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ABSTRACT

Model-free Reinforcement Learning (RL) algorithms work well in sequential
decision-making problems when experience can be collected cheaply and model-
based RL is effective when system dynamics can be modeled accurately. How-
ever, both of these assumptions can be violated in real world problems such as
robotics, where querying the system can be prohibitively expensive and real-world
dynamics can be difficult to model accurately. Although sim-to-real approaches
such as domain randomization attempt to mitigate the effects of biased simulation,
they can still suffer from optimization challenges such as local minima and hand-
designed distributions for randomization, making it difficult to learn an accurate
global value function or policy that directly transfers to the real world. In contrast
to RL, Model Predictive Control (MPC) algorithms use a simulator to optimize
a simple policy class online, constructing a closed-loop controller that can effec-
tively contend with real-world dynamics. MPC performance is usually limited by
factors such as model bias and the limited horizon of optimization. In this work,
we present a novel theoretical connection between information theoretic MPC and
entropy regularized RL and develop a Q-learning algorithm that can leverage bi-
ased models. We validate the proposed algorithm on sim-to-sim control tasks to
demonstrate the improvements over optimal control and reinforcement learning
from scratch. Our approach paves the way for deploying reinforcement learning
algorithms on real-robots in a systematic manner.

1 INTRODUCTION

Deep reinforcement learning algorithms have recently generated great interest due to their successful
application to a range of difficult problems including Computer Go (Silver et al., 2016) and high-
dimensional control tasks such as humanoid locomotion (Lillicrap et al., 2015; Schulman et al.,
2015). While these methods are extremely general and can learn policies and value functions for
complex tasks directly from data, they can also be sample inefficient, and partially-optimized so-
lutions can be arbitrarily poor. These challenges severely restrict RL’s applicability to real systems
such as robots due to data collection challenges and safety concerns.

One straightforward way to mitigate these issues is to learn a policy or value function entirely in a
high-fidelity simulator (Shah et al., 2017; Todorov et al., 2012) and then deploy the optimized policy
on the real system. However, this approach can fail due to model bias, external disturbances, the
subtle differences between the real robot’s hardware and poorly modeled phenomena such as friction
and contact dynamics. Sim-to-real transfer approaches based on domain randomization (Sadeghi &
Levine, 2016; Tobin et al., 2017) and model ensembles (Kurutach et al., 2018; Shyam et al., 2019)
aim to make the policy robust by training it to be invariant to varying dynamics. However, learning
a globally consistent value function or policy is hard due to optimization issues such as local optima
and covariate shift between the exploration policy used for learning the model and the actual control
policy executed on the task (Ross & Bagnell, 2012).

Model predictive control (MPC) is a widely used method for generating feedback controllers that
repeatedly re-optimizes a finite horizon sequence of controls using an approximate dynamics model
that predicts the effect of these controls on the system. The first control in the optimized sequence
is executed on the real system and the optimization is performed again from the resulting next state.
However, the performance of MPC can suffer due to approximate or simplified models and lim-
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ited lookahead. Therefore the parameters of MPC, including the model and horizon H should be
carefully tuned to obtain good performance. While using a longer horizon is generally preferred,
real-time requirements may limit the amount of lookahead and a biased model can result in com-
pounding model errors.

In this work, we present an approach to RL that leverages the complementary properties of model-
free reinforcement learning and model-based optimal control. Our proposed method views MPC
as a way to simultaneously approximate and optimize a local Q function via simulation, and Q
learning as a way to improve MPC using real-world data. We focus on the paradigm of entropy
regularized reinforcement learning where the aim is to learn a stochastic policy that minimizes the
cost-to-go as well as KL divergence with respect to a prior policy. This approach enables faster
convergence by mitigating the over-commitment issue in the early stages of Q-learning and better
exploration (Fox et al., 2015). We discuss how this formulation of reinforcement learning has deep
connections to information theoretic stochastic optimal control where the objective is to find control
inputs that minimize the cost while staying close to the passive dynamics of the system (Theodorou
& Todorov, 2012). This helps in both injecting domain knowledge into the controller as well as
mitigating issues caused by over optimizing the biased estimate of the current cost due to model
error and the limited horizon of optimization. We explore this connection in depth and derive an
infinite horizon information theoretic model predictive control algorithm based on Williams et al.
(2017). We test our approach called Model Predictive Q Learning (MPQ) on simulated continuous
control tasks and compare it against information theoretic MPC and soft Q-Learning (Haarnoja et al.,
2017), where we demonstrate faster learning with fewer system interactions and better performance
as compared to MPC and soft Q-Learning even in the presence of sparse rewards. The learned Q
function allows us to truncate the MPC planning horizon which provides additional computational
benefits. Finally, we also compare MPQ versus domain randomization(DR) on sim-to-sim tasks.
We conclude that DR approaches can be sensitive to the hand-designed distributions for randomizing
parameters which causes the learned Q function to be biased and suboptimal on the true system’s
parameters, whereas learning from data generated on true system is able to overcome biases and
adapt to the real dynamics.

2 RELATED WORK

Model predictive control has a rich history in robotics, ranging from control of mobile robots such
as quadrotors (Desaraju & Michael, 2016) and aggressive autonomous vehicles (Wagener et al.,
2019; Williams et al., 2017) to generating complex behaviors for high-dimensional systems such
as contact-rich manipulation (Fu et al., 2016; Kumar et al., 2014) and humanoid locomotion (Erez
et al., 2013). The success of MPC can largely be attributed to online policy optimization which
helps mitigate model bias. The information theoretic view of MPC aims to find a policy at every
timestep that minimizes the cost over a finite horizon as well as the KL-divergence with respect
to a prior policy usually specified by the system’s passive dynamics (Theodorou & Todorov, 2012;
Williams et al., 2017). This helps maintain exploratory behavior and avoid over-commitment to the
current estimate of the cost function, which is biased due to modeling errors and a finite horizon.
Sampling-based MPC algorithms (Wagener et al., 2019; Williams et al., 2017) are also highly par-
allelizable enabling GPU implementations that aid with real-time control. However, efficient MPC
implementations still require careful system identification and extensive amounts of manual tuning.

Deep RL methods are extremely general and can optimize neural network policies from raw sen-
sory inputs with little knowledge of the system dynamics. Both value-based and policy-based
approaches (Schulman et al., 2015) have demonstrated excellent performance on complex control
problems. These approaches, however, fall short on several accounts when applying them to a real
robotic system. First, they have high sample complexity, potentially requiring millions of interac-
tions with the environment. This can be very expensive on a real robot, not least because the initial
performance of the policy can be arbitrarily bad. Using random exploration methods such a ε-greedy
can further aggravate this problem. Second, a value function or policy learned entirely in simulation
inherits the biases of the simulator. Even if a perfect simulation is available, learning a globally
consistent value function or policy is an extremely hard task as noted in (Silver et al., 2016; Zhong
et al., 2013). This can be attributed to local optima when using neural network representations or
the inherent biases in the Q learning update rules (Fox et al., 2015; Van Hasselt et al., 2016). In fact,
it can be difficult to explain why Q-learning algorithms work or fail (Schulman et al., 2017).
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Domain randomization aims to make policies learned in simulation more robust by randomizing
simulation parameters during training with the aim of making the policies invariant to potential
parameter error (Peng et al., 2018; Sadeghi & Levine, 2016; Tobin et al., 2017). However, these
policies are not adaptive to unmodelled effects, i.e they take into account only epistemic and not
aleoteric uncertainty. Also, such approaches are highly sensitive to hand-designed distributions used
for randomizing simulation parameters and can be highly suboptimal on the real-systems parameters,
for example, if a very large range of simulation parameters is used. Model-based approaches aim
to use real data to improve the model of the system and then perform reinforcement learning or
optimal control using the new model or ensemble of models (Kurutach et al., 2018; Ross & Bagnell,
2012; Shyam et al., 2019). Although learning accurate models is a promising avenue, we argue that
learning a globally consistent model is an extremely hard problem and instead we should learn a
policy that can rapidly adapt to experienced real-world dynamics.

The use of entropy regularization has been explored in RL and Inverse RL for its better sample
efficiency and exploration properties (Fox et al., 2015; Haarnoja et al., 2017; 2018; Schulman et al.,
2017; Ziebart et al., 2008). This framework allows incorporating prior knowledge into the problem
and learning multi-modal policies that can generalize across different tasks. Fox et al. (2015) analyze
the theoretical properties of the update rule derived using mutual information minimization and
show that this framework can overcome the over-estimation issue inherent in the vanilla Q-learning
update. In the past, Todorov (2009) have shown that using KL-divergence can convert the optimal
control problem into one that is linearly solvable.

Infinite horizon MPC aims to learn a terminal cost function that can add global information to the
finite horizon optimization. Rosolia & Borrelli (2017) learn a terminal cost as a control Lyapunov
function and a safety set for the terminal state. These quantites are calculated using all previously
visited states and they assume the presence of a controller that can deterministically drive the any
state to the goal. Tamar et al. (2017) learns a cost shaping to make a short horizon MPC mimic the
actions produced by long horizon MPC offline. However, since their approach is to mimic a longer
horizon MPC, the performance of the learner is fundamentally limited by the the performance of the
longer horizon MPC. On the contrary, learning an optimal value function as the terminal cost can
potentially lead to close to optimal performance.

Using local optimization is an effective way of improving an imperfect value function as noted in
RL literature by Anthony et al. (2017); Lowrey et al. (2018); Silver et al. (2016; 2017); Sun et al.
(2018). However, these approaches assume that a perfect model of the system is available. In order
to make the policy work on the real system, we argue that it is essential to learn a value function
form real data and utilize local optimization to stabilize learning.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING WITH ENTROPY REGULARIZATION

A Markov Decision Process (MDP) is defined by tuple (S,A, c,P, γ) where S is the state space,
A is the action space, c is a one step cost function, P is the space of transition functions and γ is a
discount factor. Let P ∈ P be a particular transition function. A closed-loop policy π(a|s) is a dis-
tribution over actions given state. Given a policy π and a prior policy π, the KL divergence between
them at a state is given by KL (π(a|s)||π(a|s)) = Eπ [log (π(a|s)/π(a|s))] Entropy-regularized
RL (Fox et al., 2015) aims to optimize the following objective

π∗ = arg min
π

Eπ,P

[ ∞∑
t=1

γt−1 (c(st, at) + λKL (πt||πt))

]
∀ s0 ∈ S (1)

where πt and πt are shorthand for π(at|st) and π(at|st) respectively, λ is the temperature parameter
that penalizes deviation of π from π. For a policy π, we can define the soft value and action-value
functions

V π(s) = Eπ,P

[ ∞∑
t=1

γt−1 (c(st, at) + λKL (πt||πt)) |s0 = s

]
Qπ(s, a) = c(s, a) + γEs′∼P (s′|s,a) [V π(s′)] (2)
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Given a horizon of H timesteps, we can use above definitions to write the value functions as

V π(s) = Eπ,P

[
H−1∑
t=1

γt−1(c(st, at) + λKL (πt||πt)) + γH−1V π(sH)|s1 = s

]

Qπ(s, a) = c(s, a) + Eπ,P

[
H−1∑
t=2

γt−1(c(st, at) + λKL (πt||πt))

+ γH−1(λKL (πH ||πH) +Q(sH , aH))|s1 = s, a1 = a

]
(3)

It is straightforward to verify that V π(s) = Ea∼π [log(π(a|s)/π(a|s)) +Q(s, a)]. The objective
in Eq. (1) can equivalently be written as

π∗ = arg min
π

V π(s) ∀ s ∈ S (4)

This optimization can be performed either by policy gradient methods that aim to find the optimal
policy π ∈ Π via stochastic gradient descent (Schulman et al., 2017) or value based methods that
try to iteratively approximate the value function of the optimal policy. In either case, the output of
solving the above optimization is a global closed-loop control policy π∗(a|s).

3.2 INFORMATION THEORETIC MPC

Solving the above optimization can be prohibitively expensive and hard to accomplish online. In
contrast to RL, MPC performs online optimization of a simple policy class with a truncated horizon.
This process effectively creates a closed-loop controller. In order to do so, MPC algorithms such as
MPPI (Williams et al., 2017) use an approximate dynamics model P̂ , which can be deterministic.
This is the case when using a simulator such as MuJoCo (Todorov et al., 2012) as the dynamics
model. At timestep t, starting from the current state st, an open loop sequence of actions A =
(at, at+1, . . . at+H) is sampled from the control distribution denoted by π(A). The objective is to
find an optimal sequence of actions to solve

A∗ = argmin
A

Eπ(A)

[
t+H−1∑
l=t

γl−tc(sl, al) + λKL (πl||πl) + γH−1(cf (st+H , at+H) + λKL (πt+H ||πt+H))

]
(5)

where cf (st+H , at+H) is a terminal cost function and π(A) is the passive dynamics of the system,
i.e the distribution over actions produced when the control input is zero. The first action in the
sequence is then executed on the system and the optimization is performed again from the result-
ing next state. The re-optimization and entropy regularization helps in mitigating model-bias and
inaccuracies with optimization by avoiding overcommitment to the current estimate of the cost. A
shortcoming of the MPC procedure is the finite horizon. This is especially pronounced in tasks with
sparse rewards where a short horizon can make the agent myopic to future rewards. To mitigate this,
an approach known as infinite horizon MPC sets the terminal cost cf as a value function that adds
global information to the problem.

In the next section, we build our approach by focussing on the MPPI algorithm and its relationship
with entropy regularized reinforcement learning. Specifically, we use the definitions of the soft value
functions from Eq. (2) to derive an optimal Boltzmann distribution forH-step actions that optimally
solves the infinite horizon control problem. This helps us derive the MPPI update rule from Williams
et al. (2017) for the infinite horizon case, which then leads to our Model Predictive Q Learning
(MPQ) algorithm, which utilizes a predictive model for Q updates and stochastic optimal control as
the policy. In the case where H = 1, the algorithm is equivalent to soft Q learning (Haarnoja et al.,
2018) or G-learning (Fox et al., 2015).

4 APPROACH

4.1 OPTIMAL H-STEP BOLTZMANN DISTRIBUTION

Let π(A) and π(A) be the joint control distribution and prior over H-horizon open-loop actions.
The distributions are assumed to be independent over timesteps, i.e π(a1 . . . aH) =

∏H
t=1 πt, where

4



Under review as a conference paper at ICLR 2020

πt is shorthand for π(at). Since P̂ is deterministic, the following equations hold

V π(s) = Eπ [λ log(π/π) +Qπ(s, a)] Qπ(s, a) = c(s, a) + γV π(s′) (6)

For clarity, we consider γ = 1. Substituting from Eq. (3) for Qπ(s, a)

V π(s) = Eπ1...πH

[
H−1∑
t=1

c(st, at) + λ

H∑
t=1

log(πt/πt) +Qπ(sH , aH)

]

= Eπ1...πH

[
H−1∑
t=1

c(st, at) + λ log

H∏
t=1

(πt/πt) +Qπ(sH , aH)

]

= Eπ

[
H−1∑
t=1

c(st, at) + λ log(π/π) +Qπ(sH , aH)

]
(7)

Consider the following distribution over H-horizon

π =
1

η
exp

(
−1

λ

(
H−1∑
t=1

c(st, at) +Qπ(sH , aH)

))
π(a1 . . . aH) (8)

where η is a normalization constant given by

η = Eπ(a1...aH)

[
exp

(
−1

λ

(
H−1∑
t=1

c(st, at) +Qπ(sH , aH)

))]
(9)

We show that this is the optimal control distribution as∇V π(s) = 0. Substituting Eq. (8) in (7)

V π(s) = Eπ

[
H−1∑
t=1

c(st, at)− λ log η −
H−1∑
t=1

c(st, at)−Qπ(sH , aH) +Qπ(sH , aH)

]
V π(s) = Eπ [−λ log η]

Since η is a constant, we have V π(s) = −λ log η. Hence for π in Eq. (8), the soft value function is
a constant with gradient zero given by

V π
∗
(s) = −λ logEπ(a1...aH)

[
exp

(
−1

λ

(
H−1∑
t=1

c(st, at) +Qπ(sH , aH)

))]
(10)

which is often referred to in optimal control literature as the “free energy” of the system (Theodorou
& Todorov, 2012; Williams et al., 2017). For H=1, Eq. (10) takes the form of the soft value function
from Fox et al. (2015) and Haarnoja et al. (2018).

4.2 INFINITE HORIZON MPPI UPDATE RULE

Similar to Williams et al. (2016), we derive the MPPI update rule for online policy optimization.
Since sampling actions from the optimal control distribution in Eq. (8) is intractable, we consider
control policies π(A) ∈ Π which are easy to sample from. We then optimize for a vector of H
control inputs U , such that the resulting action distribution minimizes the KL divergence with the
optimal policy

U∗ = arg min
π(A)

KL (π∗(A)||π(A)) (11)

The objective can be expanded out as

KL (π∗(A)||π(A)) =

∫
A

π∗(A) log
π∗(A)

π(A)
dA =

∫
A

π∗(A) log
π∗(A)

π(A)

π(A)

π(A)
dA

=

∫
A

π∗(A) log
π∗(A)

π(A)
dA−

∫
A

π∗(A) log
π(A)

π(A)
dA (12)
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Since the first term does not depend on the control input, we can remove it from the optimization

U∗ = arg max
π(A)

∫
A

π∗(A) log
π(A)

π(A)
dA (13)

Consider Π to be independent multivariate Gaussians over sequence of the H controls with constant
covariance Σ at each timestep. We can write the control distribution and prior as follows

π(A) =
1

Z

H∏
t=1

exp

(
−1

2
(ut − at)T Σ−1 (ut − at)

)
π(A) =

1

Z

H∏
t=1

exp

(
−1

2
aTt Σ−1at

)
(14)

where ut and at are the control inputs and actions at timestep t and Z is the normalization constant.
Here the prior corresponds to the passive dynamics of the system (Theodorou & Todorov, 2012;
Williams et al., 2017), although other choices of prior are possible. Substituting in Eq. (13) we get

U∗ = arg max
π(A)

∫
π∗(A)

(
H∑
t=1

−1

2
uTt Σ−1ut + uTt Σ−1at

)
dA (15)

The objective can be simplified to the following by integrating out the probability in the first term
H∑
t=1

1

2
uTt Σ−1ut + uTt

∫
π∗(A)Σ−1at dA (16)

Since this is a concave function with respect to every ut, we can find the maximum by setting its
gradient with respect to ut to zero to solve for optimal u∗t

u∗t =

∫
π∗(A)atdA =

∫
π(A)

π∗(A)

π(A)

π(A)

π(A)
atdA = Eπ(A)

[
π∗(A)

π(A)

π(A)

π(A)
at

]
= Eπ(A) [w(A)at]

(17)
where the second equality comes from importance sampling to convert the optimal controls into an
expectation over the control distribution instead of the optimal distribution which is impossible to
sample from. The importance weight w(A) can be written as follows (substituting π∗ from Eq. (8))

w(A) =
1

η
Eπ(A)

[
exp

(
−1

λ

(
H−1∑
t=1

c(st, at) +Qπ
∗
(sH , aH)

))
π(A)

π(A)

]
(18)

Making change of variables ut + εt = at for noise sequence E = (ε1 . . . εH) sampled from inde-
pendant Gaussians with zero mean and covariance Σ we get

w(E) =
1

η
Eπ(A)

[
exp

(
−1

λ

(
H−1∑
t=1

c(st, ut + εt) + λ
π(U + E)

π(U + E)
+Qπ

∗
(sH , uH + εH)

))]

=
1

η
Eπ(A)

[
exp

(
−1

λ

(
H−1∑
t=1

c(st, ut + εt) + λ

H∑
t=0

1

2
uTt Σ−1(ut + 2εt) +Qπ

∗
(sH , uH + εH)

))]
(19)

Note that η is the optimal H-step free energy derived in Eq. (10) and can be estimated from N
Monte-Carlo samples as

η =

N∑
n=1

exp

(
−1

λ

(
H−1∑
t=1

c(st, ut + εnt ) + λ

H∑
t=0

1

2
uTt Σ−1(ut + 2εnt ) +Qπ

∗
(sH , uH + εnH)

))
(20)

We can form the following iterative update rule where at every iteration i the sampled control se-
quence is updated according to

ui+1
t = uit + α

N∑
n=1

w(En)εn (21)

where α is a step-size parameter as proposed by Wagener et al. (2019). This gives us the infinite
horizon MPPI update rule. For H = 1, this corresponds soft Q-learning where stochastic optimiza-
tion is performved to solve for the optimal action online. Now we develop soft Q-learning algorithm
that utilizes infinite horizon MPPI to generate actions as well as Q-targets.
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4.3 THE INFORMATION THEORETIC MODEL PREDICTIVE Q-LEARNING ALGORITHM

Since we do not have access to Qπ
∗
, we can not estimate the importance weight in Eq. (19) exactly.

Hence, we consider Q functions parameterized by θ denoted byQθ(s, a). Similar to deep Q-learning
algorithms, we maintain an replay buffer (Mnih et al., 2015), and update parameters by stochastic
gradient descent on the loss L = 1

K

∑K
i=1(yi − Qθ(si, ai))

2 for a batch of K experience tuples
(s, a, c, s′) sampled from the buffer where targets yi are given by

y = c(s, a)−λ logEπ∗(a1...aH )

exp(−1
λ

(
H−1∑
t=1

c(st, at) + λ log
π∗t
πt

+Qθ(sH , aH)

)) ∣∣∣∣∣s1 = s′

 (22)

Since this optimization is performed online we can utilize large amount of computation (Tamar et al.,
2017) to calculate π∗(a1 . . . aH). In our case it is obtained by performing the infinite horizon MPPI
update in Eq. (21) for multiple iterations starting from state s′. The second term in Eq. (22) is the free
energy and is evaluated using Monte-Carlo samples as described in Eq. (20). Performing multiple
iterations of optimization allows for better exploration at a state which leads to better approximation
of the free energy (this is akin to approaches such as Covariance Matrix Adaption, except MPPI
does not adapt the covariance). This especially helps in early stages of learning by providing better
quality targets than a random Q function. Intuitively, this update rule leverages the biased dynamics
model P̂ for H steps and a soft Q function at the end learned from interactions with the real system.

At every timestep t during rollouts, a H-horizon sequence of actions is optimized using a single
iteration of infinite horizon MPPI update rule in Eq. (21) and the first action is executed on the
system. Online optimization with predictive models can lookahead to produces better actions than
acting greedily with respect to the biased Q function and makes ad-hoc exploration strategies such
as ε-greedy unnecessary. Using predictive models for generating value targets and online policy
optimization helps accelerate convergence as we demonstrate in our experiments in the next sec-
tion. Algorithm 1 shows the complete MPQ algorithm.

A closely related approach in literature is (Lowrey et al., 2018) which also uses online MPC and
offline value function learning, however they assume access to the true dynamics of the system and
do not explore the connection between MPPI and entropy regularized RL and hence do not use free
energy targets, even though they use MPPI in their implementation.

Algorithm 1: MPQ

Input : Approximate model P̂ , initial Q function parameters θ1, experience buffer D
Parameter: Number of episodes N , length of episode T , planning horizon H , number of update

episodes Nupdate
1 for i = 1 . . . N do
2 for t = 1 . . . T do
3 (at, . . . , at+H)← Infinite horizon MPPI (Eq. (21))
4 Execute at on the real system to obtain c(st, at) and next state st+1

5 D ← (st, at, c, st+1)

6 if N%Nupdate == 0 then
7 Sample K minibatches of experience from D
8 Generate targets using Eq. (22) and update parameters to θi+1

9 return θN or best θ on validation.

5 EXPERIMENTS

We perform experiments is to test the efficacy of MPQ in overcoming the shortcomings of stochastic
optimal control and model free RL in terms of convergence rate, computational requirements and
model bias. We also compare MPQ against domain randomization for learning policies that perform
well on systems for which accurate models are not known.

5.1 EXPERIMENTAL SETUP

We test our approach on sim-to-sim continuous control tasks based on the Mujoco simula-
tor (Todorov et al., 2012) to study the properties of the algorithm in a controlled manner. The
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agent is not provided with the true dynamics parameters, but a uniform distribution over them with
a biased mean and added noise. This serves as a reasonable approximation of model bias due to
inaccurate measurements. Details of the tasks considered are as follows

1. PENDULUMSWINGUP: the agent tries to swingup and stabilize a pendulum by applyingthe torque
on the hinge. The agent is provided a distribution over the mass and length of the pendulum. The
state of the system is given by (Θ, Θ̇), where Θ is the angular displacement. The cost function
penalizes the deviation from the upright position and angular velocity. The state of the system is
randomized after every episode which is 10 seconds long.

2. BALLINCUPSPARSE: a sparse version of the ball in cup task inspired from Tassa et al. (2018).
Given a cup and spherical ball attached by a tendon, the goal is to swing and catch the ball. The
agent can actuate motors on the two slide joints on the cup and is provided with a biased distribution
over the mass of the ball, its moment of inertia and stiffness of the tendon. A cost of 1 is incurred
at every timestep and 0 if the ball is in the cup. The position of the ball is randomized after every
episode which which is 4 seconds long. An episode is successful if agent catches the ball in the cup.

3. FETCHPUSHBLOCK: proposed by Plappert et al. (2018), the agent position controls the end-
effector of a simulated Fetch robot to push a block to a goal location on the table. The cost is
the distance between the center of mass of the block and the goal. We provide the agent a biased
distribution over the mass, moment of inertia inertia, friction coefficients and size of the object. An
episode is considered successful if the agent gets the block within 5cm of the goal in 4 seconds. The
positions of both block and goal is randomized after every episode.

The parameters we selected to randomize are reasonable in real world scenarios since estimating
quantities like moment inertia and friction coefficients is especially error prone. All our experiments
are performed on a desktop with 12 Intel Core i7-3930K @ 3.20GHz CPUs and 31 GB RAM with
only few hours of CPU training. Q-functions are parameterized with feed-forward neural networks
that take as input an observation vector and action. Refer to A.1 for further details.

Table 1: Details of control tasks and biased distribution over dynamics parameters. Ixyz denotes that moment of inertia is the same along
all three axes. For FETCHPUSHBLOCK, the block is assumed to be a cube with sides of length l and uniform distribution for every parameter
is defined by: mean = bias× true value and range = [−σ × true value,σ × true value]

Environment Cost function True parameters Biased distribution

PENDULUMSWINGUP Θ2 + 0.1Θ̇2 m = 1kg m = [0.9, 1.5]
l = 1m l = [0.9, 1.5]

BALLINCUPSPARSE 0 if ball in cup, 1 else
m = 0.058kg m = [0.0087, 0.87]

Ixyz = 1.47e− 5 Ixyz = [0.22, 22]× 1e− 5
stiffness = 0.05 stiffness = [0.00375, 1.5]

FETCHPUSHBLOCK d(block, goal)

m = 2kg bias = 0.35
Ixyz = 8.33e− 4 σ = 0.45

µ = [1, 5e− 3, 1e− 4]
l = 0.025m

5.2 BASELINES

We compare MPQ with a fixed horizon H against MPPI without a terminal value function and
SOFTQLEARNING. For SOFTQLEARNING we additionally use a target network to stabilize learning
whereas MPQ does not use target networks.

5.3 ANALYSIS OF OVERALL PERFORMANCE

5.3.1 COMPARISON OF MPQ WITH MPPI AND soft Q LEARNING

We test the hypotheses that (1) using a soft Q function as the terminal cost can significantly improve
MPPI performance even with a shorter horizon and (2) finite horizon optimization can lead to signif-
icantly faster convergence as compared to soft Q Learning especially in sparse reward tasks. Fig. 1
shows the training curves for MPQ versus soft Q learning. Online optimization is able to improve
upon the inaccuracies of the Q function and lead to faster convergence. In sparse reward task such
as BALLINCUPSPARSE, SOFTQLEARNING is unable to learn a consistent policy whereas MPQ
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Figure 1: Comparison of MPQ against baselines during training. Baselines are MPPI and SOFTQLEARNING. The number following H in
the legend corresponds to horizon for MPC optimization. SOFTQ is equivalent to MPQ with H = 1 (a) In the PENDULUMSWINGUP tasks
a learner with H = 8 is able to outperform MPPI with H = 32 due to the Q function adding global information and correcting for model
bias. (b) Due to the sparse nature of BALLINCUPSPARSE task, both SOFTQLEARNING and MPPI with long horizon of H = 48 are unable
to succeed consistently, whereas the learner is able to outperform them after only a few episodes of training. (c) In the FETCHPUSHBLOCK
task, a learner withH = 10 is able to perform at par with MPPI usingH = 25 in roughly 4 minutes of real system interaction.

improves very rapidly. Additionally, an MPQ agent with a short horizon consistently outperforms
MPPI with long horizon in all tasks. This can be attributed to (1) larger model bias in longer horizon
optimization (2) hardness of optimizing longer sequences and (3) global information encapsulated
in the Q function. Using a shorter horizon has added computational benefits as well. Since the Q
function is learned using data generated from the true system parameters, it is not affected by model
bias. In FETCHPUSHBLOCK, the agent is able to perform at par with MPPI using 2.5 times the
horizon in only 63 episodes of training which corresponds to roughly 4 minutes of experience on
simulation with true parameters. In contrast, SOFTQLEARNING barely ever moves the block and
MPPI with a short horizon succeeds only when arm is close to initial position of block.

5.3.2 BENEFIT OF MPQ OVER DOMAIN RANDOMIZATION

Domain randomization(DR) techniques aim to make the policy learned in simulation robust to mod-
elling errors by randomizing the simulation parameters using manually chosen distributions. How-
ever, such policies can be far from optimal on the true system parameters as the learned Q function is
inherently biased. However, A Q function learned using rollouts from the real system can overcome
model bias. We validate this hypothesis on the BALLINCUPSPARSE task by taking a DR approach
inspired by Peng et al. (2018). Simulated rollouts are generated by sampling different parameters at
every timestep from a broad range of dynamics parameters in Table 1, whereas real system rollouts
use the true parameters. The average success rate reported in Table 2 demonstrates that a Q function
learned solely using DR is unable to generalize to the true system parameters and MPQ has more
than twice the success rate when learned on real system.

Table 2: Performance comparison between training using real system rollouts (names ending with REAL) and DR (names ending with DR)
on BALLINCUPSPARSE task in terms of average number of successful attempts. Training episodes = 350, test episodes = 100. H stands for
horizon of MPC optimization in both training and testing, with H = 1 corresponding to soft Q learning.

Agent Average success rate
MPQH4REAL 0.85

MPQH4DR 0.41
MPQH1REAL 0.09

MPQH4DR 0.06

6 DISCUSSION

In this work we have presented a theoretical connection between information theoretic MPC and soft
Q learning approaches that naturally provides an algorithm to combine stochastic optimal control
and model-free reinforcement learning. The theoretical insight not only ties together the different
fields, but opens avenues to designing pragmatic RL algorithms that leverage the benefits of both.
However, some important questions are yet to be answered. The optimal horizon for MPC is in-
extricably tied with the model error and optimization artifacts. Investigating this dependence in a
principled manner is important for real-world applications. Another interesting avenue of research
is characterizing the performance of a parameterized Q function and using it to adapt the horizon of
MPC rollouts for smarter exploration.
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A APPENDIX

A.1 FURTHER EXPERIMENTAL DETAILS

The learned Q function takes as input the current action and an observation vector. The observation
vectors for different tasks are as follows:

1. PENDULUMSWINGUP:
[
cos(Θ), sin(Θ), Θ̇

]
(3 dimensional)

2. BALLINCUPSPARSE: [xball, xtarget, ˙xball, ˙xtarget, xtarget−xball, cos(Θ), sin(Θ)] (12
dimensional) where Θ is angle of line joining ball and target.

3. FETCHPUSHBLOCK: [xgripper, xobj , xobj − xgrip, gripper opening, rotobj , ẋobj , ωobj
gripper opening vel, ẋgripper, d(gripper, obj), xgoal − xobj , d(goal, obj), xgoal] (33 di-
mensional)

For all our experiments we parameterize Q functions with feedforward neural networks with two
layers containing 100 units each and tanh activation. We use Adam (Kingma & Ba, 2014) opti-
mization with a learning rate of 0.001. For geneerating value function targets in Eq. (22), we use 3
iterations of MPPI optimization. The MPPI parameters used are listed in Table 3. All parameters
were chosen using a coarse grid search and it is possible to further optimize them.

Table 3: MPPI parameters

Environment Number of samples Σ λ α γ
PENDULUMSWINGUP 24 4.0 0.15 0.5 0.9
BALLINCUPSPARSE 36 4.0 0.15 0.55 0.9
FETCHPUSHBLOCK 36 3.0 0.01 0.5 0.9

12


	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Reinforcement Learning with Entropy Regularization
	3.2 Information Theoretic MPC

	4 Approach
	4.1 Optimal H-step Boltzmann Distribution
	4.2 Infinite Horizon MPPI Update Rule
	4.3 The Information Theoretic Model Predictive Q-Learning Algorithm

	5 Experiments
	5.1 Experimental Setup
	5.2 Baselines
	5.3 Analysis of Overall Performance
	5.3.1 Comparison of MPQ with MPPI and soft Q Learning 
	5.3.2 Benefit of MPQ over domain randomization


	6 Discussion
	A Appendix
	A.1 Further experimental details


