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ABSTRACT

We derive an unbiased estimator for expectations over discrete random variables
based on sampling without replacement, which reduces variance as it avoids
duplicate samples. We show that our estimator can be derived as the Rao-
Blackwellization of three different estimators. Combining our estimator with RE-
INFORCE, we obtain a policy gradient estimator and we reduce its variance using
a built-in control variate which is obtained without additional model evaluations.
The resulting estimator is closely related to other gradient estimators. Experiments
with a toy problem, a categorical Variational Auto-Encoder and a structured pre-
diction problem show that our estimator is the only estimator that is consistently
among the best estimators in both high and low entropy settings.

1 INTRODUCTION

Put replacement in your basement! We derive the unordered set estimator: an unbiased (gradient)
estimator for expectations over discrete random variables based on (unordered sets of) samples with-
out replacement. In particular, we consider the problem of estimating the expectation of f(x) where
x has a categorical distribution p over the domain D, i.e.

Ex∼p(x)[f(x)] =
∑
x∈D

p(x)f(x). (1)

This problem is relevant for reinforcement learning, discrete latent variable modelling (e.g. for com-
pression), structured prediction (e.g. for translation), hard attention and many other tasks that use
models with discrete operations in their computational graphs (see e.g. Jang et al. (2016)). If f is
deterministic, then sampling without replacement reduces variance by avoiding duplicate samples.

Related work. Many algorithms for estimating gradients for discrete distributions have been pro-
posed. A general and widely used estimator is REINFORCE (Williams, 1992). Biased gradients
based on a continuous relaxations of the discrete distribution (known as Gumbel-Softmax or Con-
crete) were jointly introduced by Jang et al. (2016) and Maddison et al. (2016). These can be com-
bined with the straight through estimator (Bengio et al., 2013) if the model requires discrete samples
or be used to construct control variates for REINFORCE, as in REBAR (Tucker et al., 2017) or
RELAX (Grathwohl et al., 2018). Many other methods use control variates and other techniques
to reduce the variance of REINFORCE (Paisley et al., 2012; Ranganath et al., 2014; Gregor et al.,
2014; Mnih & Gregor, 2014; Gu et al., 2016; Mnih & Rezende, 2016).

Some works rely on explicit summation of the expectation, either for the marginal distribution (Tit-
sias & Lázaro-Gredilla, 2015) or globally summing some categories while sampling from the re-
mainder (Liang et al., 2018; Liu et al., 2019). Other approaches use a finite difference approxima-
tion to the gradient (Lorberbom et al., 2018; 2019). Yin et al. (2019) introduced ARSM, which uses
multiple model evaluations where the number adapts automatically to the uncertainty.

In the structured prediction setting, there are many algorithms for optimizing a quantity under a
sequence of discrete decisions, using (weak) supervision, multiple samples (or deterministic model
evaluations), or a combination both (Ranzato et al., 2016; Shen et al., 2016; He et al., 2016; Norouzi
et al., 2016; Bahdanau et al., 2017; Edunov et al., 2018; Leblond et al., 2018; Negrinho et al., 2018).
Most of these algorithms are biased and rely on pretraining using maximum likelihood or gradually
transitioning from supervised to reinforcement learning. Using Gumbel-Softmax based approaches
in a sequential setting is difficult as the bias accumulates because of mixing errors (Gu et al., 2018).
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2 PRELIMINARIES

Throughout this paper, we will denote with Bk an ordered sample without replacement of size k
and with Sk an unordered sample (of size k) from the categorical distribution p.

Restricted distribution. When sampling without replacement, we remove the set C ⊂ D already
sampled from the domain and we denote with pD\C the distribution restricted to the domain D \C:

pD\C(x) =
p(x)

1−
∑
c∈C p(c)

, x ∈ D \ C. (2)

Ordered sample without replacement Bk. Let Bk = (b1, ..., bk), bi ∈ D be an ordered sample
without replacement, which is generated from the distribution p as follows: first, sample b1 ∼ p,
then sample b2 ∼ pD\{b1}, b3 ∼ pD\{b1,b2}, etc. i.e. elements are sampled one by one without
replacement. Using this procedure, Bk can be seen as a (partial) ranking according to the Plackett-
Luce model (Plackett, 1975; Luce, 1959) and the probability of obtaining the vector Bk is

p(Bk) =

k∏
i=1

pD\B
i−1

(bi) =

k∏
i=1

p(bi)

1−
∑
j<i

p(bj)
. (3)

We can also restrict Bk to the domain D \ C, which means that bi 6∈ C for i = 1, ..., k:

pD\C(Bk) =

k∏
i=1

pD\C(bi)

1−
∑
j<i

pD\C(bj)
=

k∏
i=1

p(bi)

1−
∑
c∈C

p(c)−
∑
j<i

p(bj)
. (4)

Unordered sample without replacement. Let Sk ⊆ D be an unordered sample without replace-
ment from the distribution p, which can be generated simply by generating an ordered sample and
discarding the order. We denote elements in the sample with s ∈ Sk (so without index) and we write
B(Sk) as the set of all k! permutations (orderings)Bk that correspond to (could have generated) Sk.
It follows that the probability for sampling Sk is given by:

p(Sk) =
∑

Bk∈B(Sk)

p(Bk) =
∑

Bk∈B(Sk)

k∏
i=1

p(bi)

1−
∑
j<i

p(bj)
=

∏
s∈Sk

p(s)

 · ∑
Bk∈B(Sk)

k∏
i=1

1

1−
∑
j<i

p(bj)
.

(5)
The last step follows since Bk ∈ B(Sk) is an ordering of Sk, such that

∏k
i=1 p(bi) =

∏
s∈S p(s).

Naive computation of p(Sk) is O(k!), but in Appendix B we show how to compute it efficiently.

When sampling from the distribution restricted to D \ C, we sample Sk ⊆ D \ C with probability:

pD\C(Sk) =

∏
s∈Sk

p(s)

 · ∑
Bk∈B(Sk)

k∏
i=1

1

1−
∑
c∈C

p(c)−
∑
j<i

p(bj)
. (6)

The Gumbel-Top-k trick. As an alternative to sequential sampling, we can also sample Bk and
Sk by taking the top k of Gumbel variables (Yellott, 1977; Vieira, 2014; Kim et al., 2016). Following
notation from Kool et al. (2019b), we define the perturbed log-probability gφi = φi + gi, where
φi = log p(i) and gi ∼ Gumbel(0). Then let b1 = argmaxi∈D gφi , b2 = argmaxi∈D\{b1} gφi , etc.,
soBk is the top k of the perturbed log-probabilities in decreasing order. The probability of obtaining
Bk using this procedure is given by equation 3, so this provides an alternative sampling method
which is effectively a (non-differentiable) reparameterization of sampling without replacement. For
a differentiable reparameterization, see Grover et al. (2019).

It follows that taking the top k perturbed log-probabilities without order, we obtain the unordered
sample set Sk. This way of sampling underlies the efficient computation of p(Sk) in Appendix B.
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3 METHODOLOGY

In this section, we derive the unordered set policy gradient estimator: a low-variance, unbiased
estimator of ∇θEpθ(x)[f(x)] based on an unordered sample without replacement Sk. First, we
derive the generic (non-gradient) estimator for E[f(x)] as the Rao-Blackwellized version of a single
sample Monte Carlo estimator (and two other estimators!). Then we combine this estimator with
REINFORCE (Williams, 1992) and we show how to reduce its variance using a built-in baseline.

3.1 RAO-BLACKWELLIZATION OF THE SINGLE SAMPLE ESTIMATOR

A very crude but simple estimator for E[f(x)] based on the ordered sample Bk is to only use the
first element b1, which by definition is a sample from the distribution p. We define this estimator as
the single sample estimator, which is unbiased, since

EBk∼p(Bk)[f(b1)] = Eb1∼p(b1)[f(b1)] = Ex∼p(x)[f(x)]. (7)

Discarding all but one sample, the single sample estimator is inefficient, but we can use Rao-
Blackwellization (Casella & Robert, 1996) to signficantly improve it. To this end, we consider the
distribution Bk|Sk, which is, knowing the unordered sample Sk, the conditional distribution over
ordered samples Bk ∈ B(Sk) that could have generated Sk.1 Using Bk|Sk, we rewrite E[f(b1)] as
EBk∼p(Bk)[f(b1)] = ESk∼p(Sk)

[
EBk∼p(Bk|Sk) [f(b1)]

]
= ESk∼p(Sk)

[
Eb1∼p(b1|Sk) [f(b1)]

]
.

The Rao-Blackwellized version of the single sample estimator computes the inner conditional ex-
pectation exactly. Since Bk is an ordering of Sk, we have b1 ∈ Sk and we can compute this as

Eb1∼p(b1|Sk) [f(b1)] =
∑
s∈Sk

P (b1 = s|Sk)f(s) (8)

where, in a slight abuse of notation, P (b1 = s|Sk) is the probability that the first sampled element
b1 takes the value s, given that the complete set of k samples is Sk. Using Bayes’ Theorem we find

P (b1 = s|Sk) = p(Sk|b1 = s)P (b1 = s)

p(Sk)
=
pD\{s}(Sk \ {s})p(s)

p(Sk)
. (9)

The step p(Sk|b1 = s) = pD\{s}(Sk \ {s}) comes from analyzing sequential sampling without
replacement: given that the first element sampled is s, the remaining elements have a distribution
restricted toD\{s}, so sampling Sk (including s) given the first element s is equivalent to sampling
the remainder Sk \{s} from the restricted distribution, which has probability pD\{s}(Sk \{s}) (see
equation 6).

The unordered set estimator. For notational convenience, we introduce the leave-one-out ratio.

Definition 1. The leave-one-out ratio of s w.r.t. the set S is given by R(Sk, s) = pD\{s}(Sk\{s})
p(Sk)

.

Rewriting equation 9 as P (b1 = s|Sk) = p(s)R(Sk, s) shows that the probability of sampling s
first, given Sk, is simply the unconditional probability multiplied by the leave-one-out ratio. We now
define the unordered set estimator as the Rao-Blackwellized version of the single-sample estimator.
Theorem 1. The unordered set estimator, given by

eUS(Sk) =
∑
s∈Sk

p(s)R(Sk, s)f(s) (10)

is the Rao-Blackwellized version of the (unbiased!) single sample estimator.

Proof. Using P (b1 = s|Sk) = p(s)R(Sk, s) in equation 8 we have

Eb1∼p(b1|Sk) [f(b1)] =
∑
s∈Sk

P (b1 = s|Sk)f(s) =
∑
s∈Sk

p(s)R(Sk, s)f(s). (11)

As a result of Theorem 1, the unordered set estimator is unbiased and has variance equal or lower
than the single sample estimator by the Rao-Blackwell Theorem (Lehmann & Scheffé, 1950).

1Note that Bk|Sk is not a Plackett-Luce distribution restricted to Sk!
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3.2 RAO-BLACKWELLIZATION OF OTHER ESTIMATORS

The unordered set estimator is also the result of Rao-Blackwellizing two other unbiased estimators:
the stochastic sum-and-sample estimator and the importance-weighted estimator.

The sum-and-sample estimator. We define as sum-and-sample estimator any estimator that relies
on the identity that for any C ⊂ D

Ex∼p(x)[f(x)] = Ex∼pD\C(x)

[∑
c∈C

p(c)f(c) +

(
1−

∑
c∈C

p(c)

)
f(x)

]
. (12)

For the derivation, see Appendix C.1 or Liang et al. (2018); Liu et al. (2019). In general, a sum-and-
sample estimator sums expectation terms for a number of categories explicitly (for example selected
by their value f (Liang et al., 2018) or probability p (Liu et al., 2019)), and uses a (down-weighted)
sample from D \ C to estimate the remaining terms. As equation 12 holds for any C, we choose
C = Bk−1 stochastically to define the stochastic sum-and-sample estimator:

eSSAS(Bk) =

k−1∑
j=1

p(bj)f(bj) +

1−
k−1∑
j=1

p(bj)

 f(bk). (13)

Sampling without replacement, it holds that bk|Bk−1 ∼ pD\B
k−1

, so the unbiasedness follows from
equation 12 by separating the expectation over Bk into expectations over Bk−1 and bk|Bk−1:

EBk−1∼p(Bk−1)

[
Ebk∼p(bk|Bk−1)

[
eSSAS(Bk)

]]
= EBk−1∼p(Bk−1) [E[f(x)]] = E[f(x)].

In general, a sum-and-sample estimator reduces variance if the probability mass is concentrated on
the summed categories. As typically high probability categories are sampled first, the stochastic
sum-and-sample estimator sums high probability categories, similar to the estimator by Liu et al.
(2019) which we refer to as the deterministic sum-and-sample estimator. As we show in Appendix
C.2, Rao-Blackwellizing the stochastic sum-and-sample estimator also results in the unordered set
estimator. This means that the unordered set estimator has equal or lower variance.

The importance-weighted estimator. The importance-weighted estimator (Vieira, 2017) is

eIW(Sk, κ) =
∑
s∈Sk

p(s)

q(s, κ)
f(s). (14)

This estimator does not use the order of the sample, but assumes sampling using the Gumbel-Top-k
trick and requires access to κ, the (k + 1)-th largest perturbed log-probability, which can be seen
as the ‘threshold’ since gφs > κ ∀s ∈ Sk. q(s, a) = P (gφs > a) can be interpreted as the
inclusion probability of s ∈ Sk (assuming a fixed threshold a instead of a fixed sample size k). For
details and a proof of unbiasedness, see Vieira (2017) or Kool et al. (2019b). As the estimator has
high variance, Kool et al. (2019b) resort to normalizing the importance weights, resulting in biased
estimates. Instead, we use Rao-Blackwellization to eliminate stochasticity by κ. Again, the result is
the unordered set estimator (see Appendix D.1), which thus has equal or lower variance.

3.3 THE UNORDERED SET POLICY GRADIENT ESTIMATOR

Writing pθ to indicate the dependency on the model parameters θ, we can combine the unordered set
estimator with REINFORCE (Williams, 1992) to obtain the unordered set policy gradient estimator.
Corollary 1. The unordered set policy gradient estimator, given by

eUSPG(Sk) =
∑
s∈Sk

pθ(s)R(S
k, s)∇θ log pθ(s)f(s) =

∑
s∈Sk

∇θpθ(s)R(S
k, s)f(s), (15)

is an unbiased estimate of the policy gradient.

Proof. Using REINFORCE (Williams, 1992) combined with the unordered set estimator we find:

∇θEpθ(x)[f(x)]=Epθ(x)[∇θ log pθ(x)f(x)]=ESk∼pθ(Sk)

∑
s∈Sk

pθ(s)R(S
k, s)∇θ log pθ(s)f(s)

.
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Variance reduction using a built-in control variate. The variance of REINFORCE can be re-
duced by subtracting a baseline from f . When taking multiple samples (with replacement), a simple
and effective baseline is to take the mean of other (independent!) samples (Mnih & Rezende, 2016).
Sampling without replacement, we can use the same idea to construct a baseline based on the other
samples, but we have to correct for the fact that the samples are not independent.
Theorem 2. The unordered set policy gradient estimator with baseline, given by

eUSPGBL(Sk) =
∑
s∈Sk

∇θpθ(s)R(S
k, s)

f(s)− ∑
s′∈Sk

pθ(s
′)RD\{s}(Sk, s′)f(s′)

 , (16)

where

RD\{s}(Sk, s′) =
p
D\{s,s′}
θ (Sk \ {s, s′})
p
D\{s}
θ (Sk \ {s})

(17)

is the second order leave-one-out ratio, is an unbiased estimate of the policy gradient.

Proof. See Appendix E.1.

Including the pathwise derivative. So far, we have only considered the scenario where f does
not depend on θ. If f does depend on θ, for example in a VAE (Kingma & Welling, 2014; Rezende
et al., 2014), then we use the notation fθ and we can write the gradient (Schulman et al., 2015) as

∇θEx∼pθ [fθ(x)] = Ex∼pθ [∇θ log pθ(x)fθ(x) +∇θfθ(x)]. (18)

The additional second (‘pathwise’) term can be estimated (using the same samples) with the standard
unordered set estimator. This results in the full unordered set policy gradient estimator:

eFUSPG(Sk) =
∑
s∈Sk

∇θpθ(s)R(S
k, s)fθ(s) +

∑
s∈Sk

pθ(s)R(S
k, s)∇θfθ(s)

=
∑
s∈Sk

R(Sk, s)∇θ (pθ(s)fθ(s)) (19)

Equation 19 is straightforward to implement using an automatic differentiation library. We can also
include the baseline (as in equation 16) but we must make sure to call STOP GRADIENT (DETACH in
PyTorch) on the baseline (but not on fθ(s)!). Importantly, we should never track gradients through
the leave-one-out ratioR(Sk, s) which means it can be efficiently computed in pure inference mode.

Scope & limitations. We can use the unordered set estimator for any discrete distribution from
which we can sample without replacement, by treating it as a univariate categorical distribution
over its domain. This includes sequence models, from which we can sample using Stochastic Beam
Search (Kool et al., 2019b), as well as multivariate categorical distributions which can also be treated
as sequence models (see Section 4.2). In the presence of continuous variables or a stochastic function
f , we may separate this stochasticity from the stochasticity over the discrete distribution, as in
Lorberbom et al. (2019). The computation of the leave-one-out ratios adds some overhead, although
they can be computed efficiently, even for large k (see Appendix B). For a moderately sized model,
the costs of model evaluation and backpropagation dominate the cost of computing the estimator.

3.4 RELATION TO OTHER MULTI-SAMPLE ESTIMATORS

Relation to the empirical risk estimator. The empirical risk loss (Edunov et al., 2018) estimates
the expectation in equation 1 by summing only a subset S of the domain, using normalized proba-
bilities p̂θ(s) =

pθ(s)∑
s′∈S pθ(s)

. Using this loss, the (biased) estimate of the gradient is given by

eRISK(Sk) =
∑
s∈Sk

∇θ

(
pθ(s)∑

s′∈Sk pθ(s
′)

)
f(s). (20)

The risk estimator is similar to the unordered set policy gradient estimator, with two important
differences: 1) the individual terms are normalized by the total probability mass rather than the
leave-one-out ratio and 2) the gradient is computed through the normalization factor.
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Theorem 3. By taking the gradient w.r.t. the normalization factor into account, the risk estimator
has a built-in baseline, which means it can be written as

eRISK(Sk) =
∑
s∈Sk

∇θpθ(s)
1∑

s′′∈Sk pθ(s
′′)

f(s)− ∑
s′∈Sk

pθ(s
′)

1∑
s′′∈Sk pθ(s

′′)
f(s′)

 . (21)

Proof. See Appendix F.1

This theorem highlights the similarity between the biased risk estimator and our unbiased estimator
(equation 16), and suggests that their only difference is the weighting of terms. Unfortunately, the
implementation by Edunov et al. (2018) has more sources of bias (e.g. length normalization), which
are not compatible with our estimator. However, we believe that our analysis helps analyze the bias
of the risk estimator and is a step towards developing unbiased estimators for structured prediction.

Relation to VIMCO. VIMCO (Mnih & Rezende, 2016) is an unbiased estimator that uses multi-
ple samples with replacement and has a built-in baseline based on the other k−1 samples. Denoting
the samples (with replacement) with Xk = (x1, ..., xk), VIMCO computes the gradient estimate as:

eVIMCO(Xk) =
1

k

k∑
i=1

∇θ log pθ(xi)

f(xi)− 1

k − 1

∑
j 6=i

f(xj)

 . (22)

We think of our estimator as the without-replacement version of VIMCO, which weights terms by
pθ(s)R(S

k, s) instead of 1
k . This puts more weight on higher probability elements to compensate

sampling without replacement. If probabilities are small and (close to) uniform, there are (almost) no
duplicate samples and the weights will be close to 1

k , so the gradient estimate is similar to VIMCO.

Relation to ARSM. The ARSM (Yin et al., 2019) estimator also uses multiple evaluations of
pθ and f . It determines a number of ‘pseudo-samples’, from which duplicates should be removed
for efficient implementation. This can be seen as similar to sampling without replacement, and the
estimator also has a built-in control variate. Compared to ARSM, our estimator allows direct control
over the computational cost (through the sample size k) and has wider applicability, for example it
also applies to multivariate categorical variables with different numbers of categories per dimension.

4 EXPERIMENTS

4.1 BERNOULLI TOY EXPERIMENT

We use the code by Liu et al. (2019) to reproduce their Bernoulli toy experiment. Given a vector p =

(0.6, 0.51, 0.48) the goal is to minimize the loss L(η) = Ex1,x2,x3∼Bern(σ(η))

[∑3
i=1(xi − pi)2

]
.

Here x1, x2, x3 are i.i.d. from the Bernoulli(σ(η)) distribution, parameterized by a scalar η ∈ R,
where σ(η) = (1+exp(−η))−1 is the sigmoid function. We compare different estimators, with and
without baseline (either ‘built-in’ or using additional samples, referred to as REINFORCE+ in Liu
et al. (2019)). We report the (log-)variance of the scalar gradient ∂L∂η as a function of the number of
model evaluations, which is twice as high when using a sampled baseline (for each term).
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Figure 1: Gradient log variance as a function of the number of model evaluations (including baseline
evaluations). Note that for some estimators, the variance is 0 (log variance −∞) for k = 8.
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As can be seen in Figure 1, the unordered set estimator is the only estimator that has consistently
the lowest (or comparable) variance in both the high (η = 0) and low entropy (η = −4) regimes and
for different number of samples/model evaluations. This suggests that it combines the advantages
of the other estimators. We also ran the actual optimization experiment, where with as few as k = 3
samples the trajectory was indistinguishable from using the exact gradient (see Liu et al. (2019)).

4.2 CATEGORICAL VARIATIONAL AUTO-ENCODER

We use the code2 from Yin et al. (2019) to train a categorical Variational Auto-Encoder (VAE) with
20 dimensional latent space, with 10 categories per dimension. To use our estimator, we consider the
latent distribution as a single factorized distribution with 1020 categories from which we can sample
without replacement using Stochastic Beam Search (Kool et al., 2019b), sequentially sampling each
dimension as if it where a sequence model. We also perform experiments with 102 latent space,
which provides a lower entropy setting, to highlight the advantage of our estimator.

Measuring the variance. The most direct way to compare unbiased gradient estimators is to com-
pare their variance. We measure the variance of different estimators with k = 4 samples during
training with VIMCO (Mnih & Rezende, 2016), such that all estimators are computed for the same
model parameters. In Figure 2 we see that the unordered set estimator has the lowest variance in
both the small domain (low entropy) and large domain (high entropy) setting, being on-par with the
best of the (stochastic3) sum-and-sample estimator and VIMCO. This confirms the toy experiment
in a real scenario, suggesting that the unordered set estimator provides the best of both estimators.

ELBO optimization. We made changes in the code which caused our results to differ from Yin
et al. (2019) (see Appendix G.1). Additionally we compare against VIMCO and the stochastic sum-
and-sample estimator. In Figure 3 we observe that our estimator performs on par with VIMCO and
outperforms other estimators. There are a lot of other factors, e.g. exploration that may explain why
we do not get a strictly better result despite the lower variance. The low -ELBO scores are the result
of overfitting and binarization by a fixed threshold. In Appendix G.2 we report validation curves
and results using the standard binarized MNIST dataset from Salakhutdinov & Murray (2008).

4.3 STRUCTURED PREDICTION FOR THE TRAVELLING SALESMAN PROBLEM

To show the wide applicability of our estimator, we consider the structured prediction task of pre-
dicting routes (sequences) for the Travelling Salesman Problem (TSP) (Vinyals et al., 2015; Bello
et al., 2016; Kool et al., 2019a). We use the code by Kool et al. (2019a)4 to reproduce their TSP
experiment with 20 nodes. We implement VIMCO (sampling with replacement) as well as the

2https://github.com/ARM-gradient/ARSM/tree/master/vae
3We cannot use the deterministic version by Liu et al. (2019) since we cannot select the top k categories.
4https://github.com/wouterkool/attention-learn-to-route
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Figure 2: Gradient log variance of different unbiased estimators with k = 4 samples, estimated
every 100 (out of 1000) epochs while training using VIMCO. Each estimator is computed 1000
times with different latent samples for a fixed minibatch (the first 100 records of training data). We
report (the logarithm of) the sum of the variances per parameter (trace of the covariance matrix).
Some lines coincide, so we sort the legend by the last measurement and report its value.
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Figure 3: Smoothed training curves (-ELBO) of two independent runs when training with different
estimators with k = 1, 4 or 8 (thicker lines) samples (ARSM has a variable number). Some lines
coincide, so we sort the legend by the lowest -ELBO achieved and report this value.
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(b) Performance vs. number of instances

Figure 4: TSP validation set optimality gap measured during training. Raw results are light,
smoothed results are darker (2 random seeds per setting). We compare our estimator against
VIMCO, the sum-and-sample estimator and the (biased!) risk estimator with k = 4 samples and
against single-sample REINFORCE, with batch-average or greedy rollout baseline.

stochastic sum-and-sample estimator and our estimator, using Stochastic Beam Search (Kool et al.,
2019b) for sampling. Additionally, we compare against REINFORCE with greedy rollout baseline
(Rennie et al., 2017) used by Kool et al. (2019b) and a batch-average baseline. For reference, we also
include the biased risk estimator, either ‘sampling’ using stochastic or deterministic beam search (as
in Edunov et al. (2018)). In Figure 4a, we compare training progress (measured on the validation
set) as a function of the number of training steps, where we divide the batch size by k to keep the
total number of samples equal. Our estimator outperforms VIMCO, the stochastic sum-and-sample
estimator and the strong greedy rollout baseline (which uses additional baseline model evaluations)
and performs on-par with the biased risk estimator. In Figure 4b, we plot the same results against the
number of instances, which shows that, compared to the single sample estimators, we can train with
less data and less computational cost (as we only need to run the encoder once for each instance).

5 DISCUSSION

We introduced the unordered set estimator, a low-variance, unbiased (gradient) estimator based on
sampling without replacement. Our estimator is the result of Rao-Blackwellizing three existing
estimators, which guarantees equal or lower variance, and is closely related to a number of other
estimators. It has wide applicability, is parameter free (except for the sample size k) and has com-
petitive performance to the best of alternatives in both high and low entropy regimes.

In our experiments, we found that VIMCO (Mnih & Rezende, 2016), closely related to our estimator,
is a simple yet strong baseline which has performance similar to our estimator in the high entropy
setting. We want to stress that many recent works on gradient estimators for discrete distributions
have omitted this strong baseline, which may be often preferred given its simplicity. In future work,
we want to investigate if we can apply our estimator to estimate gradients ‘locally’ (Titsias & Lázaro-
Gredilla, 2015), as locally we have a smaller domain and expect more duplicate samples.
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A NOTATION

Throughout this appendix we will use the following notation from Maddison et al. (2014):

eφ(g) = exp(−g + φ)

Fφ(g) = exp(− exp(−g + φ))

fφ(g) = eφ(g)Fφ(g).

This means that Fφ(g) is the CDF and fφ(g) the PDF of the Gumbel(φ) distribution. Additionally
we will use the identities by Maddison et al. (2014):

Fφ(g)Fγ(g) = Flog(exp(φ)+exp(γ))(g) (23)∫ b

g=a

eγ(g)Fφ(g)∂g = (Fφ(b)− Fφ(a))
exp(γ)

exp(φ)
. (24)

Also, we will use the following notation, definitions and identities (see Kool et al. (2019b)):

φi = log p(i) (25)

φS = log
∑
i∈S

p(i) = log
∑
i∈S

expφi (26)

φD\S = log
∑
i∈D\S

p(i) = log

(
1−

∑
i∈S

p(i)

)
= log(1− exp(φS)) (27)

Gφi ∼ Gumbel(φi) (28)
GφS = max

i∈S
Gφi ∼ Gumbel(φS) (29)

For a proof of equation 29, see Maddison et al. (2014).

B COMPUTATION OF p(Sk), pD\C(S \ C) AND R(Sk, s)

We can sample the set Sk from the Plackett-Luce distribution using the Gumbel-Top-k trick by
drawing Gumbel variables Gφi ∼ Gumbel(φi) for each element and returning the indices of the k
largest Gumbels. If we ignore the ordering, this means we will obtain the set Sk if mini∈Sk Gφi >
maxi∈D\Sk Gφi . Omitting the superscript k for clarity, we can use the Gumbel-Max trick, i.e. that
GφD\S = maxi 6∈S Gφi ∼ Gumbel(φD\S) (equation 29) and marginalize over GφD\S :

p(S) = P (min
i∈S

Gφi > GφD\S )

= P (Gφi > GφD\S , i ∈ S)

=

∫ ∞
gφD\S=−∞

fφD\S (gφD\S )P (Gφi > gφD\S , i ∈ S)∂gφD\S

=

∫ ∞
gφD\S=−∞

fφD\S (gφD\S )
∏
i∈S

(
1− Fφi(gφD\S )

)
∂gφD\S (30)

=

∫ 1

u=0

∏
i∈S

(
1− Fφi

(
F−1φD\S

(u)
))

∂u (31)

Here we have used a change of variables u = FφD\S (gφD\S ). This expression can be efficiently
numerically integrated (although another change of variables may be required for numerical stability
depending on the values of φ).

Exact computation in O(2k). The integral in equation 30 can be computed exactly using the
identity ∏

i∈S
(ai − bi) =

∑
C⊆S

(−1)|C|
∏
i∈C

bi
∏

i∈S\C

ai

12
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which gives

p(S) =

∫ ∞
gφD\S=−∞

fφD\S (gφD\S )
∏
i∈S

(
1− Fφi(gφD\S )

)
∂gφD\S

=
∑
C⊆S

(−1)|C|
∫ ∞
gφD\S=−∞

fφD\S (gφD\S )
∏
i∈C

Fφi(gφD\S )
∏

i∈S\C

1∂gφD\S

=
∑
C⊆S

(−1)|C|
∫ ∞
gφD\S=−∞

eφD\S (gφD\S )FφD\S (gφD\S )FφC (gφD\S )∂gφD\S

=
∑
C⊆S

(−1)|C|
∫ ∞
gφD\S=−∞

eφD\S (gφD\S )Fφ(D\S)∪C (gφD\S )∂gφD\S

=
∑
C⊆S

(−1)|C|(1− 0)
exp(φD\S)

exp(φ(D\S)∪C)

=
∑
C⊆S

(−1)|C|
1−

∑
i∈S p(i)

1−
∑
i∈S\C p(i)

. (32)

Computation of pD\C(S \ C). When using the Gumbel-Top-k trick over the restricted domain
D \ C, we do not need to renormalize the log-probabilities φs, s ∈ D \ C since the Gumbel-Top-k
trick applies to unnormalized log-probabilities. Also, assuming C ⊆ Sk, it holds that (D \C)\ (S \
C) = D \ S. This means that we can compute pD\C(S \ C) similar to equation 30:

pD\C(S \ C) = P ( min
i∈S\C

Gφi > Gφ(D\C)\(S\C)
)

= P ( min
i∈S\C

Gφi > GφD\S )

=

∫ ∞
gφD\S=−∞

fφD\S (gφD\S )
∏

i∈S\C

(
1− Fφi(gφD\S )

)
∂gφD\S . (33)

Computation of R(Sk, s). Note that, using equation 9, it holds that∑
s∈Sk

pD\{s}(Sk \ {s})p(s)
p(Sk)

=
∑
s∈Sk

P (b1 = s|Sk) = 1

from which it follows that
p(Sk) =

∑
s∈Sk

pD\{s}(Sk \ {s})p(s)

such that

R(Sk, s) =
pD\{s}(Sk \ {s})

p(Sk)
=

pD\{s}(Sk \ {s})∑
s′∈Sk p

D\{s′}(Sk \ {s′})p(s′)
. (34)

This means that, to compute the leave-one-out ratio for all s ∈ Sk, we only need to compute
pD\{s}(Sk \{s}) for s ∈ Sk. When using the numerical integration or summation inO(2k), we can
reuse computation, whereas using the naive method, the cost is O(k · (k−1)!) = O(k!), making the
total computational cost comparable to computing just p(Sk), and the same holds when computing
the ‘second-order’ leave one out ratios for the built-in baseline (equation 16).

13
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C THE SUM-AND-SAMPLE ESTIMATOR

C.1 UNBIASEDNESS OF THE SUM-AND-SAMPLE ESTIMATOR

We show that the sum-and-sample estimator is unbiased for any set C ⊂ D (see also Liang et al.
(2018); Liu et al. (2019)):

Ex∼pD\C(x)

[∑
c∈C

p(c)f(c) +

(
1−

∑
x∈C

p(c)

)
f(x)

]

=
∑
c∈C

p(c)f(c) +

(
1−

∑
c∈C

p(c)

)
Ex∼pD\C(x)[f(x)]

=
∑
c∈C

p(c)f(c) +

(
1−

∑
c∈C

p(c)

) ∑
x∈D\C

p(x)

1−
∑
c∈C p(c)

f(x)

=
∑
c∈C

p(c)f(c) +
∑

x∈D\C

p(x)f(x)

=
∑
x∈D

p(x)f(x)

= Ex∼p(x)[f(x)]

C.2 RAO-BLACKWELLIZATION OF THE STOCHASTIC SUM-AND-SAMPLE ESTIMATOR

In this section we give the proof that Rao-Blackwellizing the stochastic sum-and-sample estimator
results in the unordered set estimator.

Theorem 4. Rao-Blackwellizing the stochastic sum-and-sample estimator results in the unordered
set estimator, i.e.

EBk∼p(Bk|Sk)

k−1∑
j=1

p(bj)f(bj) +

1−
k−1∑
j=1

p(bj)

 f(bk)

 =
∑
s∈Sk

p(s)R(Sk, s)f(s). (35)

Proof. To give the proof, we first prove three Lemmas.

Lemma 1.

P (bk = s|Sk) = p(Sk \ {s})
p(Sk)

p(s)

1−
∑
s′∈Sk\{s} p(s

′)
(36)

Proof. Similar to the derivation of P (b1 = s|Sk) (equation 9 in the main paper), we can write:

P (bk = s|Sk) = P (Sk ∩ bk = s)

p(Sk)

=
p(Sk \ {s})pD\(Sk\{s})(s)

p(Sk)

=
p(Sk \ {s})
p(Sk)

p(s)

1−
∑
s′∈Sk\{s} p(s

′)
.

The step from the first to the second row comes from analyzing the event Sk∩bk = s using sequential
sampling: to sample Sk (including s) with s being the k-th element means that we should first sample
Sk \ {s} (in any order), and then sample s from the distribution restricted to D \ (Sk \ {s}).

Lemma 2.

p(S) + p(S \ {s})
1−

∑
s′∈S p(s

′)

1−
∑
s′∈S\{s} p(s

′)
= pD\{s}(S \ {s}) (37)
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Dividing equation 32 by 1−
∑
s′∈S p(s

′) on both sides, we obtain

Proof.

p(S)

1−
∑
s′∈S p(s

′)

=
∑
C⊆S

(−1)|C| 1

1−
∑
s′∈S\C p(s

′)

=
∑

C⊆S\{s}

(
(−1)|C| 1

1−
∑
s′∈S\C p(s

′)
+ (−1)|C∪{s}| 1

1−
∑
s′∈S\(C∪{s}) p(s

′)

)

=
∑

C⊆S\{s}

(−1)|C| 1

1−
∑
s′∈S\C p(s

′)
+

∑
C⊆S\{s}

(−1)|C∪{s}| 1

1−
∑
s′∈S\(C∪{s}) p(s

′)

=
∑

C⊆S\{s}

(−1)|C| 1

1− p(s)−
∑
s′∈(S\{s})\C p(s

′)
−

∑
C⊆S\{s}

(−1)|C| 1

1−
∑
s′∈(S\{s})\C p(s

′)

=
1

1− p(s)
∑

C⊆S\{s}

(−1)|C| 1

1−
∑
s′∈(S\{s})\C

p(s′)
1−p(s)

− p(S \ {s})
1−

∑
s′∈S\{s} p(s

′)

=
1

1− p(s)
pD\{s}(S \ {s})

1−
∑
s′∈S\{s}

p(s′)
1−p(s)

− p(S \ {s})
1−

∑
s′∈S\{s} p(s

′)

=
pD\{s}(S \ {s})

1− p(s)−
∑
s′∈S\{s} p(s

′)
− p(S \ {s})

1−
∑
s′∈S\{s} p(s

′)

=
pD\{s}(S \ {s})
1−

∑
s′∈S p(s

′)
− p(S \ {s})

1−
∑
s′∈S\{s} p(s

′)
.

Multiplying by 1−
∑
s′∈S p(s

′) and rearranging terms proves Lemma 2.

Lemma 3.

p(s) +

1−
∑
s′∈Sk

p(s′)

P (bk = s|Sk) = p(s)R(Sk, s) (38)

Proof. First using Lemma 1 and then Lemma 2 we find

p(s) +

1−
∑
s′∈Sk

p(s′)

P (bk = s|Sk)

=p(s) +

1−
∑
s′∈Sk

p(s′)

 p(Sk \ {s})
p(Sk)

p(s)

1−
∑
s′∈Sk\{s} p(s

′)

=
p(s)

p(Sk)

(
p(Sk) +

1−
∑
s′∈Sk p(s

′)

1−
∑
s′∈Sk\{s} p(s

′)
p(Sk \ {s})

)

=
p(s)

p(Sk)
pD\{s}(Sk \ {s})

=p(s)R(Sk, s).
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Now we can complete the proof of Theorem 4 by adding p(bk)f(bk) − p(bk)f(bk) = 0 to the
estimator, moving the terms independent of Bk outside the expectation and using Lemma 3:

EBk∼p(Bk|Sk)

k−1∑
j=1

p(bj)f(bj) +

1−
k−1∑
j=1

p(bj)

 f(bk)


=EBk∼p(Bk|Sk)

 k∑
j=1

p(bj)f(bj) +

1−
k∑
j=1

p(bj)

 f(bk)


=
∑
s∈Sk

p(s)f(s) + EBk∼p(Bk|Sk)

1−
∑
s′∈Sk

p(s′)

 f(bk)


=
∑
s∈Sk

p(s)f(s) +
∑
s∈Sk

1−
∑
s′∈Sk

p(s′)

P (bk = s|Sk)f(s)

=
∑
s∈Sk

p(s) +
1−

∑
s′∈Sk

p(s′)

P (bk = s|Sk)

 f(s)

=
∑
s∈Sk

p(s)R(Sk, s)f(s).

D THE IMPORTANCE-WEIGHTED ESTIMATOR

D.1 RAO-BLACKWELLIZATION OF THE IMPORTANCE-WEIGHTED ESTIMATOR

In this section we give the proof that Rao-Blackwellizing the importance-weighted estimator results
in the unordered set estimator.

Theorem 5. Rao-Blackwellizing the importance-weighted estimator results in the unordered set
estimator, i.e.:

Eκ∼p(κ|Sk)

∑
s∈Sk

p(s)

1− Fφs(κ)
f(s)

 =
∑
s∈Sk

p(s)R(Sk, s)f(s). (39)

Here we have slightly rewritten the definition of the importance-weighted estimator, using that
q(s, a) = P (gφs > a) = 1 − Fφs(a), where Fφs is the CDF of the Gumbel distribution (see
Appendix A).

Proof. We first prove the following Lemma:

Lemma 4.

Eκ∼p(κ|Sk)
[

1

1− Fφs(κ)

]
= R(Sk, s) (40)

Proof. Conditioning on Sk, we know that the elements in Sk have the k largest perturbed log-
probabilities, so κ, the (k + 1)-th largest perturbed log-probability is the largest perturbed log-
probability in D \Sk, and satisfies κ = maxs∈D\Sk gφs = gφ

D\Sk
∼ Gumbel(φD\Sk). Computing

p(κ|Sk) using Bayes’ Theorem, we have

p(κ|Sk) = p(Sk|κ)p(κ)
p(Sk)

=

∏
s∈Sk(1− Fφs(κ))fφD\Sk (κ)

p(Sk)
(41)
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which allows us to compute (using equation 33 with C = {s} and gφD\S = κ)

Eκ∼p(κ|Sk)
[

1

1− Fφs(κ)

]
=

∫ ∞
κ=−∞

p(κ|Sk) 1

1− Fφs(κ)
∂κ

=

∫ ∞
κ=−∞

∏
s∈Sk(1− Fφs(κ))fφD\Sk (κ)

p(Sk)

1

1− Fφs(κ)
∂κ

=
1

p(Sk)

∫ ∞
κ=−∞

∏
s∈Sk\{s}

(1− Fφs(κ))fφD\Sk (κ)∂κ

=
1

p(Sk)
pD\{s}(S \ {s})

=R(Sk, s).

Using Lemma 4 we find

Eκ∼p(κ|Sk)

∑
s∈Sk

p(s)

1− Fφs(κ)
f(s)


=
∑
s∈Sk

p(s)Eκ∼p(κ|Sk)
[

1

1− Fφs(κ)

]
f(s)

=
∑
s∈Sk

p(s)R(Sk, s)f(s).

E THE UNORDERED SET POLICY GRADIENT ESTIMATOR

E.1 PROOF OF UNBIASEDNESS OF THE UNORDERED SET POLICY GRADIENT ESTIMATOR
WITH BASELINE

To prove the unbiasedness of result we need to prove that the control variate has expectation 0:

Lemma 5.

ESk∼pθ(Sk)

∑
s∈Sk

∇θpθ(s)R(S
k, s)

∑
s′∈Sk

pθ(s
′)RD\{s}(Sk, s′)f(s′)

 = 0. (42)

Proof. Similar to equation 9, we apply Bayes’ Theorem conditionally on b1 = s to derive for s′ 6= s

P (b2 = s′|Sk, b1 = s) =
P (Sk|b2 = s′, b1 = s)P (b2 = s′|b1 = s′)

P (Sk|b1 = s)

=
p
D\{s,s′}
θ (Sk \ {s, s′})pD\{s}θ (s′)

p
D\{s}
θ (Sk \ {s})

=
pθ(s

′)

1− pθ(s)
RD\{s}(Sk, s′). (43)
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For s′ = s we have RD\{s}(Sk, s′) = 1 by definition, so using equation 43 we can show that∑
s′∈Sk

pθ(s
′)RD\{s}(Sk, s′)f(s′)

= pθ(s)f(s) +
∑

s′∈Sk\{s}

pθ(s
′)RD\{s}(Sk, s′)f(s′)

= pθ(s)f(s) + (1− pθ(s))
∑

s′∈Sk\{s}

pθ(s
′)

1− pθ(s)
RD\{s}(Sk, s′)f(s′)

= pθ(s)f(s) + (1− pθ(s))
∑

s′∈Sk\{s}

P (b2 = s′|Sk, b1 = s)f(s′)

= pθ(s)f(s) + (1− pθ(s))Eb2∼pθ(b2|Sk,b1=s) [f(b2)]
= Eb2∼pθ(b2|Sk,b1=s) [pθ(b1)f(b1) + (1− pθ(b1))f(b2)] .

Now we can show that the control variate is actually the result of Rao-Blackwellization:

ESk∼pθ(Sk)

∑
s∈Sk

∇θpθ(s)R(S
k, s)

∑
s′∈Sk

pθ(s
′)RD\{s}(Sk, s′)f(s′)


= ESk∼pθ(Sk)

∑
s∈Sk

pθ(s)R(S
k, s)∇θ log pθ(s)

∑
s′∈Sk

pθ(s
′)RD\{s}(Sk, s′)f(s′)


= ESk∼pθ(Sk)

∑
s∈Sk

P (b1 = s|Sk)∇θ log pθ(s)
∑
s′∈Sk

pθ(s
′)RD\{s}(Sk, s′)f(s′)


= ESk∼pθ(Sk)

Eb1∼pθ(b1|Sk)
∇θ log pθ(b1)

∑
s′∈Sk

pθ(s
′)RD\{b1}(Sk, s′)f(s′)


= ESk∼pθ(Sk)

[
Eb1∼pθ(b1|Sk)

[
∇θ log pθ(b1)Eb2∼pθ(b2|Sk,b1) [pθ(b1)f(b1) + (1− pθ(b1))f(b2)]

]]
= ESk∼pθ(Sk)

[
EBk∼pθ(Bk|Sk) [∇θ log pθ(b1) (pθ(b1)f(b1) + (1− pθ(b1))f(b2))]

]
= EBk∼pθ(Bk) [∇θ log pθ(b1) (pθ(b1)f(b1) + (1− pθ(b1))f(b2))]

This expression depends only on b1 and b2 and we recognize the stochastic sum-and-sample estima-
tor for k = 2 used as ‘baseline’. As a special case of equation 12 for C = {b1}, we have

Eb2∼pθ(b2|b1) [(pθ(b1)f(b1) + (1− pθ(b1))f(b2))] = Ei∼pθ(i) [f(i)] . (44)

Using this, and the fact that Eb1∼pθ(b1) [∇θ log pθ(b1)] = ∇θEb1∼pθ(b1) [1] = ∇θ1 = 0 we find

ESk∼pθ(Sk)

∑
s∈Sk

∇θpθ(s)R(S
k, s)

∑
s′∈Sk

pθ(s
′)RD\{s}(Sk, s′)f(s′)


= EBk∼pθ(Bk) [∇θ log pθ(b1) (pθ(b1)f(b1) + (1− pθ(b1))f(b2))]
= Eb1∼pθ(b1)

[
∇θ log pθ(b1)Eb2∼pθ(b2|b1) [(pθ(b1)f(b1) + (1− pθ(b1))f(b2))]

]
= Eb1∼pθ(b1)

[
∇θ log pθ(b1)Ex∼pθ(x) [f(x)]

]
= Eb1∼pθ(b1) [∇θ log pθ(b1)]Ex∼pθ(x) [f(x)]
= 0 · Ex∼pθ(x) [f(x)]
= 0
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F THE RISK ESTIMATOR

F.1 PROOF OF BUILT-IN BASELINE

We show that the RISK estimator, taking gradients through the normalization factor actually has a
built-in baseline. We first use the log-derivative trick to rewrite the gradient of the ratio as the ratio
times the logarithm of the gradient, and then swap the summation variables in the double sum that
arises:

eRISK(S) =
∑
s∈S
∇θ

(
pθ(s)∑

s′∈S pθ(s
′)

)
f(s)

=
∑
s∈S

pθ(s)∑
s′∈S pθ(s

′)
∇θ log

(
pθ(s)∑

s′∈S pθ(s
′)

)
f(s)

=
∑
s∈S

pθ(s)∑
s′∈S pθ(s

′)

(
∇θ log pθ(s)−∇θ log

∑
s′∈S

pθ(s
′)

)
f(s)

=
∑
s∈S

pθ(s)∑
s′∈S pθ(s

′)

(
∇θpθ(s)

pθ(s)
−
∑
s′∈S ∇θpθ(s

′)∑
s′∈S pθ(s

′)

)
f(s)

=
∑
s∈S

∇θpθ(s)f(s)∑
s′∈S pθ(s

′)
−
∑
s,s′∈S pθ(s)∇θpθ(s

′)f(s)(∑
s′∈S pθ(s

′)
)2

=
∑
s∈S

∇θpθ(s)f(s)∑
s′∈S pθ(s

′)
−
∑
s,s′∈S pθ(s

′)∇θpθ(s)f(s
′)(∑

s′∈S pθ(s
′)
)2

=
∑
s∈S

∇θpθ(s)∑
s′∈S pθ(s

′)

(
f(s)−

∑
s′∈S pθ(s

′)f(s′)∑
s′∈S pθ(s

′)

)

=
∑
s∈S

∇θpθ(s)∑
s′′∈S pθ(s

′′)

(
f(s)−

∑
s′∈S

pθ(s
′)∑

s′′∈S pθ(s
′′)
f(s′)

)
.

G CATEGORICAL VARIATIONAL AUTO-ENCODER

G.1 CHANGES MADE TO CODE BY YIN ET AL. (2019)

We made a number of changes to the code5 by Yin et al. (2019), which contained some inconsisten-
cies. This causes our results to be different from reported in Yin et al. (2019).

1. Not all estimators used the same model architecture. We used 512 and 256 hidden neurons
for the encoder and 256 and 512 for the decoder and Leaky ReLu with α = 0.1 for all
estimators.

2. A bug in the code caused some estimators to use non-binarized data. This was fixed after
correspondence with the authors6, from which we learned that they actually used the stan-
dard binarized dataset7 (Salakhutdinov & Murray, 2008; Larochelle & Murray, 2011). Our
results using this dataset are in this section below.

3. The ELBO has a direct dependency on the encoder/inference model parameters, but this
‘pathwise term’ of the gradient (see Section 3.3) was not implemented. Adding this term
improved results for REINFORCE based estimators (including ours), while we were unable
to get a similar improvement with ARSM.

4. We implemented all estimators in the same file to make sure that results are computed in
the same manner and using the same model architecture for all estimators.

5https://github.com/ARM-gradient/ARSM/
6Commit E35A954
7http://www.dmi.usherb.ca/˜larocheh/mlpython/_modules/datasets/

binarized_mnist.html
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(a) Small domain (latent space size 102)
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(b) Large domain (latent space size 1020)

Figure 5: Smoothed validation -ELBO curves during training of two independent runs when with
different estimators with k = 1, 4 or 8 (thicker lines) samples (ARSM has a variable number). Some
lines coincide, so we sort the legend by the lowest -ELBO achieved and report this value.

G.2 ADDITIONAL RESULTS

Negative ELBO on validation set. Figure 5 shows the -ELBO evaluated during training on the
validation set. For the large latent space, we see validation error quickly increase (after reaching
a minimum) which is likely because of overfitting (due to improved optimization), a phenomenon
observed before (Tucker et al., 2017; Grathwohl et al., 2018). Note that before the overfitting starts,
both VIMCO and the unordered set estimator achieve a lower validation error than the other estima-
tors (which show less overfitting), such that in a practical setting, one can use early stopping.

Results using standard binarized MNIST dataset. Instead of using the MNIST dataset binarized
by thresholding values at 0.5 (as in the code and paper by Yin et al. (2019)) we also experiment with
the standard (fixed) binarized dataset by Salakhutdinov & Murray (2008); Larochelle & Murray
(2011), for which we plot train and validation curves for two runs on the small and large domain
in Figure 6. This gives more realistic (higher) -ELBO scores, although we still observe the effect
of overfitting. As this is a bit more unstable setting, one of the runs using VIMCO diverged, but in
general the relative performance of estimators is similar to using the dataset with 0.5 threshold.
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(a) Training -ELBO, small domain (102)
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(b) Training -ELBO, large domain (1020)
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(c) Validation -ELBO, small domain (102)

0 200 400 600 800
Epoch

60

70

80

90

100

110

120

130

140

150

- E
LB

O

Validation -ELBO (1020 latent space)
157.5 k = 1 RELAX
125.7 k = *  ARSM
112.1 k = 1 ST Gumbel-Softmax
107.8 k = 4 Sum & sample (sample bl)
107.6 k = 8 Sum & sample (sample bl)
106.9 k = 4 VIMCO (built-in bl)
106.7 k = 4 Unordered (built-in bl)
106.5 k = 1 REINFORCE (sample bl)
106.4 k = 8 Unordered (built-in bl)
104.9 k = 8 VIMCO (built-in bl)

(d) Validation -ELBO, large domain (1020)

Figure 6: Smoothed training and validation -ELBO curves during training on the standard binarized
MNIST dataset (Salakhutdinov & Murray, 2008; Larochelle & Murray, 2011) of two independent
runs when with different estimators with k = 1, 4 or 8 (thicker lines) samples (ARSM has a variable
number). Some lines coincide, so we sort the legend by the lowest -ELBO achieved and report this
value.
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