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ABSTRACT

In this paper, we tackle the problem of detecting samples that are not drawn from
the training distribution, i.e., out-of-distribution (OOD) samples, in classification.
Many previous studies have attempted to solve this problem by regarding samples
with low classification confidence as OOD examples using deep neural networks
(DNNs). However, on difficult datasets or models with low classification abil-
ity, these methods incorrectly regard in-distribution samples close to the decision
boundary as OOD samples. This problem arises because their approaches use only
the features close to the output layer and disregard the uncertainty of the features.
Therefore, we propose a method that extracts the uncertainties of features in each
layer of DNNs using a reparameterization trick and combines them. In experi-
ments, our method outperforms the existing methods by a large margin, achieving
state-of-the-art detection performance on several datasets and classification mod-
els. For example, our method increases the AUROC score of prior work (83.8%)
to 99.8% in DenseNet on the CIFAR-100 and Tiny-ImageNet datasets.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved high performance in many classification tasks such as
image classification (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014), object detection (Lin
et al., 2017; Redmon & Farhadi, 2018), and speech recognition (Hinton et al., 2012; Hannun et al.,
2014). However, DNNs tend to make high confidence predictions even for samples that are not
drawn from the training distribution, i.e., out-of-distribution (OOD) samples (Hendrycks & Gimpel,
2016). Such errors can be harmful to medical diagnosis and automated driving. Because it is not
generally possible to control the test data distribution in real-world applications, OOD samples are
inevitably included in this distribution. Therefore, detecting OOD samples is important for ensuring
the safety of an artificial intelligence system (Amodei et al., 2016).

There have been many previous studies (Hendrycks & Gimpel, 2016; Liang et al., 2017; Lee et al.,
2017; DeVries & Taylor, 2018; Lee et al., 2018; Hendrycks et al., 2018) that have attempted to solve
this problem by regarding samples that are difficult to classify or samples with low classification
confidence as OOD examples using DNNs. Their approaches work well and they are computation-
ally efficient. The limitation of these studies is that, when using difficult datasets or models with
low classification ability, the confidence of inputs will be low, even if the inputs are in-distribution
samples. Therefore, these methods incorrectly regard such in-distribution samples as OOD samples,
which results in their poor detection performance (Malinin & Gales, 2018), as shown in Figure 1.

One cause of the abovementioned problem is that their approaches use only the features close to
the output layer and the features are strongly related to the classification accuracy. Therefore, we
use not only the features close to the output layer but also the features close to the input layer.
We hypothesize that the uncertainties of the features close to the input layer are the uncertainties
of the feature extraction and are effective for detecting OOD samples. For example, when using
convolutional neural networks (CNNs), the filters of the convolutional layer close to the input layer
extract features such as edges that are useful for in-distribution classification. In other words, in-
distribution samples possess more features that convolutional filters react to than OOD samples.
Therefore, the uncertainties of the features will be larger when the inputs are in-distribution samples.

Another cause of the abovementioned problem is that their approaches disregard the uncertainty of
the features close to the output layer. We hypothesize that the uncertainties of the latent features close
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Figure 1: Comparison of existing and proposed methods. We visualized scatter plots of the outputs
of the penultimate layer of a CNN that can estimate the uncertainties of latent features using the
SVHN dataset (Netzer et al., 2011). We used only classes 0, 1, and 2 for the training data. Classes
0, 1, 2, and OOD, indicated by red, yellow, blue, and black, respectively, were used for the vali-
dation data. We plot the contour of the maximum output of the softmax layer of the model. Left:
Because the image of “204” includes the digits “2” and “0,” the maximum value of the softmax
output decreases because the model does not know to which class the image belongs. Right: The
sizes of points in the scatter plots indicate the value of the combined uncertainties of features. We
can classify the image of “204” as an in-distribution image according to the value of the combined
uncertainties.

to the output layer are the uncertainties of classification and are also effective for detecting OOD
samples. For example, in-distribution samples are embedded in the feature space close to the output
layer to classify samples. In contrast, OOD samples have no fixed regions for embedding. Therefore,
the uncertainties of the features of OOD samples will be larger than those of in-distribution samples.

Based on the hypotheses, we propose a method that extracts the Uncertainties of Features in Each
Layer (UFEL) and combines them for detecting OOD samples. Each uncertainty is easily estimated
after training the discriminative model by computing the mean and the variance of their features
using a reparameterization trick such as the variational autoencoder (Kingma & Welling, 2013) and
variational information bottleneck (Alemi et al., 2016; 2018). Our proposal is agnostic to the model
architecture and can be easily combined with any regular architecture with minimum modifications.

We visualize the maximum values of output probability and the combined uncertainties of the latent
features in the feature space of the penultimate layer in Figure 1. The combined uncertainties of the
features discriminate the in-distribution and OOD images that are difficult to classify. For example,
although the images that are surrounded by the red line are in-distribution samples, they have low
maximum softmax probabilities and could be regarded as OOD samples in prior work. Meanwhile,
their uncertainties are smaller than those of OOD samples and they are regarded as in-distribution
samples in our method.

In experiments, we validate the hypothesis demonstrating that each uncertainty is effective for de-
tecting OOD examples. We also demonstrate that UFEL can obtain state-of-the-art performance in
several datasets including CIFAR-100, which is difficult to classify, and models including LeNet5
with low classification ability. Moreover, UFEL is robust to hyperparameters such as the number of
in-distribution classes and the validation dataset.

2 RELATED WORK

Methods based on the classification confidence Hendrycks & Gimpel (2016) proposed the base-
line method to detect OOD samples without the need to further re-train and change the structure
of the model. They define low-maximum softmax probabilities as indicating the low confidence of
in-distribution examples and detect OOD samples using the softmax outputs of a pre-trained deep
classifier. Building on this work, many models have recently been proposed. Liang et al. (2017)
proposed ODIN, a calibration technique that uses temperature scaling (Guo et al., 2017) in the
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Figure 2: Network structure of UFEL when using DenseNet. Black arrow: Extracting the variance
of latent features using the reparameterization trick. Blue arrow: Combining these features.

softmax function and adds small controlled perturbations to the inputs to widen the gap between in-
distribution and OOD features, which improves the performance of the baseline method. Likewise,
Lee et al. (2018); DeVries & Taylor (2018); Lee et al. (2017); Hendrycks et al. (2018) also extended
the baseline method. Like Hendrycks & Gimpel (2016), we use the feature of maximum softmax
probability as one of our features.

Methods based on the uncertainty Malinin & Gales (2018) attempted to solve the problem of
classifying in-distribution samples close to the decision boundary as OOD samples by distinguishing
between data uncertainty and distributional uncertainty. Data uncertainty, or aleatoric uncertainty
(Kendall & Gal, 2017), is irreducible uncertainty such as class overlap, whereas distributional un-
certainty arises because of the mismatch between training and testing distributions. They argue that
the value of distributional uncertainty depends on the difference in the Dirichlet distribution of the
categorical parameter. Further, they estimate the parameter of the Dirichlet distribution using a DNN
and train the model with in-distribution and OOD datasets. The motivation for our work is similar
to that of Malinin & Gales (2018). In our work, the distribution of the logit of the categorical pa-
rameters is modeled as a Gaussian distribution, which enables us to train the model without an OOD
dataset. Furthermore, we estimate the parameters of the Gaussian distribution of latent features close
to the input layer.

3 PROPOSED METHOD

In this section, we present UFEL, which extracts the uncertainties of features in each layer and
combines them for detecting OOD samples. First, we use the maximum of the softmax output, as
in Hendrycks & Gimpel (2016), as one of our features. Second, we also use the distribution of the
categorical parameter, as in Malinin & Gales (2018), using the uncertainty of logits. Furthermore,
we use the uncertainty of the feature extraction extracted from the latent space close to the input
layer because they will not be relevant to the classification accuracy. We probabilistically model the
values of these features, estimate their uncertainties, and combine them.

Let x ∈ X be an input, y ∈ Y = {1, · · · ,K} be its label, and l ∈ {1, · · · , L} be the index of the
block layers. The objective function of normal deep classification is as follows:

J = Ex,y∼p(x,y)[L(fφ(x), y)], (1)

where p(x, y) is the empirical data distribution, L is a cross entropy loss function, and fφ is a DNN.
We use the following notation fφ = fφL

◦ fφL−1
◦ · · · ◦ fφ1 as shown in Figure 2.

To extract the uncertainties of features in each layer, we model the lth block layer’s output zl as a
Gaussian whose parameters depend on the l-1th block layer’s output zl−1 as follows: p(zl|zl−1) =
N (zl|fµφl

(zl−1), fΣ
φl

(zl−1)), where fφl
is the lth block layer, which outputs both the mean µ and

covariance matrix Σ. In this paper, we use a diagonal covariance matrix to reduce the model param-
eters. We use the reparameterization trick (Kingma & Welling, 2013) to write zl = µl + σlε, where
µl = fµφl

(zl−1), σl = fΣ
φl

(zl−1), and ε is the Gaussian noise. Then, our objective function is as
follows:

JU = Ex,y∼p(x,y),ε∼p(ε)[L(zL(x, ε), y)], (2)
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where z0 = x. Because of the reparameterization trick, the loss gradient is backpropagated directly
through our model, and we can train our model like the regular classification models in Equation 1.

Next, we explain the two methods of combining the features extracted in each layer. In the first
method, we sum the uncertainties of each value of the features in each layer and linearly combine
them. Because the feature maps of a convolutional block layer are three dimensional, each element
is computed as zlijk = µlijk + σlijkε. Moreover, because the output of a fully connected layer is one
dimensional, each element is formed as zli = µli + σliε. We use a weighted summation of the scale
of each feature and the maximum value of the softmax scores as a final feature dLR as follows:

dLR(x) =

L−1∑
l=1

λlσlsum(x) + λL max(zL), σlsum =

{∑
ijk σ

l
ijk (if the lth block is Conv)∑

i σ
l
i (otherwise)

(3)

We choose the parameter λl by training a logistic regression (LR) using in-distribution and OOD
validation samples. In the second method, we combine the features directly and nonlinearly using a
CNN as follows:

dCNN (x) = CNNθ(σ
1(x), ..., σL−1(x),max(zL)). (4)

We train the CNN parameter θ with in-distribution and OOD validation samples using binary
crossentropy loss. The detailed structures of the CNN are given in Table A.3. We use the values of
these feature d(x) to test the performance of detecting OOD samples.

4 EXPERIMENTAL SETUP

In this section, we present the details of the experiments, which includes the datasets, metrics, com-
parison methods, and models. Because of space limitations, more details are given in Appendix A.

Datasets We used several standard datasets for detecting OOD samples and classifying in-
distribution samples. The SVHN, CIFAR-10, and CIFAR-100 datasets were used as in-distribution
datasets, whereas Tiny ImageNet (TIM), LSUN, iSUN, Gaussian noise, and uniform noise were used
as OOD datasets. These data were also used in Liang et al. (2017); DeVries & Taylor (2018). We
applied standard augmentation (cropping and flipping) in all experiments. We used 5,000 validation
images split from each training dataset and chose the parameter that can obtain the best accuracy
in the validation dataset. We also used 68,257 training images from the SVHN dataset and 45,000
training images from the CIFAR-10 and CIFAR-100 datasets. All the hyperparameters of ODIN
and UFEL were tuned on a separate validation set, which consists of 100 OOD images from the
test dataset and 1,000 images from the in-distribution validation set. We tuned the parameters of the
CNN in Equation 4 using 50 validation training images taken from the 100 validation images. The
best parameters were chosen by validating the performance using the rest of 50 validation images.
Finally, we tested the models with a test dataset that consisted of 10,000 in-distribution images and
9,900 OOD images.

Evaluation metrics We used several standard metrics for testing the detection of OOD samples
and the classification of in-distribution samples. We used TNR at 95% TPR, AUROC, AUPR, and
accuracy (ACC), which were also used in Lee et al. (2017; 2018).

Comparison method We compare UFEL with the baseline (Hendrycks & Gimpel, 2016) and
ODIN (Liang et al., 2017) methods. For the baseline method, we used maxk p(y = k|x) as the detec-
tion metric. For ODIN, we used the same detection metric and calibrated it using temperature scaling
and small perturbations to the input. The temperature parameter T ∈ {1, 10, 100, 1000} and the per-
turbation parameter ε ∈ {0, 0.001, 0.005, 0.01, 0.05, 0.1} were chosen using the in-distribution and
OOD validation datasets.

Model training details We adopted LeNet5 (LeCun et al., 1998) and two state-of-the-art models,
WideResNet (He et al., 2016) and DenseNet (Huang et al., 2017), in this experiment. In all experi-
ments, we used the same model and conditions to compare UFEL with existing methods. Only the
structure used to extract the variance parameters differs. For LeNet5, we increased the number of
channels of the original LeNet5 to improve accuracy. See Table A.3 for model details. We inserted
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Table 1: Results for the OOD detection test set data for image classification when the in-distribution
dataset is CIFAR-100 and the OOD dataset is iSUN. We trained Dense-BC for each method under
the same conditions. All results are averaged over three runs ± one standard deviation. All values
are percentages, and the best results are indicated in bold.

Method ACC TNR at TPR 95% AUROC AUPR-In AUPR-Out
Baseline 71.1±0.2 10.5±1.6 61.7±5.4 65.4±6.5 57.1±3.9
ODIN 43.4±10.4 85.1±5.7 86.6±5.8 82.9±6.0
max P 71.6±0.4 12.3±1.7 63.9±4.1 67.8±4.9 59.2±2.9
var 1 79.7±3.8 93.9±0.9 92.8±0.8 94.7±0.9
var 2 35.2±10.0 79.4±2.9 79.8±2.0 77.5±4.6
var 3 54.7±10.9 90.8±2.5 92.4±2.1 87.4±3.4
UFEL (LR) 93.1±0.7 98.6±0.1 98.7±0.1 98.5±0.1
UFEL (CNN) 99.3±0.5 99.8±0.1 99.8±0.1 99.8±0.1

the reparameterization trick to the second convolutional layer and the softmax layer. LeNet5 was
trained using the Adam (Kingma & Ba, 2014) optimizer for 10 epochs and the learning rate was set
to 5e-4. Both DenseNet and WideResNet were trained using stochastic gradient descent, with a Nes-
terov momentum of 0.9. We inserted the reparameterization trick to the first convolutional block,
the second convolutional block, and the softmax layer. For WideResNet, we used a WideResNet
with a depth of 40 and width of 4 (WRN-40-4), which was trained for 50 epochs. The learning rate
was initialized to 0.1 and reduced by a factor of 10× after the 40th epoch. For DenseNet, we used
a DenseNet with depth L = 100 (Dense-BC), growth rate of 12, and drop rate of 0. DenseNet-BC
was trained for 200 epochs with batches of 64 images, and a weight decay of 1e-4 for the CIFAR-10
and CIFAR-100 datasets. It was trained for 10 epochs for the SVHN dataset. The learning rate was
initialized to 0.1 and reduced by a factor of 10× after the 150th epoch.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of UFEL by conducting five experiments. In the first
experiment, we show that UFEL performs better than the baseline (Hendrycks & Gimpel, 2016) and
ODIN (Liang et al., 2017) methods on several datasets and models. In the second experiment, we
confirm that the features of UFEL have almost no relationship with the ACC. In the third experiment,
we demonstrate that UFEL has a strong ability to detect OOD data, even if the number of classes of
in-distribution data is small. In the fourth experiment, we confirm that UFEL is robust to the number
of OOD samples, and in the fifth experiment, we test the performance of UFEL on unseen OOD
datasets. The objective of these experiments is to show the uncertainties of the features obtained in
each CNN layer distinguish the in-distribution and OOD data. Moreover, we obtain state-of-the-art
performance for OOD sample detection by combining these features.

Detecting OOD samples on several datasets and models In this experiment, we evaluate the
performance of OOD detection using Equation 3 and Equation 4. In this study, var l is used to
denote σlsum, max P is max(zL), UFEL (LR) denotes dLR in Equation 3, and UFEL (CNN) denotes
dCNN in Equation 4. We measured the detection performance using a DenseNet trained on CIFAR-
100 when the iSUN dataset is used to provide the OOD images. Table 1 shows that var 1 and var 3
are strong features that, by themselves, can outperform ODIN. This indicates that the uncertainties
of the feature extraction and classification are effective for detecting OOD samples. Moreover, the
combination of these features yields state-of-the-art performance.

In Table 2, we demonstrate that UFEL outperforms the baseline and ODIN methods on several
datasets and models. Furthermore, UFEL is also slightly superior to them with respect to in-
distribution accuracy, which indicates that our model is robust to noise because of the reparame-
terization trick. Here, we do not report ODIN accuracy because the model of ODIN is the same as
that of the baseline. We conducted this experiment three times and used the average of the results.
We used the CIFAR-10, CIFAR-100, and SVHN datasets as the in-distribution datasets and the other
datasets as the OOD samples. Note that our UFEL outperformed the baseline and ODIN methods
by a large margin, especially when using CIFAR-100, which is difficult to classify, or LeNet5 which
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Table 2: Results for the OOD detection test set data for various situations. All results are averaged
over three runs. All values are percentages, and the best results are indicated in bold.

In-dist (model) OOD TNR at TPR 95% AUROC
Baseline / UFEL (ACC) Baseline / ODIN / UFEL (LR) / UFEL (CNN)

TIM 43.8 / 68.1 / 95.7 / 99.1 89.7 / 93.0 / 98.8 / 99.8
SVHN LSUN 42.3 / 66.0 / 98.4 / 99.8 89.2 / 92.7 / 99.6 / 99.9
(LeNet5) iSUN 46.8 / 72.0 / 97.7 / 99.3 90.6 / 94.1 / 99.4 / 99.8
90.7 / 91.2 Gaussian 99.9 /100.0/100.0/100.0 99.9 /100.0/100.0/100.0

Uniform 98.7 /100.0/100.0/100.0 99.6 / 99.9 /100.0/100.0
TIM 72.4 / 84.3 / 99.4 / 99.7 95.8 / 97.1 / 99.8 / 99.9

SVHN LSUN 67.6 / 80.5 / 99.9 / 99.9 95.0 / 96.4 / 99.9 /100.0
(Dense-BC) iSUN 73.6 / 85.5 / 99.8 / 99.9 95.9 / 97.3 / 99.9 /100.0
95.8 / 95.9 Gaussian 81.2 / 92.4 / 99.8 /100.0 97.2 / 98.3 / 99.7 /100.0

Uniform 90.2 / 97.7 /100.0/100.0 98.2 / 99.1 / 99.9 /100.0
TIM 7.5 / 8.6 / 48.7 / 92.3 58.8 / 59.7 / 83.7 / 97.7

CIFAR-10 LSUN 5.7 / 6.4 / 62.6 / 98.0 56.9 / 58.4 / 90.9 / 99.5
(LeNet5) iSUN 6.1 / 7.2 / 53.9 / 95.7 57.2 / 59.0 / 86.0 / 98.9
72.6 / 73.1 Gaussian 52.8 / 80.3 / 48.3 /100.0 93.3 / 96.6 / 89.9 /100.0

Uniform 48.7 / 55.8 / 88.5 /100.0 91.9 / 94.4 / 97.5 /100.0
TIM 25.8 / 72.7 / 93.2 / 99.4 84.6 / 95.2 / 98.5 / 99.8

CIFAR-10 LSUN 31.0 / 84.2 / 96.9 /100.0 87.5 / 97.1 / 99.3 /100.0
(WRN-40-4) iSUN 30.3 / 82.9 / 94.1 / 99.9 87.1 / 97.0 / 98.6 /100.0
88.8 / 89.6 Gaussian 36.2 / 90.1 /100.0/100.0 90.4 / 98.2 / 99.9 /100.0

Uniform 58.0 / 96.2 /100.0/100.0 94.7 / 99.0 / 99.8 /100.0
TIM 40.0 / 85.0 / 90.6 / 96.4 90.5 / 97.4 / 98.1 / 99.2

CIFAR-10 LSUN 47.1 / 92.4 / 93.9 / 99.4 92.2 / 98.5 / 98.8 / 99.8
(Dense-BC) iSUN 46.4 / 91.2 / 93.6 / 99.7 92.1 / 98.4 / 98.8 / 99.9
92.1/92.4 Gaussian 37.2 / 97.3 /100.0/100.0 92.6 / 99.2 /100.0/100.0

Uniform 53.8 / 92.7 /100.0/100.0 94.4 / 98.7 /100.0/100.0
TIM 1.6 / 1.6 / 51.4 / 88.7 45.9 / 45.7 / 85.8 / 96.4

CIFAR-100 LSUN 0.6 / 0.6 / 64.6 / 97.3 42.0 / 42.0 / 92.0 / 99.3
(LeNet5) iSUN 0.9 / 0.9 / 56.9 / 96.2 43.3 / 43.3 / 88.1 / 98.9
38.8 / 39.6 Gaussian 0.0 / 0.0 / 37.2 /100.0 42.6 / 47.9 / 93.1 /100.0

Uniform 0.2 / 0.0 / 99.2 /100.0 50.2 / 56.5 / 97.6 /100.0
TIM 9.0 / 32.9 / 88.6 / 99.1 63.2 / 81.5 / 97.6 / 99.8

CIFAR-100 LSUN 9.4 / 38.1 / 94.2 / 99.9 65.2 / 85.2 / 98.7 /100.0
(WRN-40-4) iSUN 8.4 / 32.9 / 89.9 / 99.6 63.8 / 83.0 / 97.8 / 99.9
63.9 / 66.0 Gaussian 6.8 / 39.2 /100.0/100.0 60.2 / 89.0 / 99.6 /100.0

Uniform 4.8 / 34.1 / 92.6 /100.0 63.5 / 87.0 / 97.7 /100.0
TIM 11.5 / 43.3 / 87.9 / 98.9 61.5 / 83.8 / 97.3 / 99.8

CIFAR-100 LSUN 11.3 / 46.0 / 95.5 / 99.9 62.4 / 86.2 / 99.0 /100.0
(Dense-BC) iSUN 10.5 / 43.4 / 93.1 / 99.3 61.7 / 85.1 / 98.6 / 99.8
71.1 / 71.6 Gaussian 23.6 / 99.0 /100.0/100.0 84.7 / 99.4 /100.0/100.0

Uniform 32.7 / 98.0 /100.0/100.0 89.5 / 99.3 /100.0/100.0

has lower classification ability. This result indicates that UFEL is less affected by in-distribution
accuracy, and can discriminate between actual OOD samples and class-overlapping samples from
in-distribution samples.

Relationship between the performance of detecting OOD samples and in-distribution accuracy
In this experiment, we show that the features of our method are not related to the in-distribution
accuracy. We used CIFAR-10 as the in-distribution dataset and TIM as the OOD dataset. We trained
DenseNet-BC for nine epochs and tested the performance at each epoch. As shown in Figure 3, each
variance (var l) is less related to the accuracy than the baseline and ODIN methods. The var 1 of
the feature close to the input layer has the highest ability to detect OOD samples in this experiment.
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Figure 3: Plot of ACC (x-axis) and AUROC (y-axis). The number on the plot indicates the number
of training epochs. We used CIFAR-10 (as in-distribution), TIM (as OOD), and the DenseNet-BC
model. This graph shows that the AUROC of UFEL is less related to ACC than those of the baseline
and ODIN.
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Figure 4: Plot of AUROC (y-axis) when changing the number of in-distribution dataset classes (x-
axis). We used SVHN as in-distribution dataset, TIM, LSUN, and iSUN as OOD datasets, and the
LeNet5 model. All plots were averaged over three runs and the error bar indicates one standard
deviation.

These results also indicate that we can discriminate in-distribution and OOD examples when using
a dataset that is difficult to classify.

Detecting OOD samples while changing the number of in-distribution classes In this ex-
periment, we show that UFEL is robust to the number of class labels. We used SVHN as in-
distribution dataset and changed the number of in-distribution classes in training as {0,1}, {0,1,2},...,
{0,1,2,...,9}. We also used TIM, LSUN and iSUN datasets as OOD samples, and LeNet5 as a model.
We compared the proposed method with the baseline and ODIN methods, as shown in Figure 4. This
graph shows the AUROC score of each model when changing the number of training data classes.
As this graph shows, UFEL outperforms other methods in all cases and is robust to the number
of in-distribution classes, whereas the performance of ODIN drops as the number of class labels
decreases. These results suggest that UFEL is effective for small datasets because the number of
samples can be decreased to one fifth of the original number when there are two in-distribution
classes and the cost of label annotation is reduced.

Detecting OOD samples while changing the number of OOD samples In this experiment, we
present the performance of UFEL while changing the number of OOD validation examples. All the
hyperparameters of ODIN and UFEL were tuned on a separate validation set, which consists of 30,
50, and 100 OOD images in the test dataset and 1,000 images from the in-distribution validation
set. As shown in Figure 5, although UFEL (CNN) outperforms other methods including UFEL
(LR) in most cases, it performs worse than ODIN in part of the results because some tuning for
OOD samples is needed. Meanwhile, UFEL (LR) outperforms prior methods constantly because
the number of hyperparameters is small and tuning samples are almost unneeded.
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Figure 5: Plot of AUROC (y-axis) when changing the OOD dataset (x-axis). We used CIFAR-10
and CIFAR-100 as the in-distribution dataset. All plots are averaged over three runs and the error
bar indicates one standard deviation.

Generalization to unseen OOD dataset Because OOD validation samples might not be available
in practice, we used only uniform noise as the validation OOD dataset and tested the ability of our
model to detect another OOD dataset. We added a binary classification as a comparison method.
This method was trained using an in-distribution dataset (positive) and uniform noise (negative).
Table 3 shows that UFEL outperforms prior work in all cases and generalize well. Table 3 also
indicates that the binary classification method does not generalize well because it cannot distin-
guish in-distribution dataset and OOD datasets TIM, LSUN, and iSUN, although it can distinguish
Gaussian noise, which is similar to uniform noise.

Table 3: AUROC score for OOD detection test set data. All results are averaged over three runs. All
values are percentages and the best results are indicated in bold.

AUROC WRN-40-4 Dense-BC
In-dist OOD Binary / Baseline / ODIN / UFEL (LR) / UFEL (CNN)
CIFAR-10 TIM 41.3 / 84.6 / 94.6 / 98.0 / 98.7 71.2 / 90.5 / 96.3 / 96.6 / 97.8

LSUN 40.8 / 87.5 / 96.7 / 98.5 / 99.3 75.1 / 92.2 / 97.5 / 97.1 / 97.9
iSUN 42.1 / 87.1 / 96.6 / 98.0 / 99.3 75.4 / 92.1 / 97.4 / 97.8 / 98.4
Gaussian 100.0/ 90.4 / 98.2 / 99.9 /100.0 100.0/ 92.6 / 99.2 / 99.9 /100.0

CIFAR-100 TIM 46.3 / 63.2 / 81.5 / 97.1 / 98.1 67.0 / 61.5 / 77.2 / 94.1 / 94.4
LSUN 47.1 / 65.2 / 85.2 / 98.0 / 98.8 73.4 / 62.4 / 79.3 / 94.5 / 94.7
iSUN 46.9 / 63.8 / 83.0 / 97.5 / 98.7 70.0 / 61.7 / 78.2 / 94.7 / 95.1
Gaussian 100.0/ 60.2 / 89.0 / 99.4 /100.0 100.0/ 84.7 / 99.3 /100.0/100.0

6 CONCLUSION AND FUTURE WORK

In this paper, we demonstrated that the uncertainties of features extracted in each hidden layer are
important for detecting OOD samples. We combined these uncertainties to obtain state-of-the-art
OOD detection performance on several models and datasets. The approach proposed in this paper
has the potential to increase the safety of many classification systems by improving their ability
to detect OOD samples. In future work, our model could be used in an unsupervised model by
training it to minimize reconstruction error, which would avoid the need to use in-distribution labels
to detect OOD samples. Furthermore, although we compared our model with ODIN, UFEL will
perform better if we combine UFEL with ODIN because they are orthogonal methods.
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crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc curves. In
Proceedings of the 23rd international conference on Machine learning, pp. 233–240. ACM, 2006.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Terrance DeVries and Graham W Taylor. Learning confidence for out-of-distribution detection in
neural networks. arXiv preprint arXiv:1802.04865, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 1321–1330. JMLR. org, 2017.

Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end
speech recognition. arXiv preprint arXiv:1412.5567, 2014.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas G Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, An-
drew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, et al. Deep neural networks
for acoustic modeling in speech recognition. IEEE Signal processing magazine, 29, 2012.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pp. 5574–5584, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.
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A DETAILS OF EXPERIMENTAL SETTINGS

A.1 EVALUATION METRIC

We used several standard metrics for testing the detection of OOD samples and the classification of
in-distribution samples.

TNR at 95% TPR. Let TP, TN, FP, and FN denote the numbers of true positives, true negatives,
false positives, and false negatives, respectively. We measure TNR = TN / (FP+TN), when TPR =
TP / (TP+FN) is 95%.

AUROC. The Area Under the Receiver Operating Characteristic curve (Davis & Goadrich, 2006) is
a threshold-independent metric. The ROC curve depicts the relationship between TPR and FPR.

AUPR. The Area under the Precision-Recall curve is another threshold independent metric. The
PR curve depicts the relationship between precision and recall. The metrics AUPR-In and AUPR-
Out denote the area under the precision-recall curve in which in-distribution and OOD images are
specified as positives, respectively.

ACC. We choose accuracy for measuring the classification ability of models when using in-
distribution samples. We measure ACC = (TP+TN) / (TP + FP + TN + FN).

A.2 DATASET

We used several standard datasets for detecting OOD samples and classifying in-distribution sam-
ples.
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CIFAR. The CIFAR dataset (Krizhevsky et al., 2009) contains 32 × 32 natural color images. The
training set has 50,000 images and the test set has 10,000 images. CIFAR-10 has 10 classes, whilst
CIFAR-100 has 100 classes.

SVHN. The Street View Housing Numbers (SVHN) dataset (Netzer et al., 2011) contains 32 × 32
color images of house numbers. The training set has 604,388 images and the test set has 26,032
images. SVHN has 10 classes comprising the digits 0–9.

TIM. The Tiny ImageNet dataset consists of a subset of ImageNet images (Deng et al., 2009). It
contains 10,000 test images from 200 different classes. We downsampled the images to 32 × 32
pixels.

LSUN. The Large-scale Scene UNderstanding (LSUN) dataset (Yu et al., 2015) has 10,000 test
images of 10 different scenes. We downsampled the images to 32 × 32 pixels.

iSUN. The iSUN (Xu et al., 2015) dataset consists of a subset of 8,925 SUN images. We downsam-
pled the images to 32 × 32 pixels.

Gaussian Noise. The Gaussian noise dataset consists of 10,000 random two-dimensional Gaussian
noise images, where each value of every pixel is sampled from an i.i.d Gaussian distribution with
mean 0.5 and unit variance.

Uniform Noise. The uniform noise dataset consists of 10,000 images, where each value of every
pixel is independently sampled from a uniform distribution on [0, 1].

A.3 MODEL STRUCTURE

Layers In channels Out channels Ksize Stride Padding
Conv2d 3 64 5 1 0
ReLU - - - - -

MaxPool2d - - - 2 -
Conv2d 64 128 5 1 0
ReLU - - - - -

MaxPool2d - - - 2 -
Linear 128*5*5 120 - - -
ReLU - - - - -
Linear 120 84 - - -
ReLU - - - - -
Linear 84 10 - - -

softmax - - - - -

Table 4: Network architecture of LeNet5.

Layers In channels Out channels Ksize Stride Padding
Conv2d 128 64 4 1 2

BatchNorm2d - - - - -
ReLU - - - - -

MaxPool2d - - - 2 -
Conv2d 64 1 4 1 2

BatchNorm2d - - - - -
ReLU - - - - -

MaxPool2d - - - 2 -
Feature Combination 1*3*3 1*3*3 + y dim + 1 - - -

Linear 1*3*3 + y dim + 1 100 - - -
BatchNorm1d - - - - -

ReLU - - - - -
Linear 100 1 - - -

Sigmoid - - - - -

Table 5: Network architecture of the feature-combining CNN for LeNet5.
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Figure 7: CNN for feature combination.
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Layers In channels Out channels Ksize Stride Padding
Conv2d 108 150 4 1 2

BatchNorm2d - - - - -
ReLU - - - - -

MaxPool2d - - - 2 -
Feature Combination 150 150*2 - - -

Conv2d 150*2 64 4 1 2
BatchNorm2d - - - - -

ReLU - - - - -
MaxPool2d - - - 2 -

Conv2d 64 1 4 1 2
BatchNorm2d - - - - -

ReLU - - - - -
MaxPool2d - - - 2 -

Feature Combination 1*2*2 1*2*2 + y dim + 1 - - -
Linear 1*2*2 + y dim + 1 1024 - - -

BatchNorm1d - - - - -
ReLU - - - - -
Linear 1024 1 - - -

Sigmoid - - - - -

Table 6: Network architecture of the feature-combining CNN for Dense-BC.

Layers In channels Out channels Ksize Stride Padding
Conv2d 64 128 4 1 2

BatchNorm2d - - - - -
ReLU - - - - -

MaxPool2d - - - 2 -
Feature Combination 128 128*2 - - -

Conv2d 128*2 64 4 1 2
BatchNorm2d - - - - -

ReLU - - - - -
MaxPool2d - - - 2 -

Conv2d 64 1 4 1 2
BatchNorm2d - - - - -

ReLU - - - - -
MaxPool2d - - - 2 -

Feature Combination 1*4*4 1*4*4 + y dim + 1 - - -
Linear 1*4*4 + y dim + 1 1024 - - -

BatchNorm1d - - - - -
ReLU - - - - -
Linear 1024 1 - - -

Sigmoid - - - - -

Table 7: Network architecture of the feature-combining CNN for WRN-40-4.
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