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ABSTRACT

Deep neural networks (DNNs) are vulnerable to adversarial examples crafted by
imperceptible perturbations. A range of defense techniques have been proposed
to improve DNN robustness to adversarial examples, among which adversarial
training has been demonstrated to be the most effective. Adversarial training is
often formulated as a min-max optimization problem, with the inner maximization
for generating adversarial examples. However, there exists a simple, yet easily
overlooked fact that adversarial examples are only defined on correctly classified
(natural) examples, but inevitably, some (natural) examples will be misclassified
during training. In this paper, we investigate the distinctive influence of misclassi-
fied and correctly classified examples on the final robustness of adversarial training.
Specifically, we find that misclassified examples indeed have a significant impact
on the final robustness. More surprisingly, we find that different maximization
techniques on misclassified examples may have a negligible influence on the final
robustness, while different minimization techniques are crucial. Motivated by the
above discovery, we propose a new defense algorithm called Misclassification
Aware adveRsarial Training (MART), which explicitly differentiates the misclas-
sified and correctly classified examples during the training. We also propose a
semi-supervised extension of MART, which can leverage the unlabeled data to
further improve the robustness. Experimental results show that MART and its
variant could significantly improve the state-of-the-art adversarial robustness.

1 INTRODUCTION

Despite their great success in applications such as computer vision (He et al., 2016), speech recogni-
tion (Wang et al., 2017) and natural language processing (Devlin et al., 2018), deep neural networks
(DNNs) are extremely vulnerable to adversarial examples crafted by adding small adversarial pertur-
bations to natural examples (Szegedy et al., 2013; Goodfellow et al., 2015). Given a DNN classifier
hθ with parameter θ and a correctly classified natural example x with class label y (hθ(x) = y),
an adversarial example x′ can be generated by perturbing x such that hθ(x′) 6= y, i.e., the natural
example is correctly classified before perturbation but misclassified after perturbation. The perturba-
tion required for misclassification is often small and bounded by an Lp-norm ‖x′ − x‖p ≤ ε, which
keeps x′ within the ε-ball centered at x, so that it is visually the “same” for human observers. This
vulnerability of DNNs raises serious security concerns about their practicability in security critical
applications, e.g., face recognition (Kurakin et al., 2016) and autonomous driving (Chen et al., 2015).

Compared with pre/post-processing methods such as feature squeezing (Xu et al., 2017), input
denoising (Guo et al., 2018; Liao et al., 2018; Samangouei et al., 2018) and adversarial detection
(Feinman et al., 2017; Grosse et al., 2017; Meng & Chen, 2017; Ma et al., 2018), several defense
techniques have been proposed to train DNNs that are inherently robust to adversarial examples
including defensive distillation (Papernot et al., 2016), gradient regularization (Gu & Rigazio, 2014;
Papernot et al., 2017; Ross & Doshi-Velez, 2018; Tramèr et al., 2018), model compression (Das
et al., 2018; Liu et al., 2018) and activation pruning (Dhillon et al., 2018; Rakin et al., 2018), among
which adversarial training has been demonstrated to be the most effective (Goodfellow et al., 2015;
Athalye et al., 2018; Madry et al., 2018). Adversarial training can be regarded as a data augmentation
technique that trains DNNs on adversarial examples, and can be viewed as solving the following
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(a) Not perturb
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Figure 1: The distinctive influence of misclassified examples (S−) versus correctly classified ones
(S+) on the robustness of adversarial training. We test the white-box robustness of different strategies
on either subset of examples: (a) using them directly for training (“not perturb”); (b) using weak attack
(FGSM) in the inner maximization; and (c) using “regularized CE” loss in the outer minimization.

min-max optimization problem:

min
θ

1

n

n∑
i=1

max
‖x′i−xi‖p≤ε

`(hθ(x′i), yi), (1)

where n is the number of training examples and `(·) is the classification loss, such as the commonly
used cross-entropy (CE) loss. The inner maximization generates adversarial examples that can be
used by the outer minimization to train robust DNNs. Recently, adversarial training with adversarial
examples generated by Projected Gradient Descent (PGD) (Madry et al., 2018) has been demonstrated
to be the only method that can train moderately robust DNNs without being fully attacked (Athalye
et al., 2018). However, there is still a significant gap between adversarial robustness (test accuracy
on adversarial examples) and natural accuracy (test accuracy on natural examples), even for simple
image datasets like CIFAR-10 (Krizhevsky & Hinton, 2009).

Compared with natural training (on natural examples), training adversarially robust DNNs is partic-
ularly difficult (Madry et al., 2018). Nakkiran (2019) showed that a model requires more capacity
to be robust (i.e., simple models can have high natural accuracy but are less likely to be robust). In
addition, the sample complexity of adversarial training can be significantly higher than that of natural
training, that is, training robust DNNs tends to require more data either labeled (Schmidt et al., 2018)
or unlabeled ones (Uesato et al., 2019; Carmon et al., 2019; Najafi et al., 2019; Zhai et al., 2019).
Moreover, Tsipras et al. (2019); Zhang et al. (2019) demonstrated that adversarial robustness may be
inherently at odds with natural accuracy. Parallel to these studies, in this paper, we provide some new
insights on the adversarial examples used for adversarial training.

Recall that the formal definition of an adversarial example is conditioned on it being correctly classi-
fied1 (Carlini et al., 2019). From this perspective, adversarial examples generated from misclassified
examples are “undefined”. Most adversarial training variants neglect this distinction, where all
training examples are treated equally in both the maximization and the minimization processes,
regardless of whether or not they are correctly classified. The only exception we are aware of is Ding
et al. (2018), which proposes to use maximal margin optimization for correctly classified examples.
Yet they did not pay sufficient attention to misclassified examples. A deeper understanding about the
influence of misclassified and correctly classified examples on the robustness is still missing in the
literature. Therefore, we raise the following questions:

Are the adversarial examples generated from i) misclassified and ii) correctly
classified examples, equally important for adversarial robustness? If not, how can
one make better use of the difference to improve robustness?

In this paper, we investigate this intriguing, yet thus far overlooked aspect of adversarial training, and
find that misclassified and correctly classified examples exhibit a distinctive influence on the final
robustness. To illustrate this phenomenon, we conduct a proof-of-concept experiment on CIFAR-
10 in a white-box setting with L∞ maximum perturbation ε = 8/255. We first train an 8-layer

1In this paper, both “correctly classified” and “misclassified” refer to predictions on natural training examples.
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Convolutional Neural Network (CNN) using standard adversarial training with 10-step PGD (PGD10)
and step size ε/4, then use this network (87% training accuracy) to select two subsets of natural
training examples to investigate: 1) a subset of misclassified examples S− (13% of training data),
and 2) a subset of correctly classified examples S+ (also 13% of training data, |S+| = |S−|). Using
these two subsets, we explore different ways to re-train the same network, and evaluate its robustness
against white-box PGD20 (step size ε/10) attacks on the test dataset.

In Figure 1(a), we find that misclassified examples have a significant impact on the final robustness.
Compared with standard adversarial training (dashed blue line), the final robustness drops drastically,
if examples in subset S− are not perturbed (solid green line) during adversarial training (other
examples are still perturbed by PGD10). In contrast, the same operation on subset S+ only slightly
affects the final robustness (solid orange line). Previous work has found that removing a small
proportion of training examples does not reduce the robustness (Ding et al., 2019), which seems to be
true for correctly classified examples, but is apparently not true for misclassified examples.

To further understand the distinctive influence of misclassified and correctly classified examples,
we test different techniques on them within either the maximization or the minimization process
of adversarial training. Firstly, we apply different maximization techniques while keeping the
minimization loss CE unchanged. As shown in Figure 1(b), the final robustness is barely affected
when we use a weak attack (e.g., Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015))
to perturb misclassified examples S− (all other training examples are still perturbed by PGD10).
This suggests that different maximization techniques on misclassified examples S− may have a
negligible influence on the final robustness, provided that the inner maximization problem is solved to
a moderate precision (Wang et al., 2019). However, for subset S+, a weak attack for the maximization
tends to degenerate the robustness. Secondly, we test different minimization techniques with the inner
maximization still solved by PGD10. Interestingly, we find that different minimization techniques on
misclassified examples make a significant difference to the final robustness. As shown in Figure 1(c),
compared with standard adversarial training (dashed blue line) with the CE loss, the final robustness
is significantly improved when the outer minimization on misclassified examples is “regularized”
(solid green line) by an additional term (a KL-divergence term that was used previously in Zheng
et al. (2016); Zhang et al. (2019)). The same regularization applied to correctly classified examples
also helps the final robustness (solid orange line), though not as significantly as for misclassified
examples.

Motivated by the above observations, we reformulate the adversarial risk to incorporate an explicit
differentiation of misclassified examples in a form of regularization. We then propose a new defense
algorithm to achieve this in a dynamic way during adversarial training. Our main contributions are:

• We investigate the distinctive influence of misclassified and correctly classified examples on the
final robustness of adversarial training. We find that the manipulation on misclassified examples
has more impact on the final robustness, and the minimization techniques are more crucial than
maximization ones under the min-max optimization framework.

• We propose a regularized adversarial risk which incorporates an explicit differentiation of misclas-
sified examples as a regularizer. Based on that, we further propose a new defense algorithm, called
Misclassification Aware adveRsarial Training (MART).

• Experimentally, we show that adversarial robustness can be significantly improved over the state-
of-the-art, by a specific focus on misclassified examples. It also helps improve recently proposed
adversarial training with unlabeled data.

2 MISCLASSIFICATION AWARE ADVERSARIAL RISK

In this section, we propose a regularized adversarial risk that incorporates an explicit differentiation
of misclassified examples.

2.1 PRELIMINARIES

We first define some notations. We use lower case and lower case bold face to denote scalars and
vectors, respectively. We use upper case calligraphic symbols to denote sets.

For a K-class (K ≥ 2) classification problem, given a dataset {(xi, yi)}i=1,...,n with xi ∈ Rd as
a natural example and yi ∈ {1, . . . ,K} as its associated label, a DNN classifier hθ with model
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parameter θ predicts the class of an input example xi:

hθ(xi) = arg max
k=1,...,K

pk(xi,θ), pk(xi,θ) = exp(zk(xi,θ))/

K∑
k′=1

exp(zk′(xi,θ)), (2)

where zk(xi,θ) is the logits output of the network with respect to class k, and pk(xi,θ) is the
probability (softmax on logits) of xi belonging to class k.

The adversarial risk (Madry et al., 2018) on dataset {(xi, yi)}i=1,...,n and classifier hθ can be defined
with respect to the 0-1 loss (Zhang et al., 2019) as:

R(hθ) =
1

n

n∑
i=1

max
x′i∈Bε(xi)

1
(
hθ(x′i) 6= yi

)
, (3)

where 1(·) is the indicator function and Bε(xi) = {x : ‖x − xi‖p ≤ ε} denotes the Lp-norm ball
centered at xi with radius ε. We will focus on the L∞-ball in this paper.

2.2 MISCLASSIFICATION AWARE REGULARIZATION

Note that the adversarial risk in (3) is defined on adversarial examples within the ε-ball of all
natural examples, regardless of whether they are correctly classified (hθ(xi) = yi) or misclassified
(hθ(xi) 6= yi) by the current model hθ . To differentiate, we reformulate the adversarial risk based on
the prediction of the current network hθ. Specifically, natural training examples can be divided into
two subsets with respect to hθ , with one subset of correctly classified examples (S+hθ

) and one subset
of misclassified examples (S−hθ

):

S+hθ
= {i : i ∈ [n], hθ(xi) = yi} and S−hθ

= {i : i ∈ [n], hθ(xi) 6= yi}.
Then we are going to define adversarial risk separately for correctly classified and misclassified
examples. As we observed in Figure 1(c), regularization on misclassified examples can significantly
improve robustness. Therefore, for misclassified examples, we formulate the adversarial risk as:

R−(hθ,xi) := 1(hθ(x̂′i) 6= yi) + 1(hθ(xi) 6= hθ(x̂′i)), (4)
where the adversarial example x̂′i is generated by solving

x̂′i = arg max
x′i∈Bε(xi)

1(hθ(x′i) 6= yi). (5)

We remark that the first and second terms on the R.H.S. of (4) correspond to the standard adversarial
risk and the regularization term respectively. Moreover, we would like to clarify that the regularization
term 1(hθ(xi) 6= hθ(x̂′i)) aims to encourage the output of neural network to be stable against
misclassified adversarial examples. For misclassified examples, direct minimization of the standard
adversarial risk may be too hard, as themselves cannot be classified correctly, even without any
perturbations. A similar idea has been used in stability training on all training examples (Zheng et al.,
2016; Kannan et al., 2018; Zhang et al., 2019).

Then we consider correctly classified examples. As can be observed in Figure 1(c), regularization
on correctly classified examples cannot provide as significant improvement as achieved by that on
misclassified ones. Moreover, in this case it can be found that 1(hθ(xi) 6= hθ(x̂′i)) = 1(hθ(x̂′i) 6= yi)
since we have hθ(xi) = yi, which implies that the regularizer has exactly same form as the adversarial
risk. Therefore, for correctly classified example, we simply use the standard adversarial risk, i.e.,

R+(hθ,xi) := max
x′i∈Bε(xi)

1(hθ(x′i) 6= yi) = 1(hθ(x̂′i) 6= yi), (6)

where the adversarial example x̂′i is defined in (5).

Finally, combining the proposed two adversarial risks for correctly classified examples and misclas-
sified examples in an adversarial training framework, we can train a network that minimizes the
following risk:

min
θ
Rmisc(hθ) :=

1

n

( ∑
i∈S+

hθ

R+(hθ,xi) +
∑
i∈S−hθ

R−(hθ,xi)

)

=
1

n

n∑
i=1

{
1(hθ(x̂′i) 6= yi) + 1(hθ(xi) 6= hθ(x̂′i)) · 1(hθ(xi) 6= yi)

}
, (7)
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where x̂′i is defined in (5) and the second equality follows from the definition of Sh+
θ

and Sh−θ . The new
risk defined above is a regularized adversarial risk with regularization term 1/n

∑n
i=1 1(hθ(xi) 6=

hθ(x̂′i)) · 1(hθ(xi) 6= yi), which we call the misclassification aware regularization.

3 PROPOSED DEFENSE: MISCLASSIFICATION AWARE ADVERSARIAL
TRAINING (MART)

In the previous section, we derived the misclassification aware adversarial risk based on 0-1 loss.
However, optimization over 0-1 loss is intractable in practice. We next propose a Misclassification
Aware adveRsarial Training (MART) algorithm, by replacing the 0-1 losses with proper surrogate
loss functions which are both physical meaningful and computationally tractable. Following that, we
further analyze the difference of MART to existing work, and propose a semi-supervised extension.

3.1 THE PROPOSED DEFENSE ALGORITHM

Surrogate Loss for Outer Minimization. As presented in (7), the minimization consists of three
indicator functions: (1) 1(hθ(x̂′i) 6= yi); (2) 1(hθ(xi) 6= hθ(x̂′i)); and (3) 1(hθ(xi) 6= yi).

For the first indicator function 1(hθ(x̂′i) 6= yi), we propose to use a boosted cross entropy (BCE)
loss as the surrogate loss, instead of the commonly used CE loss in (Madry et al., 2018; Wang et al.,
2019). This is largely because classifying adversarial examples requires a stronger classifier than
natural examples, as the presence of adversarial examples makes the classification decision boundary
become more complicated. This is pointed out by (Madry et al., 2018), where they increase the model
capacity for a stronger classifier. The benefit of using BCE compared to CE will shortly be presented
in the experiment section. The proposed BCE loss is defined as:

BCE
(
p(x̂′i,θ), yi

)
= − log

(
pyi(x̂

′
i,θ)

)
− log

(
1−max

k 6=yi
pk(x̂′i,θ)

)
, (8)

where pk(x̂′i,θ) is the probability output defined in (2), the first term − log
(
pyi(x̂

′
i,θ)

)
is the com-

monly used CE loss, denoted CE(p(x̂′i,θ), yi), and the second term − log
(
1−maxk 6=yi pk(x̂′i,θ)

)
is a margin term used to improve the decision margin of the classifier. A similar idea has been used
for improving adversarial strength by Carlini & Wagner (2017). Note that BCE is just a simple boost
that works well in our experiments and other boosted losses could also work here.

For the second indicator function 1(hθ(xi) 6= hθ(x̂′i)), we can use KL divergence as the surrogate
loss function (Zhang et al., 2019; Zheng et al., 2016), since hθ(xi) 6= hθ(x̂′i) implies that adversarial
examples have different output distributions to that of natural examples. Thus, we have

KL
(
p(xi,θ)‖p(x̂′i,θ)

)
=

K∑
k=1

pk(xi,θ) log
pk(xi,θ)

pk(x̂′i,θ)
. (9)

The third indicator function 1(hθ(xi) 6= yi) is a condition that emphasizes learning on misclassified
examples. However, the condition cannot be directly optimized if we conduct a hard decision during
the training process (Ding et al. (2019) uses hard decision and does not optimize the condition).
Instead, we propose to use a soft decision scheme by replacing 1(hθ(xi) 6= yi) with the output
probability 1 − pyi(xi,θ). This will be large for misclassified examples and small for correctly
classified examples.

Surrogate Loss for Inner Maximization. The goal of inner maximization is to generate adversarial
example x̂′i for natural example xi by solving (5). Therefore, we aim to find a surrogate loss function
for the indicator function 1(hθ(x′i) 6= yi). Here, we leverage the commonly used CE loss as the
surrogate loss and find the adversarial example x̂′i

2 as follows:

x̂′i = arg max
x′i∈Bε(xi)

CE
(
p(x′i,θ), yi

)
. (10)

Following our findings in Figure 1(b) that a strong attack can help robustness (though is negligible
for misclassified examples), we propose to use the (strong) PGD attack to maximize the CE loss for
both the correctly classified and misclassified examples, the same as standard adversarial training.

2We slightly abuse the notation of x̂′
i as the maximizer of the surrogate loss rather than the 0-1 loss in (5).
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Note that other surrogate loss functions, such as those exploited in (Athalye et al., 2018; Carlini &
Wagner, 2017) for adversarial attack, could also be used here.

The Overall Objective. Based on the surrogate loss functions, we can state the final objective
function for our proposed Misclassification Aware adveRsarial Training (MART) defense:

LMART(θ) =
1

n

n∑
i=1

`(xi, yi,θ), (11)

where `(xi, yi,θ) is defined as

`(xi, yi,θ) := BCE
(
p(x̂′i,θ), yi

)
+ λ · KL

(
p(xi,θ)‖p(x̂′i,θ)

)
·
(
1− pyi(xi,θ)

)
.

Here the adversarial example x̂′i is generated by (10), and λ is a tunable scaling parameter that
balances the two parts of the final loss, and is fixed for all training examples. The complete training
procedure of MART is described in Appendix A.

3.2 RELATION TO EXISTING WORK

In this section, we briefly discuss the difference between our MART and existing defense methods
including standard adversarial training (Standard) (Madry et al., 2018), logit pairing methods (Kannan
et al., 2018), max-margin adversarial training (MMA) (Ding et al., 2019) and TRADES (Zhang et al.,
2019), as presented in Table 1.

Table 1: Loss function comparison with existing work. The adversarial example x̂′ is generated by
(10) for all defense methods except TRADES and MMA. The adversarial example in TRADES is
generated by maximizing its regularization term (KL-divergence), and the adversarial example in
MMA is generated by solving (10) with different perturbation limit (i.e., ε).

Defense Method Loss Function
Standard CE(p(x̂′,θ), y)
ALP CE(p(x̂′,θ), y) + λ · ‖p(x̂′,θ)− p(x,θ)‖22
CLP CE(p(x,θ), y) + λ · ‖p(x̂′,θ)− p(x,θ)‖22
TRADES CE(p(x,θ), y) + λ · KL

(
p(x,θ)||p(x̂′,θ)

)
MMA CE(p(x̂′,θ), y) · 1(hθ(x) = y) + CE(p(x,θ), y) · 1(hθ(x) 6= y)
MART BCE(p(x̂′,θ), y) + λ · KL(p(x,θ)||p(x̂′,θ)) · (1− py(x,θ))

Specifically, the Standard algorithm was designed to minimize the standard adversarial loss, i.e.,
cross-entropy loss on adversarial examples. Logit pairing methods, consisting of adversarial logit
pairing (ALP) and clean logit pairing (CLP), introduce a regularization term enclosing both natural
examples and their adversarial counterparts. The objective function of TRADES is also a linear
combination of natural loss and regularization terms on the output probabilities corresponding to
natural examples and their adversarial counterparts using KL divergence. However, none of these
algorithms differentiates the misclassified examples and correctly classified examples.

The most relevant work is MMA, which proposes to use maximal margin optimization for correctly
classified examples while keeping the optimization on misclassified examples unchanged. Specifically,
for correctly classified examples, MMA adopts cross-entropy loss on adversarial examples, which are
generated by solving (10) with example-dependent perturbation limit. For misclassified examples,
MMA directly applies cross-entropy loss on natural examples. We emphasize that our MART
is different from MMA in the following aspects: (1) MMA performs hard decision to identify
misclassified examples from training data, while MART uses soft decision scheme on training data
based on the corresponding output probabilities (p(x̂′,θ)), which can be jointly learned during the
training process; (2) for correctly classified examples, MMA adopts cross-entropy loss on adversarial
examples with different perturbation limits, while MART utilizes the proposed BCE loss on the
adverarial examples with the same perturbation limit; (3) for misclassified examples, MMA adopts
cross-entropy loss on natural examples, while MART adopts a regularized adversarial loss involving
both adversarial and natural examples. Because of these differences, we later will show that MART
outperforms MMA in the experiments.

3.3 SEMI-SUPERVISED EXTENSION WITH UNLABELED DATA

Recent work has shown that semi-supervised learning with additional unlabeled data can improve the
adversarial robustness (Uesato et al., 2019; Carmon et al., 2019; Najafi et al., 2019; Zhai et al., 2019).
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Specifically, the training loss function applied in these semi-supervised learning methods is typically
defined as a weighted sum of the supervised loss (loss on the labeled data) and the unsupervised one
(loss on the unlabeled data), i.e.,

L(θ) = Lsup(θ) + γ · Lunsup(θ),

where γ > 0 is the weight of unsupervised loss. As pointed out in Uesato et al. (2019), there are
multiple choices of the unsupervised loss function Lunsup(θ), leading to different defense methods,
among which the most effective defense method is UAT++. In particular, UAT++ first trains a
natural model on labeled data, and then use this model to generate pseudo labels for unlabeled data.
Moreover, given a training data (x, y) (which can be either labeled or unlabeled data), the supervised
and unsupervised loss functions adopted in UAT++ are defined as3

`UAT++
sup (x, y;θ) = `UAT++

unsup (x, y;θ) = max
x′∈Bε

CE(p(x′,θ), y) + λ · max
x′∈Bε

KL(p(x,θ)||p(x′,θ)),

where λ is a tunable hyperparameter. A similar idea was also proposed in a concurrent work (Carmon
et al., 2019), leading to another semi-supervised defense method called RST. The first stage of RST
is also to generate pseudo labels for unlabeled data by training a natural model on the labeled data.
Then in the second stage, RST applies TRADES loss to train the robust model based on both labeled
and unlabeled data, i.e., given a training data (x, y), the supervised and unsupervised loss functions
adopted in RST is defined as

`RST
sup (x, y;θ) = `RST

unsup(x, y;θ) = CE(p(x,θ), y) + λ · max
x′∈Bε

KL(p(x,θ)||p(x′,θ)).

As we pointed out in Figure 1(b) and the following experiment section, the maximization technique
has a neglectable influence on the robustness. Therefore, the major difference between UAT++ and
RST is the objective function for minimization. Considering MART is also an objective function, it
thus could be easily combined with semi-supervised learning with unlabeled data. Following RST,
we propose the following semi-supervised version of MART:

LMART
semi (θ) =

∑
i∈Ssup

`MART
sup (xi, yi;θ) + γ ·

∑
i∈Sunsup

`MART
unsup (xi, yi;θ)

with supervised and unsupervised loss function defined as follows,

`MARTT
sup (x, y;θ) = `MART

unsup (x, y;θ) = BCE(p(x̂′,θ), y) + λ · KL(p(x,θ)||p(x̂′,θ)) · (1− py(x,θ)),

where the adversarial example x̂′ is generated by solving (10), and Ssup and Sunsup denote the set of
labeled data and unlabeled data respectively.

4 EXPERIMENTS

In this section, we first conduct a set of experiments to provide a comprehensive understanding of our
proposed defense MART, and then evaluate its robustness on benchmark datasets in both white-box
and black-box settings. Finally, we benchmark the state-of-the-art robustness and explore using
unlabeled data for further improvement.

4.1 UNDERSTANDING THE PROPOSED MART

Here, we investigate MART from 4 different perspectives: (1) removing components of the MART
loss function, (2) replacing components of the MART loss function, (3) misclassification aware loss
on certain proportions of training data, and (4) sensitivity to regularization parameter λ.

Experimental Setup. We train ResNet-18 (He et al., 2016) with different variants of MART on
CIFAR-10 (Krizhevsky & Hinton, 2009). All the models are trained using SGD with momentum
0.9, weight decay 2 × 10−4 and an initial learning rate of 0.1, which is divided by 10 at the 75-th
and 90-th epoch (100 epochs in total). All natural images are normalized into [0, 1], and simple data
augmentations including 4-pixel padding with 32× 32 random crop and random horizontal flip. The
maximum perturbation ε = 8/255 and parameter λ = 6. The training attack is PGD10 with random
start and step size ε/4, while the test attack is PGD20 with random start and step size ε/10.

Removing Components of MART. Recalling the objective function of MART in (11), it has three
terms in the loss function: BCE, KL and 1− p 4. As illustrated in Figure 2(a), removing 1− p or KL

3The adversarial example x′ in KL term is reused the one in CE term for efficiency in Uesato et al. (2019)
4For simplicity, we use these abbreviations in Section 4.1
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Figure 2: The comprehensive ablation experiments of MART. In each plot, the dashed blue line
represents the original MART method.

or both all leads to a significant robustness degradation. In particular, we found that the soft decision
term 1− p has a constant robustness improvement throughout the training process, while the KL term
can help mitigate overfitting at a later stage of training (after 80 epochs). When the two terms are
combined together, they boost the final robustness considerably without causing overfitting.

Replacing Components of MART. As we show in Figure 2(b), when the BCE component is either
replaced by a CE term or redefined on natural examples (xnat), the final robustness decreases by
a substantial amount. It suggests that learning with CE instead of our proposed BCE suffers from
insufficient learning with lower robustness throughout the entire training process. On the other hand,
learning with BCE on natural examples exhibits severe overfitting at the later stage (solid green line).
We did not observe any benefit when replacing CE by KL in the inner maximization of adversarial
min-max framework (solid red line), an observation that is consistent with Figure 1(b).

Ablation on Training Data. Here, we show the contribution of our proposed misclassification aware
regularization (e.g., the KL · (1− p) term in (11)) to the final robustness with respect to the training
data. Specifically, we gradually increase the proportion of training examples that are trained using
the proposed misclassification aware regularization term, and display the corresponding robustness in
Figure 2(c). The training examples using the proposed regularization are randomly selected, and the
BCE term is still defined on all training (adversarial) examples. As can be observed, the robustness
can be improved steadily when the proposed regularization is applied on more data. This verifies the
benefit of the differentiation of correctly classified and misclassified examples.

Sensitivity to Regularization Parameter λ. We further investigate the parameter λ in MART
objective function defined in (11) which controls the strength of the regularization. We also test the
regularization parameter λ of TRADES (please refer to Table 1). We present the results in Figure
2(d) for different λ ∈ [1/2, 10]. By explicitly differentiating the misclassified and correctly classified
examples, MART achieves very good stability and robustness across different choices of λ, which is
also consistently better and more stable than that of TRADES.

4.2 ROBUSTNESS EVALUATION AND ANALYSIS

In this part, we evaluate the robustness of MART on both MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky & Hinton, 2009) datasets against various white-box and black-box attacks.

Baselines.5 (1) Standard (Madry et al., 2018); (2) MMA (Ding et al., 2019); (3) Dynamic (Wang
et al., 2019); and (4) TRADES (Zhang et al., 2019). We only compare with adversarial training
variants, since they are the most effective defense to date (Athalye et al., 2018).

Defense Settings. For MNIST, all defense models are built on a 4-layer CNN and trained using SGD
with momentum 0.9. The initial learning rate is 0.01 and divided by 10 at the 20-th and 40-th epoch
(50 epochs in total). For CIFAR-10, the settings are the same as Section 4.1. For the training attack,
it is also the PGD10 with random start and step size ε/4. The perturbation limit ε = 0.3 for MNIST,
and ε = 8/255 for CIFAR-10. For MART, we set λ = 6. Other hyperparameters of the baselines are
configured as per their original papers: max margin is set to 0.45 (MNIST) or 12/255 (CIFAR-10)
for MMA, maximum criterion value cmax = 0.5 for Dynamic and λ = 6 for TRADES.

White-box Robustness. We evaluate the robustness of all defense models against three types of
attacks for both MNIST and CIFAR-10: FGSM, PGD20 (20-step PGD with step size ε/10), and

5Standard, MMA and TRADES have been introduced in Section 3.2. Dynamic is the adversarial training
with a criterion that dynamically controls the convergence quality of the inner maximization.
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Table 2: White-box robustness (accuracy (%) on white-box test attacks) on MNIST and CIFAR-10.

Defense
MNIST CIFAR-10

Natural FGSM PGD20 CW∞ Natural FGSM PGD20 CW∞
Standard 99.11 97.17 94.62 94.25 84.44 61.89 47.55 45.98
MMA 98.92 97.25 95.25 94.77 84.76 62.08 48.33 45.77
Dynamic 98.96 97.34 95.27 94.85 83.33 62.47 49.40 46.94
TRADES 99.25 96.67 94.58 94.03 82.90 62.82 50.25 48.29
MART 98.74 97.87 96.48 96.10 83.79 65.34 55.45 54.80

Table 3: Black-box robustness (accuracy (%) on black-box test attacks) on MNIST and CIFAR-10.

Defense
MNIST CIFAR-10

FGSM PGD10 PGD20 CW∞ FGSM PGD10 PGD20 CW∞
Standard 96.12 95.73 95.47 96.34 79.98 80.27 80.01 80.85
MMA 96.11 95.94 95.81 96.87 80.28 80.52 80.48 81.32
Dynamic 97.60 96.25 95.82 97.03 81.37 81.71 81.38 82.05
TRADES 97.49 96.03 95.73 97.20 81.52 81.73 81.53 82.11
MART 97.77 96.96 96.97 98.36 83.07 83.52 83.09 83.41

CW∞ (L∞ version of CW optimized by PGD). All attacks have full access to model parameters and
are constrained by the same perturbation limit ε. The white-box robustness of all defense models
are reported in Table 2, where “Natural” denotes the accuracy on natural test images. Our proposed
defense MART achieves the best robustness against all three types of attacks on both MNIST and
CIFAR-10. Compared with MNIST, the robustness improvements of MART over other baselines
are more significant on CIFAR-10. This is because adversarial training on CIFAR-10 is a more
challenging problem that may have more misclassified examples during training, and MART can
better handle those misclassified examples due to its regularization term in (11). Note that the
robustness improvement of MART is not caused by the so-called “obfuscated gradients” (Athalye
et al., 2018). This can be verified by two phenomenons: (1) strong test attacks (e.g., PGD20) have
higher success rates (lower accuracies) than weak test attacks (e.g., FGSM), and (2) white-box
test attacks have higher success rates than back-box test attacks (comparing Table 2 with Table 3).
Besides, we conduct an additional check using a gradient-free attack SPSA (Uesato et al., 2018).
SPSA attack does not obtain lower accuracy than gradient-based attacks like PGD, which confirms
that the robustness of MART trained models are not due to gradient masking.

Black-box Robustness. Black-box test attacks are crafted from the natural test images by attacking
a surrogate model with an architecture that is either a copy of the defense model (MNIST) or a
more complex ResNet-50 (He et al., 2016) model (CIFAR-10). Both surrogate models are trained
separately from the defense models on the original training sets using Standard adversarial training
(PGD10 with random start and step size ε/4). The attacking methods used here are: FGSM, PGD10,
PGD20, and CW∞. The black-box robustness of all defense models are reported in Table 3. Again,
the proposed defense MART achieves higher robustness than other baselines. Compared with the
white-box results, all defense methods achieve much better robustness against black-box attacks,
even close to the natural accuracy. This suggests that adversarial training is indeed a very practical
choice for defense scenarios where the target model can be kept secret from potential attackers. It is
also observed that robustness on strong attacks like CW∞ is higher than weak attacks like FGSM,
which indicates that strong attacks have less transferability than weak attacks (Madry et al., 2018).

4.3 BENCHMARKING THE STATE-OF-THE-ART ROBUSTNESS

In this part, we conduct more experiments on a large-capacity network WideResNet (Zagoruyko &
Komodakis, 2016) to benchmark the state-of-the-art robustness, and also explore using unlabeled
data for further robustness boost.

Performance on WideResNet. We employ WideResNet-34-10 (depth 34 and width 10) to explore
the full power of our proposed MART defense method, and also benchmark the state-of-the-art
robustness on CIFAR-10. The robustness of all defense models are tested against white-box FGSM,

6Explanations about the different results of TRADES (Zhang et al., 2019) are in Appendix B.
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Table 4: White-box robustness (%) on CIFAR-10 using the WideResNet-34-10.

Defense Natural
FGSM PGD20 PGD100 CW∞

Best Last Best Last Best Last Best Last
Standard 87.30 56.10 56.10 52.68 49.31 51.55 49.03 50.73 48.47
Dynamic 84.51 63.53 63.53 55.03 51.70 54.12 50.07 51.34 49.27
TRADES6 84.22 64.70 64.70 56.40 53.16 55.68 51.27 51.98 51.12
MART 84.17 67.51 67.51 58.56 57.39 57.88 55.04 54.58 54.53

Table 5: White-box robustness (%) on WideResNet with additional unlabeled data.
a ) WideResNet-34-8 with 100K unlabeled data

Defense Natural PGD20

UAT++ 86.04 59.41
MART 86.68 61.88

b ) WideResNet-28-10 with 500K unlabeled data

Defense Natural PGD20

RST 89.70 63.10
MART 86.30 65.04

PGD20, PGD100 and CW∞ attacks, under the same settings as Section 4.2. We report the robustness
of both the best and the last epoch models obtained during training in Table 4 6. Our proposed MART
outperforms all baseline methods in terms of the robustness of both the best and the last epoch models.
Particularly under the most common comparison setting (against PGD20 attacks on CIFAR-10),
MART improved ∼ 8% over Standard, and ∼ 4% even over TRADES for the last epoch model. A
similar trend of improvement is also observed for the best epoch model results. Considering the worst
case accuracies against all attacks, MART still gains ∼ 6% and ∼ 3.5% robustness improvement
over Standard and TRADES respectively.

Boosting with Additional Unlabeled Data. Here, we evaluate the proposed semi-supervised version
of MART and show that it can also benefit from additional unlabeled data and achieves better
robustness. Following the exact settings in UAT++ (Uesato et al., 2019) and RST (Carmon et al.,
2019), we compare the robustness of MART with them on WideResNet-34-8 and WideResNet-28-10
against PGD20 (FGSM20) respectively (in the same setting as reported in their paper). The dataset is
CIFAR-10 with 100K unlabeled data for UAT++ and 500K for RST, since their unlabeled data are
both extracted from the 80 Million Tiny Images dataset (Torralba et al., 2008) but using different
strategies to source. As confirmed in Table 5, our proposed defense MART can also benefit from
unabeled data, and further improves the UAT++ and RST defenses. This again verifies the benefit of
differentiating misclassified and correctly classified examples for improving robustness, and further
demonstrates the superiority of our proposed method.

5 CONCLUSION AND FUTURE WORK

In this paper, we investigated the interesting observation that misclassified examples have a recog-
nizable impact on the final robustness of adversarial training, especially for the outer minimization
process. Based on this observation, we designed a misclassification aware adversarial risk, which
is formulated as adding an misclassification aware regularization to the standard adversarial risk.
Following the regularized adversarial risk, we proposed a new defense algorithm, called Misclassifi-
cation Aware adveRsarial Training (MART), with appropriate surrogate loss functions. Experimental
results demonstrated that MART can achieve significantly improved adversarial robustness with
respect to the state-of-the-art, and can also achieves better robustness with additional unlabeled data.

In the future, we plan to investigate the effect of differentiation of correctly classified/misclassified
training examples in the recently proposed certified/provable robustness framework (Cohen et al.,
2019; Salman et al., 2019) and explore the potential improvements brought by the differentiation of
training examples.
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A MART ALGORITHM

Algorithm 1 Misclassification Aware adveRsarial Training (MART)

1: Input: Training data {xi, yi}i=1,...,n, outer iteration number TO, inner iteration number TI ,
maximum perturbation ε, step size for inner optimization ηI , step size for outer optimization ηO

2: Initialization: Standard random initialization of hθ
3: for t = 1, . . . , TO do
4: Uniformly sample a minibatch of training data B(t)

5: for xi ∈ B(t) do
6: x′i = xi + ε · ξ, with ξ ∼ U(−1, 1) # U is a uniform distribution
7: for s = 1, . . . , TI do
8: x′i ← ΠBε(xi)

(
x′i + ηI · sign(∇x′i

CE(p(x′i,θ), yi))
)

# Π(·) is the projection operator
9: end for

10: x̂′i ← x′i
11: end for
12: θ ← θ − ηO

∑
xi∈B(t) ∇θL(xi, yi, x̂

′
i;θ)

13: end for
14: Output: Robust classifier hθ

B EXPLANATIONS ABOUT THE RESULTS OF TRADES
To make a fair comparison with the latest method TRADES (Zhang et al., 2019), our code is built
upon the TRADES framework. However, TRADES has replication issues, as pointed out by Carmon
et al. (2019) and other researchers at GitHub issue #9 “Robust Accuracy on CIFAR10”. The authors
of TRADES confirmed that the robustness reported in their paper is the *best* robustness that ever
occurred during training. To avoid questioning of our results, we have reported both the *best* and
the *last* results in Table 4, and the *best* results for TRADES match their original paper.
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