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ABSTRACT

Owing to the susceptibility of deep learning systems to adversarial attacks, there
has been a great deal of work in developing (both empirically and certifiably) robust
classifiers, but the vast majority has defended against single types of attacks. Recent
work has looked at defending against multiple attacks, specifically on the MNIST
dataset, yet this approach used a relatively complex architecture, claiming that
standard adversarial training can not apply because it “overfits” to a particular norm.
In this work, we show that it is indeed possible to adversarially train a robust model
against a union of norm-bounded attacks, by using a natural generalization of the
standard PGD-based procedure for adversarial training to multiple threat models.
With this approach, we are able to train standard architectures which are robust
against `∞, `2, and `1 attacks, outperforming past approaches on the MNIST
dataset and providing the first CIFAR10 network trained to be simultaneously
robust against (`∞, `2, `1) threat models, which achieves adversarial accuracy
rates of (47.6%, 64.3%, 53.4%) for (`∞, `2, `1) perturbations with radius ε =
(0.03, 0.5, 12).

1 INTRODUCTION

Machine learning algorithms have been shown to be susceptible to adversarial examples (Szegedy
et al., 2014) through the existence of data points which can be adversarially perturbed to be mis-
classified, but are “close enough” to the original example to be imperceptible to the human eye.
Methods to generate adversarial examples, or “attacks”, typically rely on gradient information, and
most commonly use variations of projected gradient descent (PGD) to maximize the loss within a
small perturbation region, usually referred to as the adversary’s threat model. Since then, a number of
heuristic defenses have been proposed to defend against this phenomenon, e.g. distillation (Papernot
et al., 2016) or more recently logit-pairing (Kannan et al., 2018). However, as time goes by, the
original robustness claims of these defenses typically don’t hold up to more advanced adversaries or
more thorough attacks (Carlini & Wagner, 2017; Engstrom et al., 2018; Mosbach et al., 2018). One
heuristic defense that seems to have survived (to this day) is to use adversarial training against a
PGD adversary (Madry et al., 2018), which remains quite popular due to its simplicity and apparent
empirical robustness. The method continues to perform well in empirical benchmarks even when
compared to recent work in provable defenses, although it comes with no formal guarantees.

Some recent work, however, has claimed that adversarial training “overfits” to the particular type of
perturbation used to generate the adversarial examples, and used this as motivation to propose a more
complicated architecture in order to achieve robustness to multiple perturbation types on the MNIST
dataset (Schott et al., 2019).

In this work, we offer a contrasting viewpoint: we show that it is indeed possible to use adversarial
training to learn a model which is simultaneously robust against multiple types of `p norm bounded
attacks (we consider `∞, `2, and `1 attacks, but the approach can apply to more general attacks).
First, we show that simple generalizations of adversarial training to multiple threat models can
already achieve some degree of robustness against the union of these threat models. Second, we
propose a slightly modified PGD-based algorithm called multi steepest descent (MSD) for adversarial
training which more naturally incorporates the different perturbations within the PGD iterates, further
improving the adversarial training approach. Third, we show empirically that our approach improves
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upon past work by being applicable to standard network architectures, easily scaling beyond the
MNIST dataset, and outperforming past results on robustness against multiple perturbation types.

2 RELATED WORK

After their original introduction, one of the first widely-considered attacks against deep networks had
been the Fast Gradient Sign Method (Goodfellow et al., 2015), which showed that a single, small
step in the direction of the sign of the gradient could sometimes fool machine learning classifiers.
While this worked to some degree, the Basic Iterative Method (Kurakin et al., 2017) (now typically
referred to as the PGD attack) was significantly more successful at creating adversarial examples,
and now lies at the core of many papers. Since then, a number of improvements and adaptations have
been made to the base PGD algorithm to overcome heuristic defenses and create stronger adversaries.
Adversarial attacks were thought to be safe under realistic transformations (Lu et al., 2017) until the
attack was augmented to be robust to them (Athalye et al., 2018b). Adversarial examples generated
using PGD on surrogate models can transfer to black box models (Papernot et al., 2017). Utilizing
core optimization techniques such as momentum can greatly improve the attack success rate and
transferability, and was the winner of the NIPS 2017 competition on adversarial examples (Dong
et al., 2018). Uesato et al. (2018) showed that a number of ImageNet defenses were not as robust as
originally thought, and Athalye et al. (2018a) defeated many of the heuristic defenses submitted to
ICLR 2018 shortly after the reviewing cycle ended, all with stronger PGD variations.

Throughout this cycle of attack and defense, some defenses were uncovered that remain robust to
this day. The aforementioned PGD attack, and the related defense known as adversarial training
with a PGD adversary (which incorporates PGD-attacked examples into the training process) has
so far remained empirically robust (Madry et al., 2018). Verification methods to certify robustness
properties of networks were developed, utilizing techniques such as SMT solvers (Katz et al., 2017),
SDP relaxations (Raghunathan et al., 2018b), and mixed-integer linear programming (Tjeng et al.,
2019), the last of which has recently been successfully scaled to reasonably sized networks. Other
work has folded verification into the training process to create provably robust networks (Wong
& Kolter, 2018; Raghunathan et al., 2018a), some of which have also been scaled to even larger
networks (Wong et al., 2018; Mirman et al., 2018; Gowal et al., 2018). Although some of these could
potentially be extended to apply to multiple perturbations simultaneously, most of these works have
focused primarily on defending against and verifying only a single type of adversarial perturbation at
a time.

Last but most relevant to this work are adversarial defenses that attempt to be robust against multiple
types of attacks simultaneously. Schott et al. (2019) used multiple variational autoencoders to
construct a complex architecture for the MNIST dataset that is not as easily attacked by `∞, `2, and
`0 adversaries. Importantly, Schott et al. (2019) compare to adversarial training with an `∞-bounded
PGD adversary as described by Madry et al. (2018), claiming that the adversarial training defense
overfits to the `∞ metric and is not robust against other types of perturbations. Following this, a
number of concurrent papers have since been released. While not studied as a defense, Kang et al.
(2019) study the transferability of adversarial robustness between models trained against different
threat models. Croce & Hein (2019) propose a provable adversarial defense against all `p norms
for p ≥ 1 using a regularization term. Finally, Tramèr & Boneh (2019) study the theoretical and
empirical trade-offs of adversarial robustness in various settings when defending against multiple
adversaries, however, they use a rotation and translation adversary instead of an `2 adversary for
CIFAR10.

Contributions In contrast to the claim that adversarial training overfits to a particular metric, in
this work we demonstrate that adversarial training can in fact be used to learn models that are robust
against a union of multiple perturbation models, as long as you train against a union of adversaries.
First, we show that even simple aggregations of different adversarial attacks can achieve competitive
universal robustness against multiple perturbations models without resorting to complex architectures.
Second, we propose a modified PGD iteration that more naturally considers multiple perturbation
models within the inner optimization loop of adversarial training. Third, we evaluate all approaches on
the MNIST and CIFAR10 datasets, showing that our proposed generalizations of adversarial training
can significantly outperform past approaches for `∞, `2, and `1 attacks. Specifically, on MNIST, our
model achieves 63.7%, 82.6%, and 62.3% adversarial accuracy against all three attacks (`∞, `2, `1)
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Figure 1: (left) A depiction of the steepest descent directions for `∞, `2, and `1 norms. The gradient
is the black arrow, and the α radius step sizes and their corresponding steepest descent directions `∞,
`2, and `1 are shown in blue, red, and green respectively. (right) An example of the projection back
to an `2 ball of radius ε after a steepest descent step from the starting perturbation δ. The steepest
descent step is the black arrow, and the corresponding projection back onto the `2 ball is red arrow.

for ε = (0.3, 1.5, 12) respectively, substantially improving upon the multiple-perturbation-model
robustness described in Schott et al. (2019). Unlike past work, we also train a CIFAR10 model, which
achieves 47.6%, 64.3%, and 53.4% adversarial accuracy against all three attacks (`∞, `2, `1) for
ε = (0.03, 0.5, 12). Finally, for completeness, we also draw relevant comparisons to concurrent work
at revised ε thresholds, and show that the relative advantage of our approach still holds.

3 OVERVIEW OF ADVERSARIAL TRAINING

Adversarial training is an approach to learn a classifier which minimizes the worst case loss within
some perturbation region (the threat model). Specifically, for some network fθ parameterized by θ,
loss function `, and training data {xi, yi}i=1...n, the robust optimization problem of minimizing the
worst case loss within `p norm-bounded perturbations with radius ε is

min
θ

∑
i

max
δ∈∆p,ε

`(fθ(xi + δ), yi), (1)

where ∆p,ε = {δ : ‖δ‖p ≤ ε} is the `p ball with radius ε centered around the origin. To simplify the
notation, we will abbreviate `(fθ(x+ δ), y) = `(x+ δ; θ).

3.1 SOLVING THE INNER OPTIMIZATION PROBLEM

We first look at solving the inner maximization problem, namely

max
δ∈∆p,ε

`(x+ δ; θ). (2)

This is the problem addressed by the “attackers” in the space of adversarial examples, hoping that the
classifier can be tricked by the optimal perturbed image, x+ δ?. Typical solutions solve this problem
by running a form of projected gradient descent, which iteratively takes steps in the gradient direction
to increase the loss followed by a projection step back onto the feasible region, the `p ball. Since
the gradients at the example points themselves (i.e., δ = 0) are typically too small to make efficient
progress, more commonly used is a variation called projected steepest descent.

Steepest descent For some norm ‖ · ‖p and step size α, the direction of steepest descent on the loss
function ` for a perturbation δ is

vp(δ) = arg max
‖v‖p≤α

vT∇`(x+ δ; θ). (3)

Then, instead of taking gradient steps, steepest descent uses the following iteration

δ(t+1) = δ(t) + vp(δ
(t)). (4)
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In practice, the norm used in steepest descent is typically taken to be the same `p norm used to define
the perturbation region ∆p,ε. However, depending on the norm used, the direction of steepest descent
can be quite different from the actual gradient (Figure 1). Note that a single steepest descent step with
respect to the `∞ norm reduces to v∞(x) = α · sign(∇`(x+ δ; θ)), better known in the adversarial
examples literature as the Fast Gradient Sign Method (Goodfellow et al., 2015).

Projections The second component of projected steepest descent for adversarial examples is to
project iterates back onto the `p ball around x. Specifically, projected steepest descent performs the
following iteration

δ(t+1) = P∆p,ε

(
δ(t) + vp(δ

(t))
)

(5)

where P∆p,ε
(δ) is the standard projection operator that finds the perturbation δ′ ∈ ∆p,ε that is

“closest” in Euclidean space to the input δ, defined as

P∆p,ε
(δ) = arg min

δ′∈∆p,ε

‖δ − δ′‖22. (6)

Visually, a depiction of this procedure (steepest descent followed by a projection onto the perturbation
region) for an `2 adversary can be found in Figure 1. If we instead project the steepest descent
directions with respect to the `∞ norm onto the `∞ ball of allowable perturbations, the projected
steepest descent iteration reduces to

δ(t+1) = P∆∞,ε(δ
(t) + v∞(δ(t)))

= clip
[−ε,ε]

(
δ(t) + α · sign(∇`(x+ δ(t); θ))

) (7)

where clip[−ε,+ε] “clips” the input to lie within the range [−ε, ε]. This is exactly the Basic Iterative
Method used in Kurakin et al. (2017), typically referred to in the literature as an `∞ PGD adversary.

3.2 SOLVING THE OUTER OPTIMIZATION PROBLEM

We next look at how to solve the outer optimization problem, or the problem of learning the weights θ
that minimize the loss of our classifier. While many approaches have been proposed in the literature,
we will focus on a heuristic called adversarial training, which has generally worked well in practice.

Adversarial training Although solving the min-max optimization problem may seem daunting, a
classical result known as Danskin’s theorem (Danskin, 1967) says that the gradient of a maximization
problem is equal to the gradient of the objective evaluated at the optimum. For learning models that
minimize the robust optimization problem from Equation (1), this means that

∇θ

(∑
i

max
δ∈∆p,ε

`(xi + δ; θ)

)
=
∑
i

∇θ`(xi + δ∗(xi); θ) (8)

where δ∗(xi) = arg maxδ∈∆p,ε
`(xi+δ; θ). In other words, this means that in order to backpropagate

through the robust optimization problem, we can solve the inner maximization and backpropagate
through the solution. Adversarial training does this by empirically maximizing the inner problem
with a PGD adversary. Note that since the inner problem is not solved exactly, Danskin’s theorem
does not strictly apply. However, in practice, adversarial training does seem to provide good empirical
robustness, at least when evaluated against the `p threat model it was trained against.

4 ADVERSARIAL TRAINING FOR MULTIPLE PERTURBATION MODELS

We can now consider the core of this work, adversarial training procedures against multiple threat
models. More formally, let S represent a set of threat models, such that p ∈ S corresponds to the
`p perturbation model ∆p,ε, and let ∆S =

⋃
p∈S ∆p,ε be the union of all perturbation models in S.

Note that the ε chosen for each ball is not typically the same, but we still use the same notation ε for
simplicity, since the context will always make clear which `p-ball we are talking about. Then, the
generalization of the robust optimization problem in Equation (1) to multiple perturbation models is

min
θ

∑
i

max
δ∈∆S

`(xi + δ; θ). (9)
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The key difference is in the inner maximization, where the worst case adversarial loss is now taken
over multiple `p perturbation models. In order to perform adversarial training, using the same
motivational idea from Danskin’s theorem, we can backpropagate through the inner maximization by
first finding (empirically) the optimal perturbation,

δ∗ = arg max
δ∈∆S

`(x+ δ; θ). (10)

To find the optimal perturbation over the union of threat models, we begin by considering straightfor-
ward generalizations of standard adversarial training, which will use PGD to approximately solve the
inner maximization over multiple adversaries.

4.1 SIMPLE COMBINATIONS OF MULTIPLE PERTURBATIONS

First, we propose two simple approaches to generalizing adversarial training to multiple threat
models. These methods already perform quite well in practice and are competitive with existing,
state-of-the-art approaches without relying on complicated architectures, showing that adversarial
training can in fact generalize to multiple threat models.

Worst-case perturbation One way to generalize adversarial training to multiple threat models is
to use each threat model independently, and train on the adversarial perturbation that achieved the
maximum loss. Specifically, for each adversary p ∈ S , we solve the innermost maximization with an
`p PGD adversary to get an approximate worst-case perturbation δp,

δp = arg max
δ∈∆p,ε

`(x+ δ; θ), (11)

and then approximate the maximum over all adversaries as

δ∗ ≈ arg max
δp

`(x+ δp; θ). (12)

When |S| = 1, then this reduces to standard adversarial training. Note that if each PGD adversary
solved their subproblem from Equation (11) exactly, then this is exactly the optimal perturbation δ?.

PGD augmentation with all perturbations Another way to generalize adversarial training is to
train on all the adversarial perturbations for all p ∈ S to form a larger adversarial dataset. Specifically,
instead of solving the robust problem for multiple adversaries in Equation (9), we instead solve

min
θ

∑
i

∑
p∈S

max
δ∈∆p,ε

`(xi + δ; θ) (13)

by using individual `p PGD adversaries to approximate the inner maximization for each threat model.
Again, this reduces to standard adversarial training when |S| = 1.

While these methods work quite well in practice (which is shown later in Section 5), both approaches
solve the inner maximization problem independently for each adversary, so each individual PGD
adversary is not taking advantage of the fact that the perturbation region is enlarged by other threat
models. To take advantage of the full perturbation region, we propose a modification to standard
adversarial training, which combines information from all considered threat models into a single
PGD adversary that is potentially stronger than the combination of independent adversaries.

4.2 MULTI STEEPEST DESCENT

To create a PGD adversary with full knowledge of the perturbation region, we propose an algorithm
that incorporates the different threat models within each step of projected steepest descent. Rather
than generating adversarial examples for each threat model with separate PGD adversaries, the core
idea is to create a single adversarial perturbation by simultaneously maximizing the worst case loss
over all threat models at each projected steepest descent step. We call our method multi steepest
descent (MSD), which can be summarized as the following iteration:

δ(t+1)
p = P∆p,ε

(δ(t) + vp(δ
(t))) for p ∈ S

δ(t+1) = arg max
δ
(t+1)
p

`(x+ δ(t+1)
p ) (14)
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Algorithm 1 Multi steepest descent for learning classifiers that are simultaneously robust to `p attacks
for p ∈ S

Input: classifier fθ, data x, labels y
Parameters: εp, αp for p ∈ S, maximum iterations T , loss function `
δ(0) = 0
for t = 0 . . . T − 1 do

for p ∈ S do
δ

(t+1)
p = P∆p,ε

(δ(t) + vp(δ
(t)))

end for
δ(t+1) = arg max

δ
(t+1)
p

`(fθ(x+ δ
(t+1)
p ), y)

end for
return δ(T )

The key difference here is that at each iteration of MSD, we choose a projected steepest descent
direction that maximizes the loss over all attack models p ∈ S , whereas standard adversarial training
and the simpler approaches use comparatively myopic PGD subroutines that only use one threat
model at a time. The full algorithm is in Algorithm 1, and can be used as a drop in replacement for
standard PGD adversaries to learn robust classifiers with adversarial training. We direct the reader to
Appendix A for a complete description of steepest descent directions and projection operators for `∞,
`2, and `1 norms1.

5 RESULTS

In this section, we present experimental results on using generalizations of adversarial training to
achieve simultaneous robustness to `∞, `2, and `1 perturbations on the MNIST and CIFAR10 datasets.
Our primary goal is to show that adversarial training can in fact be adapted to a union of perturbation
models using standard architectures to achieve competitive results, without the pitfalls described by
Schott et al. (2019). Our results improve upon the state-of-the-art in three key ways. First, we can use
simpler, standard architectures for image classifiers, without relying on complex architectures or input
binarization. Second, our method is able to learn a single MNIST model which is simultaneously
robust to all three threat models, whereas previous work was only robust against two at a time. Finally,
our method is easily scalable to datasets beyond MNIST, providing the first CIFAR10 model trained
to be simultaneously robust against `∞, `2, and `1 adversaries.

We trained models using both the simple generalizations of adversarial training to multiple adversaries
and also using MSD. Since the analysis by synthesis model is not scalable to CIFAR10, we additionally
trained CIFAR10 models against individual PGD adversaries to measure the changes and tradeoffs in
universal robustness. We evaluated these models with a broad suite of both gradient and non-gradient
based attacks using Foolbox2 (the same attacks used by Schott et al. (2019)), and also incorporated
all the PGD-based adversaries discussed in this paper. All aggregate statistics that combine multiple
attacks compute the worst case error rate over all attacks for each example.

Summaries of these results at specific thresholds can be found in Tables 1 and 2, where B-ABS
and ABS refer to binarized and non-binarized versions of the analysis by synthesis models from
Schott et al. (2019), Pp refers to a model trained against a PGD adversary with respect to the p-
norm, Worst-PGD and PGD-Aug refer to models trained using the worst-case and data augmentation
generalizations of adversarial training, and MSD refers to models trained using multi steepest descent.
Full tables containing the complete breakdown of these numbers over all individual attacks used in
the evaluation are in Appendix C.

1The pure `1 steepest descent step is inefficient since it only updates one coordinate at a time. It can be
improved by taking steps on multiple coordinates, similar to that used in Tramèr & Boneh (2019), and is also
explained in Appendix A.

2https://github.com/bethgelab/foolbox (Rauber et al., 2017)
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Table 1: Summary of adversarial accuracy results for MNIST (higher is better)

Worst PGD
P∞ P2 P1 B-ABS4 ABS4 PGD Aug MSD

Clean Accuracy 99.1% 99.4% 98.9% 99% 99% 98.9% 99.1% 98.2%
`∞ attacks (ε = 0.3) 90.3% 0.4% 0.0% 77% 8% 68.4% 83.7% 63.7%
`2 attacks (ε = 1.5) 45.3% 87.0% 70.3% 39% 80% 82.1% 75.0% 82.6%
`1 attacks (ε = 12) 1.4% 43.4% 71.8% 82% 78% 54.6% 15.6% 62.3%
All Attacks 1.4% 0.4% 0.0% 39% 8% 53.7% 15.6% 58.7%

5.1 EXPERIMENTAL SETUP

Architectures and hyperparameters For MNIST, we use a four layer convolutional network with
two convolutional layers consisting of 32 and 64 5× 5 filters and 2 units of padding, followed by a
fully connected layer with 1024 hidden units, where both convolutional layers are followed by 2× 2
Max Pooling layers and ReLU activations (this is the same architecture used by Madry et al. (2018)).
This is in contrast to past work on MNIST, which relied on per-class variational autoencoders to
achieve robustness against multiple threat models (Schott et al., 2019), which was also not easily
scalable to larger datasets. Since our methods have the same complexity as standard adversarial
training, they also easily apply to standard CIFAR10 architectures, and in this paper we use the well
known pre-activation version of the ResNet18 architecture consisting of nine residual units with two
convolutional layers each (He et al., 2016).

A complete description of the hyperparameters used is in Appendix B, with hyperparameters for
PGD adversaries in Appendix B.1, and hyperparameters for adversarial training in Appendix B.2.
All reported ε are for images scaled to be between the range [0, 1]. All experiments can be run on
modern GPU hardware (e.g. a single 1080ti).

Attacks used for evaluation To evaluate the model, we incorporate the attacks from Schott et al.
(2019) as well as our PGD based adversaries using projected steepest descent, however we provide a
short description here. Note that we exclude attacks based on gradient estimation, since the gradient
for the standard architectures used here are readily available.

For `∞ attacks, although we find the `∞ PGD adversary to be quite effective, for completeness,
we additionally use the Foolbox implementations of Fast Gradient Sign Method (Goodfellow et al.,
2015), PGD adversary (Madry et al., 2018), and the Momentum Iterative Method (Dong et al., 2018).

For `2 attacks, in addition to the `2 PGD adversary, we use the Foolbox implementations of the same
PGD adversary, the Gaussian noise attack (Rauber et al., 2017), the boundary attack (Brendel et al.,
2017), DeepFool (Moosavi-Dezfooli et al., 2016), the pointwise attack (Schott et al., 2019), DDN
based attack (Rony et al., 2018), and C&W attack (Carlini & Wagner, 2017).

For `1 attacks, we use both the `1 PGD adversary as well as additional Foolbox implementations of
`0 attacks at the same radius, namely the salt & pepper attack (Rauber et al., 2017) and the pointwise
attack (Schott et al., 2019). Note that an `1 adversary with radius ε is strictly stronger than an `0
adversary with the same radius, and so we choose to explicitly defend against `1 perturbations instead
of the `0 perturbations considered by Schott et al. (2019).

We make 10 random restarts for each of the evaluation results mentioned hereon for both MNIST
and CIFAR10 3. We encourage future work in this area to incorporate the same, since the success of
all attacks, specially decision based or gradient free ones, is observed to increase significantly over
restarts.

3 All attacks were run on a subset of the first 1000 test examples with 10 random restarts, with the exception
of Boundary Attack, which by default makes 25 trials per iteration and DDN based Attack which does not benefit
from the same owing to a deterministic initialization of δ.

4Results are from Schott et al. (2019), which used an `0 threat model of the same radius and evaluated against
`0 attacks. So the reported number here is an upper bound on the `1 adversarial accuracy. Further, they evaluate
their model without restarts and the adversarial accuracy against all attacks is an upper bound based on the
reported accuracies for the individual threat models. Finally, all ABS results were computed using numerical
gradient estimation, since gradients are not readily available.
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Figure 2: Robustness curves showing the adversarial accuracy for the MNIST model trained with
MSD against `∞ (left), `2 (middle), and `1 (right) threat models over a range of epsilon.

Table 2: Summary of adversarial accuracy results for CIFAR10 (higher is better)

P∞ P2 P1 Worst-PGD PGD-Aug MSD
Clean accuracy 83.3% 90.2% 73.3% 81.0% 84.6% 81.7%
`∞ attacks (ε = 0.03) 50.7% 28.3% 0.2% 44.9% 42.5% 47.6%
`2 attacks (ε = 0.5) 57.3% 61.6% 0.0% 61.7% 65.0% 64.3%
`1 attacks (ε = 12) 16.0% 46.6% 7.9% 39.4% 54.0% 53.4%
All attacks 15.6% 27.5% 0.0% 34.9% 40.6% 46.1%

5.2 MNIST

We first present results on the MNIST dataset, which are summarized in Table 1 (a more detailed
breakdown over each individual attack is in Appendix C.1). While considered an “easy” dataset, we
note that the previous state-of-the-art result for multiple threat models on MNIST (and our primary
comparison) is only able to defend against two out of three threat models at a time (Schott et al.,
2019) using comparatively complex variational autoencoder architectures. In contrast, we see that
both simple generalizations of adversarial training are able to achieve competitive results on standard
models, notably being able to defend against all three threat models simultaneously, while the model
trained with MSD performs even better, achieving error rates of 63.7%, 82.6%, and 62.3% for `∞,
`2, and `1 perturbations with radius ε = 0.3, 1.5, and 12. A complete robustness curve over a range
of epsilons for the MSD model over each threat model can be found in Figure 2, and robustness
curves for other models are deferred to Appendix C.1. A comparison of our results with concurrent
work (Tramèr & Boneh, 2019) can be found in Appendix D.

5.3 CIFAR10

Next, we present results on the CIFAR10 dataset, which are summarized in Table 2 (a more de-
tailed breakdown over each individual attack is in Appendix C.2). Our MSD model achieves
(47.6%, 64.3%, 53.4%) adversarial accuracy for (`∞, `2, `1) perturbations of size ε = (0.03, 0.5, 12),
reaching an overall adversarial adversarial accuracy of 46.1% over all threat models. Interestingly,
note that the P1 model trained against an `1 PGD adversary is not very robust when evaluated against
other attacks, even though it can defend reasonably well against the `1 PGD attack in isolation (Table
4 in Appendix C.2). A complete robustness curve over a range of epsilons for the MSD model over
each threat model can be found in Figure 3, and robustness curves for other models are deferred to
Appendix C.2. A comparison of our results with concurrent work (Tramèr & Boneh, 2019) can be
found in Appendix D.

6 CONCLUSION

In this paper, we showed that adversarial training can be quite effective when training against a union
of multiple perturbation models. We compare two simple generalizations of adversarial training and
an improved adversarial training procedure, multi steepest descent, which incorporates the different
perturbation models directly into the direction of steepest descent. MSD based adversarial training
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Figure 3: Robustness curves showing the adversarial accuracy for the CIFAR10 model trained with
MSD against `∞ (left), `2 (middle), and `1 (right) threat models over a range of epsilon.

procedure is able to outperform past approaches, demonstrating that adversarial training can in fact
learn networks that are robust to multiple perturbation models (as long as they are included in the
threat model) while being scalable beyond MNIST and using standard architectures.
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Algorithm 2 Projection of some perturbation δ ∈ Rn onto the `1 ball with radius ε. We use | · | to
denote element-wise absolute value.

Input: perturbation δ, radius ε
Sort |δ| into γ : γ1 ≥ γ2 ≥ · · · ≥ γn
ρ := max

{
j ∈ [n] : γj − 1

j

(∑j
r=1 γr − ε

)
> 0
}

η := 1
ρ (
∑ρ
i=1 γi − ε)

zi := sign(δi) max {γi − η, 0} for i = 1 . . . n
return z

A STEEPEST DESCENT AND PROJECTIONS FOR `∞, `2, AND `1 ADVERSARIES

In this section, we show what the steepest descent and projection steps are for `p adversaries for
p ∈ {∞, 2, 1}; these are standard results, but included for a complete description of the algorithms.
Note that this differs slightly from the adversaries considered in Schott et al. (2019): while they used
an `0 adversary, we opted to use an `1 adversary with the same radius. The `0 ball with radius ε is
contained within an `1 ball with the same radius, so achieving robustness against an `1 adversary is
strictly more difficult.

`∞ space The direction of steepest descent with respect to the `∞ norm is

v∞(δ) = α · sign(∇l(x+ δ; θ)) (15)

and the projection operator onto ∆∞,ε is

P∆∞,ε(δ) = clip[−ε,ε](δ) (16)

`2 space The direction of steepest descent with respect to the `2 norm is

v2(δ) = α · ∇`(x+ δ; θ)

‖∇`(x+ δ; θ)‖2
(17)

and the projection operator onto the `2 ball around x is

P∆2,ε(δ) = ε · δ

max{ε, ‖δ‖2}
(18)

`1 space The direction of steepest descent with respect to the `1 norm is

v1(δ) = α · sign

(
∂`(x+ δ; θ)

∂δi?

)
· ei? (19)

where
i? = arg max

i
|∇l(x+ δ; θ)i| (20)

and ei∗ is a unit vector with a one in position i∗. Finally, the projection operator onto the `1 ball,

P∆1,ε(δ) = arg min
δ′:‖δ′‖1≤ε

‖δ − δ′‖22, (21)

can be solved with Algorithm 2, and we refer the reader to Duchi et al. (2008) for its derivation.

A.1 ENHANCED `1 STEEPEST DESCENT STEP

Note that the steepest descent step for `1 only updates a single coordinate per step. This can be quite
inefficient, as pointed out by Tramèr & Boneh (2019). To tackle this issue, and also empirically
improve the attack success rate, Tramèr & Boneh (2019) instead select the top k coordinates according
to Equation 20 to update. In this work, we adopt a similar but slightly modified scheme: we randomly
sample k to be some integer within some range [k1, k2], and update each coordinate with step size
α′ = α/k. We find that the randomness induced by varying the number of coordinates aids in
avoiding the gradient masking problem observed by Tramèr & Boneh (2019).
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A.2 RESTRICTING THE STEEPEST DESCENT COORDINATE

The steepest descent direction for both the `0 and `1 norm end up selecting a single coordinate
direction to move the perturbation. However, if the perturbation is already at the boundary of pixel
space (for MNIST, this is the range [0,1] for each pixel), then it’s possible for the PGD adversary to
get stuck in a loop trying to use the same descent direction to escape pixel space. To avoid this, we
only allow the steepest descent directions for these two attacks to choose coordinates that keep the
image in the range of real pixels.

B EXPERIMENTAL DETAILS

B.1 HYPERPARAMETERS FOR PGD ADVERSARIES

In this section, we describe the parameters used for all PGD adversaries in this paper.

MNIST The `∞ adversary used a step size α = 0.01 within a radius of ε = 0.3 for 50 iterations.

The `2 adversary used a step size α = 0.1 within a radius of ε = 1.5 for 100 iterations.

The `1 adversary used a step size of α = 0.05 within a radius of ε = 12 for 50 iterations. By default
the attack is run with two restarts, once starting with δ = 0 and once by randomly initializing δ in the
allowable perturbation ball. k1 = 5, k2 = 20 as described in A.1.

The MSD adversary used step sizes of α = (0.01, 0.2, 0.05) for the (`∞, `2, `1) directions within a
radius of ε = (0.3, 1.5, 12) for 100 iterations.

At test time, we increase the number of iterations to (100, 200, 100) for (`∞, `2, `1).

CIFAR10 The `∞ adversary used a step size α = 0.003 within a radius of ε = 0.03 for 40
iterations.

The `2 adversary used a step size α = 0.05 within a radius of ε = 0.5 for 50 iterations.

The `1 adversary used a step size α = 0.1 within a radius of ε = 12 for 50 iterations. k1 = 5, k2 = 20
as described in A.1.

The MSD adversary used step sizes of α = (0.003, 0.05, 0.05) for the (`∞, `2, `1) directions within
a radius of ε = (0.03, 0.3, 12) for 50 iterations. Note that the MSD model trained for `2 radius of 0.3
is in fact robust to a higher radius of 0.5.

B.2 TRAINING HYPERPARAMETERS

In this section, we describe the parameters used for adversarial training. For all the models, we used
the SGD optimizer with momentum 0.9 and weight decay 5 · 10−4.

MNIST We train the models to a maximum of 20 epochs. We used a variation of the learning rate
schedule from Smith (2018), which is piecewise linear from 0 to 0.1 over the first 7 epochs, down to
0.001 over the next 8 epochs, and finally back down to 0.0001 in the last 5 epochs.

CIFAR10 We used a variation of the learning rate schedule from Smith (2018) to achieve super-
convergence in 50 epochs, which is piecewise linear from 0 to 0.1 over the first 20 epochs, down to
0.005 over the next 20 epochs, and finally back down to 0 in the last 10 epochs.

C EXTENDED RESULTS

Here, we show the full tables which break down the overall adversarial error rates over individual
attacks for both MNIST and CIFAR10, along with robustness curves for all models in the paper.
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Table 3: Summary of adversarial accuracy results for MNIST

Worst PGD
P∞ P2 P1 B-ABS ABS PGD Aug MSD

Clean Accuracy 99.1% 99.4% 98.9% 99% 99% 98.9% 99.1% 98.2%
PGD-`∞ 90.3% 0.4% 0.0% - - 68.4% 83.7% 63.7%
FGSM 94.9% 68.6% 6.4% 85% 34% 82.4% 90.9% 81.8%
PGD-Foolbox 92.1% 8.5% 0.1% 86% 13% 72.1% 85.7% 67.9%
MIM 92.3% 14.5% 0.1% 85% 17% 73.9% 87.3% 71.0%
`∞ attacks (ε = 0.3) 90.3% 0.4% 0.0% 77% 8% 68.4% 83.7% 63.7%
PGD-`2 83.8% 87.0% 70.8% - - 85.3% 87.9% 84.2%
PGD-Foolbox 93.4% 89.7% 74.4% 63% 87% 86.9% 91.5% 86.9%
Gaussian Noise 98.9% 99.6% 98.0% 89% 98% 97.4% 99.0% 97.8%
Boundary Attack 52.6% 92.1% 83.0% 91% 83% 86.9% 79.1% 88.6%
DeepFool 95.1% 92.2% 76.5% 41% 83% 87.9% 93.5% 87.9%
Pointwise Attack 74.3% 97.4% 96.6% 87% 94% 92.7% 89.0% 95.1%
DDN 82.7% 87.0% 70.8% - - 85.1% 85.2% 84.3%
CWL2 88.2% 88.1% 75.5% - - 85.2% 87.5% 85.1%
`2 attacks (ε = 1.5) 45.3% 87.0% 70.3% 39% 80% 82.1% 75.0% 82.6%
PGD-`1 51.8% 49.9% 71.8% - - 66.5% 57.4% 64.8%
Salt & Pepper 55.5% 96.3% 95.6% 96% 95% 86.4% 71.9% 92.2%
Pointwise Attack 2.4% 66.4% 85.2% 82% 78% 60.1% 17.1% 72.8%
`1 attacks (ε = 12) 1.4% 43.4% 71.8% 82% 78% 54.6% 15.6% 62.3%
All attacks 1.4% 0.4% 0.0% 39% 8% 53.7% 15.6% 58.7%
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Figure 4: Robustness curves showing the adversarial accuracy for the MNIST model trained with the
worst case generalization for adversarial training (Worst-PGD) against `∞ (left), `2 (middle), and `1
(right) threat models over a range of epsilon.

C.1 MNIST RESULTS

Expanded table of results Table 3 contains the full table of results for all attacks on all models on
the MNIST dataset. All attacks were run on a subset of the first 1000 test examples with 10 random
restarts, with the exception of Boundary Attack, which by default makes 25 trials per iteration, and
DDN attack, which does not benefit from restarts owing to a deterministic starting point. Note that
the results for B-ABS and ABS models are from Schott et al. (2019), which uses gradient estimation
techniques whenever a gradient is needed, and the robustness against all attacks for B-ABS and ABS
is an upper bound based on the reported results. Further, these models are not evaluated with restarts,
pushing the reported results even higher than actual.

Robustness curves Here, we plot the full robustness curves for the remaining models trained with
the simpler generalizations of adversarial training, namely the worst case method (Figure 4) and the
data augmentation method (Figure 5).
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Figure 5: Robustness curves showing the adversarial accuracy for the MNIST model trained with the
data augmentation generalization for adversarial training (PGD-Aug) against `∞ (left), `2 (middle),
and `1 (right) threat models over a range of epsilon.

Table 4: Summary of adversarial accuracy results for CIFAR10

P∞ P2 P1 Worst-PGD PGD-Aug MSD
Clean accuracy 83.3% 90.2% 73.3% 81.0% 84.6% 81.7%
PGD-`∞ 50.3% 48.4% 29.8% 44.9% 42.8% 49.8%
FGSM 57.4% 43.4% 12.7% 54.9% 51.9% 55.0%
PGD-Foolbox 52.3% 28.5% 0.6% 48.9% 44.6% 49.8%
MIM 52.7% 30.4% 0.7% 49.9% 46.1% 50.6%
`∞ attacks (ε = 0.03) 50.7% 28.3% 0.2% 44.9% 42.5% 47.6%
PGD-`2 59.0% 62.1% 28.9% 64.1% 66.9% 66.0%
PGD-Foolbox 61.6% 64.1% 4.9% 65.0% 68.0% 66.4%
Gaussian Noise 82.2% 89.8% 62.3% 81.3% 84.3% 81.8%
Boundary Attack 65.5% 67.9% 2.3% 64.4% 69.2% 67.9%
DeepFool 62.2% 67.3% 0.9% 64.4% 67.4% 65.7%
Pointwise Attack 80.4% 88.6% 46.2% 78.9% 83.8% 81.4%
DDN 60.0% 63.5% 0.1% 64.5% 67.7% 66.2%
CWL2 62.0% 71.6% 0.1% 66.9% 71.5% 68.7%
`2 attacks (ε = 0.05) 57.3% 61.6% 0.0% 61.7% 65.0% 64.3%
PGD-`1 16.5% 49.2% 69.1% 39.5% 54.0% 53.4%
Salt & Pepper 63.4% 74.2% 35.5% 75.2% 80.7% 75.6%
Pointwise Attack 49.6% 62.4% 8.4% 63.3% 77.0% 72.8%
`1 attacks (ε = 12) 16.0% 46.6% 7.9% 39.4% 54.0% 53.4%
All attacks 15.6% 27.5% 0.0% 34.9% 40.6% 46.1%

C.2 CIFAR10 RESULTS

Expanded table of results Table 4 contains the full table of results for all attacks on all models on
the CIFAR10 dataset. All attacks were run on a subset of the first 1000 test examples with 10 random
restarts, with the exception of Boundary Attack, which by default makes 25 trials per iteration, and
DDN attack, which does not benefit from restarts owing to a deterministic starting point. Further
note that salt & pepper and pointwise attacks in the `1 section are technically `0 attacks, but produce
perturbations in the `1 ball. Finally, it is clear here that while the training against an `1 PGD adversary
defends against said PGD adversary, it does not seem to transfer to robustness against other attacks.

Robustness curves Here, we plot the full robustness curves for the remaining models trained with
the simpler generalizations of adversarial training, namely the worst case method (Figure 6) and the
data augmentation method (Figure 7).
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Figure 6: Robustness curves showing the adversarial accuracy for the CIFAR10 model trained with
the worst case generalization for adversarial training (Worst-PGD) against `∞ (left), `2 (middle), and
`1 (right) threat models over a range of epsilon.
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Figure 7: Robustness curves showing the adversarial accuracy for the CIFAR10 model trained
with the data augmentation generalization for adversarial training (PGD-Aug) against `∞ (left), `2
(middle), and `1 (right) threat models over a range of epsilon.

D COMPARISON WITH CONCURRENT WORK

In this section we compare the results of our trained MSD model with that of Tramèr & Boneh (2019),
who study the theoretical and empirical trade-offs of adversarial robustness in various settings when
defending against multiple adversaries. Training methods presented by them in their comparisons,
namely Advavg and Advmax closely resemble the naive approaches discussed in this paper: PGD-
Aug and Worst-PGD respectively. We use the results as is from their work, and additionally compare
the position of our MSD models at the revised thresholds used by Tramèr & Boneh (2019) without
specially retraining them.

The results of Tables 5 and 6 show that the relative advantage of MSD over naive techniques does
hold up. While we do make a comparison to the most relevant concurrent work for completeness, the
following differences can bias the robust accuracies reported for the MSD models to relatively lower
than expected (and correspondingly, the robust accuracies reported for the other models are relatively
higher than expected):

1. Use of random restarts: We observe in our experiments that using up to 10 restarts for all
our attacks leads to a decrease in model accuracy from 5 to 10% across all models. Tramèr &
Boneh do not mention restarting their attacks for these models and so the results for models
apart from MSD in Tables 5, 6 could potentially be lowered with random restarts.

2. Different training and testing thresholds: The MSD model for the MNIST dataset was
trained at ε = (0.3, 1.5, 12) for the `∞, `2, `1 perturbation balls respectively, while Tramèr
& Boneh (2019) tested at ε = (0.3, 2.0, 10). This may lower the robust accuracy at these
thresholds for the MSD model, since it was not trained for that particular threshold. Likewise,
the MSD model for CIFAR10 was also trained at ε = (0.03, 0.05, 12) for the `∞, `2, `1
perturbation balls respectively, while Tramèr & Boneh (2019) tested at ε = ( 4

255 , 0, 2000
255 ).

16



Under review as a conference paper at ICLR 2020

Table 5: Comparison with contemporary work on MNIST (higher is better). Results for all models
except MSD are taken as is from Tramèr & Boneh (2019)

Vanilla Adv∞ Adv1 Adv2 Advavg Advmax MSD
Clean accuracy 99.4% 99.1% 98.9% 98.5% 97.3% 97.2% 98.2%
`∞ attacks (ε = 0.3) 0.0% 91.1% 0.0% 0.4% 76.7% 71.7% 63.7%
`2 attacks (ε = 2.0) 12.4% 12.1% 50.6% 71.8% 58.3% 56.0% 67.4%
`1 attacks (ε = 10) 8.5% 11.3% 78.5% 68.0% 53.9% 62.6% 70.0%
All attacks 0.0% 6.8% 0.0% 0.4% 49.9% 52.4% 60.9%

Table 6: Comparison with contemporary work on CIFAR10 (higher is better). Results for all models
except MSD are taken as is from Tramèr & Boneh (2019)

Vanilla Adv∞ Adv1 Advavg Advmax MSD
Clean accuracy 95.7% 92.0% 90.8% 91.1% 91.2% 82.1%
`∞ attacks (ε = 4

255 ) 0.0% 71.0% 53.4% 64.1% 65.7% 65.6%
`1 attacks (ε = 2000

255 ) 0.0% 16.4% 66.2% 60.8% 62.5% 62.0%
All attacks 0.0% 16.4% 53.1% 59.4% 61.1% 61.7%

3. Different perturbation models: For the CIFAR10 results in Table 6, Advavg & Advmax
models are trained and tested only for `1 and `∞ adversarial perturbations, whereas the
MSD model is robust to the union of `1, `2 and `∞, achieving a much harder task.

4. Larger Suite of Attacks Used: The attacks used by Tramèr & Boneh are PGD, EAD
(Chen et al., 2017) and Pointwise Attack (Schott et al., 2019) for `1; PGD, C&W (Carlini
& Wagner, 2017) and Boundary Attack (Brendel et al., 2017) for `2; and PGD for `∞
adversaries. We use a more expansive suite of attacks as shown in Appendix C. Some of the
attacks like DDN, which proved to be strong adversaries in most cases, were not considered
by Tramèr & Boneh (2019) and thus were only used to attack the MSD models in Tables 5
and 6.
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