
Under review as a conference paper at ICLR 2020

MIXING UP REAL SAMPLES AND ADVERSARIAL
SAMPLES FOR SEMI-SUPERVISED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Consistency regularization methods have shown great success in semi-supervised
learning tasks. Most existing methods focus on either the local neighborhood
or in-between neighborhood of training samples to enforce the consistency con-
straint. In this paper, we propose a novel generalized framework called Adver-
sarial Mixup (AdvMixup), which unifies the local and in-between neighborhood
approaches by defining a virtual data distribution along the paths between the
training samples and adversarial samples. Experimental results on both synthetic
data and benchmark datasets exhibit the benefits of AdvMixup on semi-supervised
learning.

1 INTRODUCTION

Deep neural networks have achieved remarkable performance in various areas thanks to their ex-
cellent capability on data representation learning. However, successful training of deep learning
models usually requires a large amount of labeled data. Such property poses a challenge to many
practical tasks where labeling a larget amount of data is not feasible due to the high cost in time and
finances. To address this problem, semi-supervised learning leverages the unlabeled data to improve
the generalization performance of the model over a small amount of labeled data.

Cluster assumption Chapelle & Zien (2005) has been a basis for many successful semi-supervised
learning models, which states that the data distribution forms discrete clusters and samples in the
same cluster tend to share the same class label. This assumption has motivated many traditional
semi-supervised learning approaches such as transductive support vector machines Joachims (1999),
entropy minimization Grandvalet & Bengio (2005), and pseudo-labeling Lee (2013). Recently, the
consistency regularization based methods Sajjadi et al. (2016); Laine & Aila (2017); Tarvainen &
Valpola (2017); Miyato et al. (2018); Verma et al. (2019) have renewed the state-of-the-art results
across many semi-supervised learning tasks. Basically, consistency regularization enforces the pre-
dictions of an unlabeled sample x and its neighborhood sample x̂ to be the same, which encourages
the decision boundary to lie in the low-density regions. Different methods concentrate on different
types of the neighborhood samples x̂.

One branch of the consistency regularization methods focuses on the local neighborhood around
the training samples. The Π model Laine & Aila (2017) obtained x̂ by adding a random noise to
x. However, Szegedy et al. (2014); Goodfellow et al. (2015) have shown that models regularized
with such isotropic noise can still be vulnerable to the perturbations in the adversarial direction
Goodfellow et al. (2015). Inspired by this, Miyato et al. (2018) proposed the Virtual Adversarial
Training (VAT) model, where x̂ is selected as the adversarial example of x, thus regularizing the
model in the most non-smooth regions. These perturbation-based methods can be visualized as in
Figure 1a, where the possible areas for the selection of x̂ are centred around the training samples.

Another branch of the consistency regularization methods considers the in-between neighborhood
of two training samples. The mixup model Zhang et al. (2018) picked x̂ along the interpolation path
between pairs of training samples xi and xj , i.e., x̂ = λxi+(1−λ)xj , and enforced a linear transition
along this path by requiring f(x̂) to approximate λyi + (1− λ)yj , which is originally proposed for
supervised learning. Verma et al. (2019) generalized the mixup model to semi-supervised learning
by replacing the real labels with the predicted labels by a teacher model Tarvainen & Valpola (2017).
These interpolation-based methods can be visualized as in Figure 1b, where the possible areas for
the selection of x̂ are along the path between pairs of training samples.
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Figure 1: Visualization of the consistency regularization areas for different methods. (a) Perturbation
based methods. (b) Interpolation based methods. (c) Our AdvMixup.

In this paper, we propose a novel consistency regularization technique, called Adversarial Mixup
(AdvMixup), by unifying both the local neighborhood and in-between neighborhood. In particular,
we define the neighborhood as the samples lying along the paths between the real samples and ad-
versarial samples. For two random training samples xi and xj , we sample x̂ along the interpolation
path between xi and the adversarial sample x(adv)j , i.e., x̂ = λxi + (1− λ)x

(adv)
j . Then we enforce

the consistency between f(x̂) and λf(xi) + (1 − λ)f(xj). Note that we use the predicted label
f(xj) for x(adv)j , which implicitly incorporates the local neighborhood regularization method. The
regularization area for our AdvMixup can be visualized as in Figure 1c.

We evaluate our AdvMixup on one synthetic dataset and several commonly used benchmark
datasets, and the experimental results demonstrate AdvMixup outperforms the baseline methods
which consider only local neighborhood or in-between neighborhood, especially when few labeled
data is given.

2 ADVMIXUP

2.1 PROBLEM DEFINITION

In this paper, we focus on the standard semi-supervised learning task. Formally, Let X denote the
input feature space and Y denote target label space. Given a labeled dataset Sl = {(xi, yi)|i =
1, . . . , Nl} and an unlabeled dataset Su = {xi|i = 1, . . . , Nu} with xi ∈ X and yi ∈ Y , our aim
is to learn a mapping function f : X → Y which can generalize to the unseen (xi, yi) data pairs
sampled from the joint probability distribution P (X ,Y).

2.2 ADVMIXUP

Standing on the cluster assumption Chapelle & Zien (2005), we propose Adversarial Mixup (Ad-
vMixup), a new consistency regularization approach for semi-supervised learning. AdvMixup im-
plicitly defines a virtual data distribution P̂ sampling along the interpolation paths between pairs of
points from the real samples and the adversarial samples.

Formally, given a random pair of unlabeled training samples xi and xj , we first craft an adversarial
sample x(adv)j for xj , then construct a virtual data sample (x̂i,j , ŷi,j) using the interpolation between

xi and x(adv)j as the virtual input and the interpolation between the soft labels of xi and xj as the
virtual target:

x̂i,j = λxi + (1− λ)x
(adv)
j ,

ŷi,j = λft(xi) + (1− λ)ft(xj),
(1)

where λ ∈ [0, 1] is sampled from the distribution Pλ = Beta(α, α) with α ∈ [0,∞]. Following
the ICT model Verma et al. (2019), we employ the predictions from the exponential moving average
(EMA) model ft as the soft labels for better target quality Tarvainen & Valpola (2017).
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Figure 2: Overview of the proposed AdvMixup framework.

The goal of AdvMixup is to fit the contructed virtual data samples by minimizing the divergence
between the model prediction on the virtual input f(x̂i,j) and the virtual target ŷi,j , which can be
formulated as

Lreg = Exi,xj∼Su
[
DY [f(x̂i,j), ŷi,j ]

]
, (2)

where DY is a divergence metric defined on the Y space. The overview of our AdvMixup regular-
ization is shown in Figure 2.

Finally, we arrive at the full objective function for AdvMixup, i.e., minimizing

Lnll + βLreg (3)

where Lnll = E(xi,yi)∼Sl
[
−y>i ln f(xi)

]
is the typical negative log-likelihood loss for the labeded

data, and β is a hyper-parameter controlling the importance of regularization term Lreg. The training
procedure of our model is illustrated in Algorithm 1.

Adversarial Sample Generation. An adversarial sample Szegedy et al. (2014); Goodfellow et al.
(2015) is an slightly and carefully perturbed variant of a real data sample, with the aim of mis-
leading a given classifier to make different predictions from the original real data sample. In this
paper, we adopt the virtual adversarial example generation method from Miyato et al. (2018), where
the “virtual” means no ground-truth target labels are used to cater for the semi-supervised setting.
Specifically, we craft an adversarial sample x(adv)j = xj + r

(adv)
j for xj by optimizing

r
(adv)
j = arg max

‖r‖2≤ε
DY

[
f(xj), f(xj + r)

]
(4)

where ε > 0 is the norm constraint for the adversarial perturbation. The maximization problem
can be approximated by the power iteration method. In practice, one step of iteration is enough to
achieve strong performance Miyato et al. (2018), which requires a low additional computational cost
to the basic mixup model.

Generality. The proposed AdvMixup can generalize to both the perturbation-based regularization
(e.g., VAT Miyato et al. (2018)) and the mixup-based regularization (e.g., ICT Verma et al. (2019)).
If λ→ 0, the constructed virtual data sample is (x

(adv)
j , ft(xj)) in Equation 1, reducing to the VAT

model. If the adversarial perturbation degenerate to zero, i.e., x(adv)j = xj , Equation 1 reduces to
the ICT model.

3 WHY ADVMIXUP?

The AdvMixup model regularizes the classifier f along the interpolation paths between training
samples and adversarial samples. In the following, we elaborate the reasonableness and advan-
tages of this regularization scheme, and validate the effectiveness of AdvMixup via a case study on
synthetic data.

Reasonableness. The mixup model Zhang et al. (2018) and ICT model Verma et al. (2019) en-
courage the classifier to have linear transition in-between real samples, thus pushing the decision
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Algorithm 1 Minibatch training of AdvMixup for semi-supervised learning

. Require: labeled training set Sl; unlabeled training set Su

. classification model f with parameters θ; f ’s EMA version ft with parameters θt

. Beta distribution parameter α;weight of regularization term β; ft’s update ratio γ

. for k = 1, . . . , num iterations do

. Sample a labeled batch Bl = {(xi, yi)}nl
i=1 ∼ Sl

. Sample an unlabeled batch Bu = {xi}nu
i=1 ∼ Su

. Compute the negative log-likelihood loss using Bl: Lnll =
1
nl

∑
(xi,yi)∈Bl

[
−y>i ln f(xi)

]
. Associate the samples in Bu with soft labels Bu+ = {(xi, ft(xi))}nu

i=1

. Craft an adversarial batch B(adv)

u+ = {(x(adv)i = xi + r
(adv)
i , ft(xi))|xi = Bu[i]}nu

i=1 using Eq. 4
. Shuffle B(adv)

u+ as B(adv)

u+,s

. Sample λ ∼ Beta(α, α) as the interpolation parameter

. Construct a virtual data batch B̂u+ = {(x̂i, ŷi)}nu
i=1 with

x̂i = λx1i + (1− λ)x2i ,
ŷi = λy1i + (1− λ)y2i

where (x1i , y
1
i ) = Bu+ [i], (x2i , y

2
i ) = B

(adv)

u+,s
[i]

. Compute the consistency regularization term Lreg = 1
nu

∑
(x̂i,ŷi)∈B̂u+

DY [f(x̂i), ŷi]

. Evaluate the full objective function L = Lnll + βLreg

. Update θ based on the gradient∇θL

. Update θt = (1− γ)θt + γθ

. end for

. Output: θ and θt
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Figure 3: Prediction error rates of the model (trained with only labeled data) on the virtual samples
along the interpolation paths (blue line) defined by the ICT model Verma et al. (2019) and the
interpolation paths (orange line) defined by the proposed AdvMixup. (a) Results on the CIFAR-10
dataset where 4000 labeled data samples are used. (b) Results on the SVHN dataset where 1000
labeled data samples are used. Best viewed in color.

boundary to low-density areas. Our AdvMixup takes one additional step by creating an adversarial
sample for one of the real sample pair. The created adversarial sample is supposed to share the same
class label with its corresponding real sample. Therefore, given a random real sample pair xi and xj
as well as the adversarial sample x(adv)j for xj , it is reasonable to enforce the classifier’s predictions

to linearly change from the (soft) target label f(xi) of xi to the (soft) target label f(xj) of x(adv)j

along the path from xi to x(adv)j .

Advantages. Consistency regularization approaches are actually fixing possible flaws of the clas-
sifier which violates the cluster assumption. An effective approach is expected to detect the flaws
violating the cluster assumption 1) more significantly and 2) more comprehensively. Compared with
the methods seeking for the flaws in-between neighborhood of training samples like ICT Verma et al.
(2019), our AdvMixup considers the adversarial samples that violate the cluster assumption more
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(a) Synthetic dataset (b) VAT (c) ICT (d) AdvMixup

Figure 4: Comparison between VAT, ICT, and proposed AdvMixup on the concentric circles dataset.
Red and blue points denote unlabeled samples from the two classes, i.e., inner circle and outter
circle, and labeled data are marked with black triangles. (a) The concentric circles dataset. (b-
d) The contour plot and the decision boundaries (green curve) learned by VAT (b), ICT (c), and
AdvMixup (d). Best viewed in color.

significantly. To verify this, we first train a supervised model without using any regularization tech-
niques on the CIFAR-10 and SVHN datasets, and then use it to predict the virtual samples defined
by ICT and AdvMixup. As shown in Figure 3, the supervised model exhibits much larger error rates
along the real-adversarial interpolation path of AdvMixup than the real-real interpolation path of
ICT. Compared with the methods seeking for flaws in the local neighborhood of training samples
like VAT Miyato et al. (2018), our AdvMixup explores a more comprehensive searching area. In par-
ticular, AdvMixup incorporates the local neighborhood based regularization as special cases when
λ → 0, while allowing regularization on in-between areas when λ > 0. The usefulness of such
in-between areas has been validated by Zhang et al. (2018); Verma et al. (2019) and also illustrated
in Figure 3 where the error rate reaches the maximum around λ = 0.5.

3.1 CASE STUDY ON SYNTHETIC DATA

We evaluate the proposed AdvMixup against VAT and ICT on a synthetic dataset with two classes.
As shown in Figure 4a, the training points forms two concentric circles with different radiuses, and
the Gaussian noise (µ = 0, σ = 0.01) is applied to these points. The task is to classify these
two classes of points, and each class contains 5 labeled samples and 100 unlabeled samples. Note
that sometimes the distance between neighbor points within the same class can be comparable, if
not larger than, the distance between neighbor points from different classes, making the problem a
non-trivial task.

We utilize a neural network model as the classifier, which includes two hidden layers with 100 and
50 hidden units and ReLU activation functions. We fix the weight of the regularization terms as 10
for different methods, and search the optimal hyper-parameters specific to different methods (i.e., ε
for VAT, α for ICT, and ε and α for AdvMixup) via a validation set.

The learned decision boundaries are shown in Figure 4, and we have the following major obser-
vations. First, VAT can not successfully classify the two classes, since it mistakenly predicts a
proportion of blue points as red points. Since these blue points have a relatively larger distance to
other surrounding blue points and no labeled data lie in this region, it is possible for VAT to fail as
the result has almost no objections to their local neighborhood based constraint. However, with the
local neighborhood based constraint, the decision boundary of VAT desirably keeps a safe distance
with the training samples. Second, ICT basically achieves to distinguish the two classes. However,
the decision boundary stays too close to some data points, making the model vulnerate to even small
noises. This is possible for ICT, because the points next to the decision boundary lie in a lighter area
of the contour and thus have lower confidence scores, making the result still comply with the con-
straint for in-between training samples. Third, the proposed AdvMixup, considering both local and
in-between neighborhood, is capable of learning a decision boundary which can both differentiate
points from the two classes and stay a certain distance with the training samples.
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4 EXPERIMENTS

In this section, we evaluate the proposed AdvMixup against various strong baselines for semi-
supervised learning on benchmark datasets. We also conduct an ablation study to validate the effec-
tiveness of our model.

4.1 DATASETS

We conduct experiments on the widely-used CIFAR-10 and SVHN datasets. The CIFAR-10 dataset
is composed of 32×32 colored images drawn from 10 natural classes, with a split of 50,000 training
samples and 10,000 test samples. The SVHN dataset is composed of 32× 32 colored images drawn
from 10 digit classes, with a split of 73,257 training samples and 26,032 test samples. Following
common practice Sajjadi et al. (2016); Laine & Aila (2017); Tarvainen & Valpola (2017); Miyato
et al. (2018); Verma et al. (2019); Oliver et al. (2018), we randomly select a small ratio of training
samples as labeled data and use the rest as unlabeled data for semi-supervised learning. In particular,
we provide results with 1000, 2000, and 4000 labeled samples on the CIFAR-10 dataset, and 250,
500, and 1000 labeled samples on the SVHN dataset. The hyper-parameters are tuned on a validation
set with 5000 (CIFAR-10) and 1000 (SVHN) samples.

4.2 IMPLEMENTATION DETAILS

Data preprocessing. Following our baselines, we adopt standard data augmentation and data nor-
malization in the preprocessing phase. On the CIFAR-10 dataset, we first augment the training data
by random horizontal flipping and random translation (in the range of [-2,2] pixels), and then apply
global contrast normalization and ZCA normalization based on statistics of all training samples. On
the SVHN dataset, we first augment the training data by random translation (in the range of [-2,2]
pixels), and then apply zero-mean and unit-variance normalization.

Model architecture. We adopt the exactly same 13-layer convoluation neural network architecture
as in the ICT model Verma et al. (2019), which eliminates the dropout layers compared to the variant
in Sajjadi et al. (2016); Laine & Aila (2017); Tarvainen & Valpola (2017); Miyato et al. (2018); Luo
et al. (2018).

Hyper-parameters. We directly use the norm constraint ε in the code1 of the VAT model Miyato
et al. (2018), 8.0 for the CIFAR-10 dataset and 3.5 for the SVHN dataset. The update ratio γ of the
EMA model is set to 0.001 following Verma et al. (2019).We search the optimal beta distribution
parameterα and the weight β of the regularization term in Equation 3 via the validation performance.
As a result, α is set as 2.0 on CIFAR-10 and 0.1 on SVHN; β is set as 50, 100, and 100 for CIFAR-10
with 1000, 2000, and 4000 labeled samples, and as 50, 100, and 100 for SVHN with 250, 500, and
1000 labeled samples.

Model training. We adopt the mean squared error as the divergence metric in Equation 2 and 4 as in
Verma et al. (2019). The batch size is 32 for labeled data and 128 for unlabeled data. We follow the
settings of Verma et al. (2019) for other details: The model is trained for 400 epochs, and optimized
using the SGD algorithm with a momentum factor 0.9 and weight decay factor 1×10−4; the learning
rate is set to 0.1 initially and then decayed using the cosine annealing strategyLoshchilov & Hutter
(2017); a sigmoid warm-up schedule is utilized to increase the regularization weight β from 0 to its
maximum value within the first 100 epochs. Our code will be made publicly available soon.

4.3 RESULTS

The evaluation results of the proposed AdvMixup against several state-of-the-art methods on
CIFAR-10 and SVHN are shown in Table 1 and Table 2, respectively. The baseline semi-supervised
learning methods encompass consistency regularization methods based on local neighborhoods
(Laine & Aila (2017); Tarvainen & Valpola (2017); Miyato et al. (2018); Park et al. (2018); Athi-
waratkun et al. (2019); Clark et al. (2018)) , in-between neighborhoods (Verma et al. (2019)), as
well as those combining them (Luo et al. (2018)). From Table 1 and Table 2, we have the following
observations.

1https://github.com/takerum/vat_tf
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Table 1: Test error rates (%) of different methods on CIFAR-10. Random horizontal flipping and
random translation are used to augment training data. Results for methods in the first block (i.e.,
Supervised, Supervised (Mixup), and Supervised (Manifold Mixup)) are duplicated from Verma
et al. (2019). Results of AdvMixup are averaged over 3 runs.

Method Test error rates (%)
1000 labels 2000 labels 4000 labels

Supervised 39.95± 0.75 31.16± 0.66 21.75± 0.46
Supervised (Mixup) 36.48± 0.15 26.24± 0.46 19.67± 0.16
Supervised (Manifold Mixup) 34.58± 0.37 25.12± 0.52 18.59± 0.18

Π model (Laine & Aila, 2017) 31.65± 1.20 17.57± 0.44 12.36± 0.31
TempEns (Laine & Aila, 2017) 23.31± 1.01 15.64± 0.39 12.16± 0.24
MT (Tarvainen & Valpola, 2017) 21.55± 1.48 15.73± 0.31 12.31± 0.28
VAT (Miyato et al., 2018) – – 11.36± 0.34
VAT+EntMin (Miyato et al., 2018) – – 10.55± 0.05
VAdD (Park et al., 2018) – – 11.32± 0.11
VAdD + VAT (Park et al., 2018) – – 9.22± 0.10
TempEns+SNTG (Luo et al., 2018) 18.41± 0.52 13.64± 0.32 10.93± 0.14
VAT+EntMin+SNTG (Luo et al., 2018) – – 9.89± 0.34
CT-GAN (Wei et al., 2018) – – 9.98± 0.21
CVT (Clark et al., 2018) – – 10.11± 0.15
MT+ fast-SWA (Athiwaratkun et al., 2019) 15.58± 0.12 11.02± 0.23 9.05± 0.21
ICT (Verma et al., 2019) 15.48± 0.78 9.26± 0.09 7.29± 0.02

AdvMixup 9.67± 0.08 8.04± 0.12 7.13± 0.08

Table 2: Test error rates (%) of different methods on SVHN. Random translation is used to augment
training data. Results for methods in the first block (i.e., Supervised, Supervised (Mixup), and
Supervised (Manifold Mixup)) are duplicated from Verma et al. (2019). Results for AdvMixup are
averaged over 3 runs.

Method Test error rates (%)
250 labels 500 labels 1000 labels

Supervised 40.62± 0.95 22.93± 0.67 15.54± 0.61
Supervised (Mixup) 33.73± 1.79 21.08± 0.61 13.70± 0.47
Supervised (Manifold Mixup) 31.75± 1.39 20.57± 0.63 13.07± 0.53

Π model (Laine & Aila, 2017) 9.93± 1.15 6.65± 0.53 4.82± 0.17
TempEns (Laine & Aila, 2017) 12.62± 2.91 5.12± 0.13 4.42± 0.16
MT (Tarvainen & Valpola, 2017) 4.35± 0.50 4.18± 0.27 3.95± 0.19
VAT (Miyato et al., 2018) – – 5.42± 0.22
VAT+EntMin (Miyato et al., 2018) – – 3.86± 0.11
VAdD (Park et al., 2018) – – 4.16± 0.08
VAdD + VAT (Park et al., 2018) – – 3.55± 0.05
Π+SNTG (Luo et al., 2018) 5.07± 0.25 4.52± 0.30 3.82± 0.25
MT+SNTG (Luo et al., 2018) 4.29± 0.23 3.99± 0.24 3.86± 0.27
ICT (Verma et al., 2019) 4.78± 0.68 4.23± 0.15 3.89± 0.04

AdvMixup 3.95± 0.70 3.37± 0.09 3.07± 0.18

Firstly, for CIFAR-10, AdvMixup outperforms all the baselines across different numbers of labeled
data. In particular, AdvMixup improves the second-best method ICT by nearly 6% when only 1000
labeled samples are given.

Secondly, for SVHN, it is much easier than the task on CIFAR-10 as the house number images of
SVHN has smaller variance compared to the natural images of CIFAR-10, and the baselines already
achieve a high accuracy. Nevertheless, AdvMixup still demonstrates a clear improvement over all
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Table 3: Test error rates (%) of different ablated versions on CIFAR-10. Random horizontal flipping
and random translation are used to augment training data. Results are averaged over 3 runs.

Method Test error rates (%)
1000 labels 2000 labels 4000 labels

AdvMixup 9.67± 0.08 8.04± 0.12 7.13± 0.08

ICT + VAT 9.91± 0.25 8.90± 0.20 7.97± 0.03
Adv-Adv Mixup 10.90± 0.11 8.99± 0.14 8.22± 0.09
AdvMixup w/o teacher model 11.64± 0.41 9.78± 0.11 8.20± 0.17

the baselines across different numbers of labeled data. In particular, AdvMixup achieves an error
rate of 3.95% for 250 labels, which beats the results of 500 labels of all baselines.

Thirdly, following Verma et al. (2019), we also compare with the supervised methods (methods in
the first block of Table 1 and Table 2), where only the labeled samples are used. For both CIFAR-
10 and SVHN, AdvMixup exhibits significant improvement over the supervised baselines across
different numbers of labeled data.

4.4 ABLATION STUDY

To provide more insights, we present the performance of the following three variants of our model
on the CIFAR-10 dataset:

• ICT+VAT, which is an alternative of integrating the local neighborhood and in-between
neighborhood approaches by simply combining the losses of the ICT model and the VAT
model.
• Adv-Adv Mixup, which is another alternative of integrating the local neighborhood and

in-between neighborhood approaches by defining the interpolation paths between two ad-
versarial samples, i.e., replacing xi with x(adv)i in Equation 1.
• AdvMixup w/o teacher model, which use the prediction of current model instead of the

EMA model to compute the soft labels for the samples, i.e., replacing ft(xi) and ft(xj)
with f(xi) and f(xj) in Equation 1.

The results of these ablated variants are shown in Table 3. Firstly, ICT+VAT shows a major im-
provement over ICT with 4000 labels, but underperforms AdvMixup across different numbers of
labeled samples. We conjecture the reason is: by enforcing consistency constraint in local neighbor-
hood and the interpolation paths between training samples, ICT+VAT stills have no guarantee on the
more difficult interpolation paths between adversarial samples and training samples. Secondly, in-
terpolating between adversarial examples clearly degrade the performance across different numbers
of labeled samples. Our explanation is that there can be a gap between the true data distribution and
the virtual data distribution defined by this interpolation scheme where real samples are not utilized,
thus increasing the prediction errors on the test samples lying in the true data distribution. Thirdly,
eliminating the teacher model clearly degrade the performance by 1%-2% across different numbers
of labeled samples. However, this difference resulted from the teacher model is smaller than the
difference between ICT and ICT w/o teacher model, which is about 4% as reported in Verma et al.
(2019).

5 RELATED WORK

Semi-supervised learning has been a hot topic for a long time to address the problem of limited la-
beled data which hinders the learning based models. By leveraging unlabeled data, semi-supervised
learning methods are dedicated to designing a regularization term to encourage the model to comply
with the cluster assumption Chapelle & Zien (2005), which favors decision boundaries lying in low-
density regions and stable model behaviors without abrupt changes. In the following, we mainly
concentrate on the consistency regularization methods which represent the state-of-the-art and are
mostly related to our work.
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An important research line in consistency regularization constrains the model to have consistent
predictions around local neighborhood around training inputs, where the local neighborhood is usu-
ally represented as variants of the input or model parameters. The Π model from Sajjadi et al.
(2016) and Laine & Aila (2017) constructed different input variants with stochastic image transfor-
mation and additive Gaussian noise, as well as different model variants with dropout layers. Wei
et al. (2018) integrated the Π model with the generative adversarial networks (GAN) based semi-
supervised learning approaches Salimans et al. (2016), where the classifier was forced to correctly
classify labeled samples and distinguish real unlabeled samples and fake samples from the generator.
Clark et al. (2018) proposed cross-view learning which formed input variants by randomly masking
partial inputs. Laine & Aila (2017) also proposed a Temporal Ensembling approach to apply the con-
sistency constraint between current model prediction and the EMA of all historical predictions for a
specific input. Tarvainen & Valpola (2017) further improved Temporal Ensembling by considering
the consistency between the variants of model parameters, i.e., predictions from current parameters
and from the EMA of parameters. Considering the insufficient power of the isotropic perturbations,
Miyato et al. (2018) proposed the VAT model by using adversarial perturbations, which point out
the model’s most vulnerable direction, to better represent the local neighborhood.

Another promising research line in consistency regularization considers the consistency between
pairs of training samples. Luo et al. (2018) enhanced the local neighborhood based methods by
narrowing down the distance between similar sample pairs while pushing the dissimilar pairs away
in the low-dimensional feature space. Under supervised setting, Zhang et al. (2018) proposed the
mixup model encouraging the prediction on the linear combination of two samples to approach the
linear combination of their labels. The mixup model has been extended from different perspectives
owing to its efficiency and strong regularization ability. Verma et al. (2018) extended the mixup
operation to the hidden layers for flattening representations. Guo et al. (2019) proposed to adaptively
generate the mixing parameter for a specific pair, so as to avoid overlapping between the mixed
samples and the real ones. Verma et al. (2019) generalized the mixup model to the semi-supervised
setting where the labels are substituted by the soft labels from a teacher model. The concurrent
work MixMatch Berthelot et al. (2019) generalized the mixup mechanism with several techniques
such as multiple data augmentation and label sharpening, obtaining strong empirical results on semi-
supervised learning.

6 CONCLUSION

In this paper, we propose a new consistency regularization method, AdvMixup, for semi-supervised
learning. AdvMixup enforces the model to fit the virtual data points sampled from the interpolation
paths between adversarial samples and real samples. Such an interpolation scheme integrates the
local neighborhood around training samples and the neighborhood in-between the training samples.
Our experiments demonstrate the proposed AdvMixup constantly outperforms the baselines, espe-
cially when the labeled data are scarce. In future work, we plan to explore AdvMixup with different
adversarial sample generation approaches. Also, it is promising to fit AdvMixup into the recent
MixMatch framework Berthelot et al. (2019) for further performance improvement.
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