - 7.8 - - - 32.2 - - -
P3 42.0 39.3 21.6 34.6 - 6.6 31.8 - 27.1 21.6 44 21.8 8.7

Avg. 55.7 50.5 23.8 43.7 18.2 9.7 40.7 73.5 30.3 30.4 43.6 32.1 16.5
S1 57.1 56.2 13.6 42.0 21.4 10.7 57.6 53.3 37.5 13 38.4 44.1 43.1
S2 38.2 42.1 11.4 28.2 - 6.3 - - - 7.9 - 23.7 -
S3 31.3 34.4 9.4 23.8 - 4 35.8 - 17.9 5.2 31.2 19 7.9

Avg. 42.2 44.2 11.5 31.3 21.4 7 46.7 53.3 27.7 8.7 34.8 28.9 25.5
G1 56.7 57.8 17.7 43.4 34.4 17.2 56.0 72.8 55.6 53.5 63.7 55.6 46.9
G2 35.2 42 13.5 27.4 - 4.6 - - - 40.5 - 30.2 -
G3 27.1 31.2 12.1 22.1 - 3.4 37.8 - 28.9 27.8 51.9 26.5 9.9

Avg. 39.7 43.7 14.4 31.0 34.4 8.4 46.9 72.8 42.3 40.6 57.8 37.4 28.4
W1 29.0 55.8 5.4 24.3 43.1 13.6 70.1 69.8 48.7 42.3 64.1 44.9 50.2
W2 30.7 53.2 1.5 21.2 - 6.9 - - - 23.4 - 27.5 -
W3 29.2 50 1.8 21.2 - 5.7 48.1 - 28.7 16.9 58.0 24.6 25.8
Avg. 29.6 53.0 2.9 22.2 43.1 8.73 59.1 69.8 38.7 27.5 64.1 32.3 38.0
O1 46.7 63 24.9 41.3 38.1 18.2 66.7 77.4 57.0 39.4 72.1 59.5 40.1
O2 40.2 54.7 23.2 34.8 - 14.5 - - - 40.7 - 34.2 -
O3 35.3 43.6 21.5 31.1 - 13 38.8 - 30.8 29.7 65.3 27.9 10.5

Avg. 40.7 53.8 23.2 35.7 38.1 15.2 52.8 77.4 43.9 36.6 68.7 40.5 25.3
Novel Category

NAvg.
P1 19.4 52.5 0.4 43.2 82.1 42 33 31.6 0.8 56.0 23.6 38.0 31.0
P2 - - - - - 28.5 - 25.4 - 32.4 - - 31.7
P3 13.8 - - 23.9 - 18.3 - 18 - 28.4 3.6 35.5 25.8

Avg. 16.6 52.5 0.4 33.6 82.1 29.6 33.0 25.0 0.8 38.9 13.6 36.8 29.5
S1 23.3 37 0.4 39.3 67.3 11.1 13.3 7.5 6.4 48.2 12.7 28.6 27.1
S2 - - - - - 7.1 - 5.4 - 29.4 - - 28.3
S3 16.6 - - 22.7 - 3.4 - 4.9 - 26.7 2.8 26.3 23.6

Avg. 20.0 37 0.4 31 67.3 7.2 13.3 5.9 6.4 34.8 7.75 27.5 26.3
G1 32.5 31.7 0.4 25.6 92.9 62.3 40.6 41.4 3.7 49.9 23.2 42.4 2.0
G2 - - - - - 34.6 - 24.4 - 28.8 - - 28.3
G3 18 - - 12.2 - 20.7 - 13.4 - 25 2.2 40.3 23.5

Avg. 25.3 31.7 0.4 18.9 92.9 39.2 40.6 26.4 3.7 34.6 12.7 41.4 27.9
W1 46.3 53.4 0.3 67.7 62.1 51.3 52.6 38.4 46.3 38.2 23.3 34.2 29.0
W2 - - - - - 22.3 - 13.2 - 27.7 - - 27.0
W3 49.2 - - 57.1 - 16.5 - 8.1 - 24.6 3.0 31.7 25.3
Avg. 47.8 53.4 0.3 62.4 62.1 30.0 52.6 19.9 46.3 30.2 23.3 33.0 27.1
O1 35.5 54.3 0.4 32.3 96.7 55.8 53.3 40.5 8.5 57.5 25.3 44.5 35.9
O2 - - - - - 36.2 - 28.8 - 38.5 - - 37.8
O3 26.9 - - 21.4 - 21.3 - 20.7 - 34.0 5.0 41.2 31.6

Avg. 31.2 54.3 0.4 26.9 96.7 37.8 53.3 30.0 8.5 43.3 15.2 42.9 35.1

Table 3: Quantitative Evaluation. Algorithm P, S, G, W, O refer to PartNet-InsSeg, SGPN, GSPN,
WCSeg and Ours, respectively. The number 1, 2 and 3 refer to the three levels of segmentation
defined in PartNet. We put short lines for the levels that are not defined. SAvg. is average among
seen categories over shape numbers, while NAvg. is average among novel categories over shape
numbers.

• On-Policy Training The on-policy training will sample training data that matches the infer-
ence process without the requirement of carefully designing the sampling strategy. Without
it, our networks suffer from slightly decrease in performance as shown in Table 4, the ”off-
policy” row.
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Figure 4: Learning-based sub-part proposal module.

Test Category
models Chair Bed Faucet

no rectification 34.4 7.8 17.9
off-policy 35.3 8.5 20
full-model 36.6 9 21.2

Table 4: Ablation study
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