
Under review as a conference paper at ICLR 2020

TIME2VEC: LEARNING A VECTOR REPRESENTATION
OF TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Time is an important feature in many applications involving events that occur
synchronously and/or asynchronously. To effectively consume time information,
recent studies have focused on designing new architectures. In this paper, we take
an orthogonal but complementary approach by providing a model-agnostic vector
representation for time, called Time2Vec, that can be easily imported into many
existing and future architectures and improve their performances. We show on a
range of models and problems that replacing the notion of time with its Time2Vec
representation improves the performance of the final model.

1 INTRODUCTION

In building machine learning models, “time” is often an important feature. Examples include
predicting daily sales for a company based on the date (and other available features), predicting the
time for a patient’s next health event based on their medical history, and predicting the song a person
is interested in listening to based on their listening history. The input for problems involving time can
be considered as a sequence where, rather than being identically and independently distributed (iid),
there exists a dependence across time (and/or space) among the data points. The sequence can be
either synchronous, i.e. sampled at regular intervals, or asynchronous, i.e. sampled at different points
in time. In both cases, time may be an important feature. For predicting daily sales, for instance, it
may be useful to know if it is a holiday or not. For predicting the time for a patient’s next encounter,
it is important to know the (asynchronous) times of their previous visits.

Recurrent neural networks (RNNs) do not typically treat time itself as a feature, typically assuming
that inputs are synchronous. When time is known to be a relevant feature, it is often fed in as yet
another input dimension (Choi et al., 2016; Du et al., 2016; Li et al., 2018b). In practice, RNNs
often fail at effectively making use of time as a feature. To help the RNN make better use of time,
several researchers design hand-crafted features of time that suit their specific problem and feed those
features into the RNN (Choi et al., 2016; Baytas et al., 2017; Kwon et al., 2019). Hand-crafting
features, however, can be expensive and requires domain expertise about the problem.

Many recent studies aim at obviating the need for hand-crafting features by proposing general-
purpose—as opposed to problem specific—architectures that better handle time (Neil et al., 2016;
Zhu et al., 2017; Mei & Eisner, 2017; Hu & Qi, 2017; Upadhyay et al., 2018; Li et al., 2018a). We
follow an orthogonal but complementary approach to these recent studies by developing a general-
purpose model-agnostic representation for time that can be potentially used in any architecture.
In particular, we develop a learnable vector representation (or embedding) for time as a vector
representation can be easily combined with many models or architectures. We call this vector
representation Time2Vec. To validate the effectiveness of Time2Vec, we conduct experiments on
several (synthesized and real-world) datasets and integrate it with several architectures. Our main
result is to show that on a range of problems and architectures that consume time, using Time2Vec
instead of the time itself offers a boost in performance.

2 RELATED WORK

There is a long history of algorithms for predictive modeling in time series analysis. They include
auto-regressive techniques (Akaike, 1969) that predict future measurements in a sequence based on a

1

Under review as a conference paper at ICLR 2020

window of past measurements. Since it is not always clear how long the window of past measurements
should be, hidden Markov models (Rabiner & Juang, 1986), dynamic Bayesian networks (Murphy &
Russell, 2002), and dynamic conditional random fields (Sutton et al., 2007) use hidden states as a
finite memory that can remember information arbitrarily far in the past. These models can be seen as
special cases of recurrent neural networks (Hochreiter & Schmidhuber, 1997). They typically assume
that inputs are synchronous, i.e. arrive at regular time intervals, and that the underlying process is
stationary with respect to time. It is possible to aggregate asynchronous events into time-bins and to
use synchronous models over the bins (Lipton et al., 2016; Anumula et al., 2018). Asynchronous
events can also be directly modeled with point processes (e.g., Poisson, Cox, and Hawkes point
processes) (Daley & Vere-Jones, 2007; Laub et al., 2015; Xiao et al., 2017; Li et al., 2018a; Xiao
et al., 2018) and continuous time normalizing flows (Chen et al., 2018). Alternatively, one can also
interpolate or make predictions at arbitrary time stamps with Gaussian processes (Rasmussen, 2004)
or support vector regression (Drucker et al., 1997).

Our goal is not to propose a new model for time series analysis, but instead to propose a representation
of time in the form of a vector embedding that can be used by many models. Vector embedding has
been previously successfully used for other domains such as text (Mikolov et al., 2013; Pennington
et al., 2014), (knowledge) graphs (Grover & Leskovec, 2016; Nickel et al., 2016; Kazemi & Poole,
2018), and positions (Vaswani et al., 2017; Gehring et al., 2017). Our approach is related to time
decomposition techniques that encode a temporal signal into a set of frequencies (Cohen, 1995).
However, instead of using a fixed set of frequencies as in Fourier transforms (Bracewell & Bracewell,
1986), we allow the frequencies to be learned. We take inspiration from the neural decomposition
of Godfrey & Gashler (2018) (and similarly (Gashler & Ashmore, 2016)). For time-series analysis,
Godfrey & Gashler (2018) decompose a 1D signal of time into several sine functions and a linear
function to extrapolate (or interpolate) the given signal. We follow a similar intuition but instead
of decomposing a 1D signal of time into its components, we transform the time itself and feed its
transformation into the model that is to consume the time information. Our approach corresponds to
the technique of Godfrey & Gashler (2018) when applied to regression tasks in 1D signals, but it is
more general since we learn a representation that can be shared across many signals and can be fed to
many models for tasks beyond regression.

While there is a body of literature on designing neural networks with sine activations (Lapedes &
Farber, 1987; Sopena et al., 1999; Wong et al., 2002; Mingo et al., 2004; Liu et al., 2016), our work
uses sine only for transforming time; the rest of the network uses other activations. There is also a set
of techniques that consider time as yet another feature and concatenate time (or some hand designed
features of time such as log and/or inverse of delta time) with the input (Choi et al., 2016; Li et al.,
2017; Du et al., 2016; Baytas et al., 2017; Kwon et al., 2019; Trivedi et al., 2017; Kumar et al., 2018;
Ma et al., 2018). Kazemi et al. (2019) survey several such approaches for dynamic (knowledge)
graphs. These models can directly benefit from our proposed vector embedding, Time2Vec, by
concatenating Time2Vec with the input instead of their time features. Other works (Neil et al., 2016;
Zhu et al., 2017; Mei & Eisner, 2017; Hu & Qi, 2017; Upadhyay et al., 2018; Li et al., 2018a)
propose new neural architectures that take into account time (or some features of time). We show
how Time2Vec can be used in one of these architectures to better exploit temporal information; it can
be potentially used in other architectures as well.

3 BACKGROUND & NOTATION

We use lower-case letters to denote scalars, bold lower-case letters to denote vectors, and bold
upper-case letters to denote matrices. We represent the ith element of the vector rrr as rrr[i]. For two
vectors rrr and sss, we use [rrr;sss] to represent their concatenation and rrr � sss to represent element-wise
(Hadamard) multiplication of the two vectors. Throughout the paper, we use τ to represent a scalar
notion of time (e.g., absolute time or time from the last event) and τττ for a vector of time features.

Long Short Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997) is considered one of the most
successful RNN architectures for sequence modeling. A formulation of the original LSTM model and
a variant of it based on peepholes (Gers & Schmidhuber, 2000) is presented in Appendix C. When
time is a relevant feature, the easiest way to handle time is to consider it as just another feature (or
extract some engineered features from it), concatenate the time features with the input, and use the
standard LSTM model (or some other sequence model) (Choi et al., 2016; Du et al., 2016; Li et al.,

2

Under review as a conference paper at ICLR 2020

2018b). In this paper, we call this model LSTM+T. Another way of handling time is by changing
the formulation of the standard LSTM. Zhu et al. (2017) developed one such formulation, named
TimeLSTM, by adding time gates to the architecture of the LSTM with peepholes. They proposed
three architectures namely TLSTM1, TLSTM2, TLSTM3. A description of TLSTM1 and TLSTM3 can
be found in Appendix C (we skipped TLSTM2 as it is quite similar to TLSTM3).

4 TIME2VEC

A common approach to deal with time in different applications is to apply some hand-crafted
function(s) f1, . . . , fm to τ (τ can be absolute time, time from last event, etc.), concatenate
the outputs f1(τ), . . . , fm(τ) with the rest of the input features xxx, and feed the resulting vector
[xxx; f1(τ); . . . ; fm(τ)] to a sequence model (see Section 2 for references). This approach requires
hand-crafting useful functions of time which may be difficult (or impossible) in several applications,
and the hand-crafted functions may not be optimal for the task at hand. Instead of hand-crafting
functions of time, we devise a representation of time which can be used to approximate any function
through learnable parameters. Such a representation offers two advantages: 1- it obviates the need
for hand-crafting functions of time and 2- it provides the grounds for learning suitable functions of
time based on the data. As vector representations can be efficiently integrated with the current deep
learning architectures, we employ a vector representation for time.

Our proposed representation leverages the Fourier sine series (Arfken & Weber, 1999) according to
which any 1D function can be approximated in a given interval using a weighted sum of sinusoids
with appropriate frequencies (and phase-shifts). We include k sinusoids of the form sin(ωiτ + ϕi)
in our vector representation where ωi and ϕi are learnable parameters1. That is, we concatenate the
input features xxx with k sinusoids and feed the concatenation [xxx; sin(ω1τ +ϕ1); . . . ; sin(ωkτ +ϕk)]
into a sequence model. Different functions of time can be created using these sinusoids by taking
a weighted sum of them with different weights. We allow the weights of the sequence model to
combine the sinusoids and create functions of time suitable for the task. If we expand the output
of the first layer of a sequence model (before applying an activation function), it has the form:
aaa(τ, k)[j] = γj +

∑k
i=1 θj,i sin (ωiτ + ϕi), where θj,is are the first layer weights and γj is the part

of output which depends on the input features xxx (not on the temporal features). Each aaa(τ, k)[j]

operates on the input features xxx as well as a learned function fj(τ) =
∑k
i=1 θj,i sin (ωiτ + ϕi) of

time, as opposed to a hand-crafted function2. Following Godfrey & Gashler (2018), to facilitate
approximating functions with non-periodic patterns and help with generalization, we also include
a linear projection of time in our vector representation. We name our vector representation of time
Time2Vec. Time2Vec of τ , denoted as t2v(τ), is a vector of size k + 1 defined as follows:

t2v(τ)[i] =

{
ωiτ + ϕi, if i = 0.

sin (ωiτ + ϕi), if 1 ≤ i ≤ k. (1)

where t2v(τ)[i] is the ith element of t2v(τ) and ωis and ϕis are learnable parameters.

The use of sine functions is inspired in part by Vaswani et al. (2017)’s positional encoding. Consider a
sequence of items (e.g., a sequence of words) {I1, I2, . . . , IN} and a vector representation vvvIj ∈ Rd

for the jth item Ij in the sequence. Vaswani et al. (2017) added sin (j/10000k/d) to vvvIj [k] if k is
even and sin (j/10000k/d + π/2) if k is odd so that the resulting vector includes information about
the position of the item in the sequence. These sine functions are called the positional encoding.
Intuitively, positions can be considered as the times and the items can be considered as the events
happening at that time. Thus, Time2Vec can be considered as representing continuous time, instead
of discrete positions, using sine functions. The sine functions in Time2Vec also enable capturing
periodic behaviors which is not a goal in positional encoding. We feed Time2Vec as an input to the
model (or to some gate in the model) instead of adding it to other vector representations. Unlike
positional encoding, we show in our experiments that learning the frequencies and phase-shifts of
sine functions in Time2Vec result in better performance compared to fixing them.

1k can be treated as a hyper-parameter.
2The function can model a real Fourier signal when the frequencies ωi of the sine functions are integer

multiples of a base (first harmonic) frequency. However, we show in Section 5.2 that learning the frequencies
results in better generalization.

3

Under review as a conference paper at ICLR 2020

4.1 PROPERTIES OF TIME2VEC

We review some of the interesting and desired properties of Time2Vec.

Periodicity: In many scenarios, some events occur periodically. The amount of sales of a store, for
instance, may be higher on weekends or holidays. Weather condition usually follows a periodic
pattern over different seasons (Gashler & Ashmore, 2016). Some other events may be non-periodic
but only happen after a point in time and/or become more probable as time proceeds. For instance,
some diseases are more likely for older ages.

The period of sin (ωiτ + ϕi) is 2π
ωi

, i.e. it has the same value for τ and τ + 2π
ωi

. Therefore, the sine
functions in Time2Vec help capture periodic behaviors without the need for feature engineering. For
instance, a sine function sin (ωτ + ϕ) with ω = 2π

7 repeats every 7 days (assuming τ indicates days)
and can be potentially used to model weekly patterns. Furthermore, unlike other basis functions
which may show strange behaviors for extrapolation (see, e.g., (Poole et al., 2014)), sine functions are
expected to work well for extrapolating to future and out of sample data (Vaswani et al., 2017). The
linear term represents the progression of time and can be used for capturing non-periodic patterns in
the input that depend on time.

Invariance to Time Rescaling: Since time can be measured in different scales (e.g., days, hours,
seconds, etc.), another important property of a representation for time is invariance to time rescaling
(see, e.g., (Tallec & Ollivier, 2018)). A class C of models is invariant to time rescaling if for any
modelM1 ∈ C and any scalar α > 0, there exists a modelM2 ∈ C that behaves on ατ (τ scaled by
α) in the same wayM1 behaves on original τs. Proposition 1 establishes the invariance of Time2Vec
to time rescaling. The proof is in Appendix D.
Proposition 1. Time2Vec is invariant to time rescaling.

Simplicity: A representation for time should be easily consumable by different models and archi-
tectures. A matrix representation, for instance, may be difficult to consume as it cannot be easily
appended with the other inputs. By selecting a vector representation for time, we ensure easy
integration with deep learning architectures.

5 EXPERIMENTS & RESULTS

We use the following datasets:

1) Synthesized data: We create a toy dataset to use for explanatory experiments. The inputs in this
dataset are the integers between 1 and 365. Input integers that are multiples of 7 belong to class one
and the other integers belong to class two. The first 75% is used for training and the last 25% for
testing. This dataset is inspired by the periodic patterns (e.g., weekly or monthly) that often exist in
daily-collected data; the input integers can be considered as the days.

2) Event-MNIST: Sequential (event-based) MNIST is a common benchmark in sequence modeling
literature (see, e.g., (Bellec et al., 2018; Campos et al., 2018; Fatahi et al., 2016)). We create
a sequential event-based version of MNIST by flattening the images and recording the position
of the pixels whose intensities are larger than a threshold (0.9 in our experiment). Following
this transformation, each image will be represented as an array of increasing numbers such as
[t1, t2, t3, . . . , tm]. We consider these values as the event times and use them to classify the images.
As in other sequence modeling works, our aim in building this dataset is not to beat the state-of-the-art
on the MNIST dataset; our aim is to provide a dataset where the only input is time and different
representations for time can be compared when extraneous variables (confounders) are eliminated as
much as possible.

3) N TIDIGITS18 (Anumula et al., 2018): The dataset includes audio spikes of the TIDIGITS
spoken digit dataset (Leonard & Doddington, 1993) recorded by the binaural 64-channel silicon
cochlea sensor. Each sample is a sequence of (t, c) tuples where t represents time and c denotes
the index of active frequency channel at time t. The labels are sequences of 1 to 7 connected digits
with a vocabulary consisting of 11 digits (i.e. “zero” to “nine” plus “oh”) and the goal is to classify
the spoken digit based on the given sequence of active channels. We use the reduced version of the
dataset where only the single digit samples are used for training and testing. The reduced dataset has
a total of 2,464 training and 2,486 test samples.

4

Under review as a conference paper at ICLR 2020

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LSTM+T
LSTM+Time2Vec

(a) Event-MNIST

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

LSTM+T
LSTM+Time2Vec

(b) Raw N TIDIGITS18

0 25 50 75 100 125 150 175 200
Epoch

0.68

0.70

0.72

0.74

0.76

0.78

re
ca

ll@
3

LSTM+T
LSTM+Time2Vec

(c) Stack Overflow

0 10 20 30 40 50
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Re
ca

ll@
10

LSTM+T
LSTM+Time2Vec

(d) Last.FM

0 10 20 30 40 50
Epoch

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Re
ca

ll@
10

LSTM+T
LSTM+Time2Vec

(e) CiteULike

Figure 1: Comparing LSTM+T and LSTM+Time2Vec on several datasets.

4) Stack Overflow (SOF): This dataset contains sequences of badges obtained by stack overflow
users and the timestamps at which the badges were obtained3. We used the subset released by Du
et al. (2016) containing ∼ 6K users, 22 event types (badges), and ∼ 480K events. Given a sequence
[(bu1 , t

u
1), (bu2 , t

u
2), ..., (bun, t

u
n)] for each user u where bui is the badge id and tui is the timestamp when

u received this badge id, the task is to predict the badge the user will obtain at time tuk+1.

5) Last.FM: This dataset contains a history of listening habits for Last.FM users (Celma, 2010). We
used the code released by Zhu et al. (2017) to pre-process the data. The dataset contains ∼ 1K users,
5000 event types (songs), and ∼ 819K events. The prediction problem is similar to the SOF dataset
but with dynamic updating (see, (Zhu et al., 2017) for details).

6) CiteULike: This dataset contains data about what and when a user posted on citeulike website4.
The original dataset has about 8000 samples. Similar to Last.FM, we used the pre-processing used by
Zhu et al. (2017) to select ∼ 1.6K sequences with 5000 event types (papers) and ∼ 36K events. The
task for this dataset is similar to that for Last.FM.

Measures: For classification tasks, we report accuracy corresponding to the percentage of correctly
classified examples. For recommendation tasks, we report Recall@q and MRR@q. Following Zhu
et al. (2017), to generate a recommendation list, we sample k − 1 random items and add the correct
item to the sampled list resulting in a list of k items. Then our model ranks these k items. Looking
only at the top ten recommendations, Recall@q corresponds to the percentage of recommendation
lists where the correct item is in the top q; MRR@q (reported in Appendix B) corresponds to the
mean of the inverses of the rankings of the correct items where the inverse rank is considered 0 if the
item does not appear in top q recommendations. For Last.FM and CiteULike, following Zhu et al.
(2017) we report Recall@10 and MRR@10. For SOF, we report Recall@3 and MRR as there are
only 22 event types and Recall@10 and MRR@10 are not informative enough. The detail of the
implementations is presented in Appendix A.

5.1 ON THE EFFECTIVENESS OF TIME2VEC

Fig. 1 represents the obtained results of comparing LSTM+Time2Vec with LSTM+T on several
datasets with different properties and statistics. On all datasets, replacing time with Time2Vec
improves the performance in most cases and never deteriorates it; in many cases, LSTM+Time2Vec
performs consistently better than LSTM+T. Anumula et al. (2018) mention that LSTM+T fails on
N TIDIGITS18 as the dataset contains very long sequences. By feeding better features to the LSTM
rather than relying on the LSTM to extract them, Time2Vec helps better optimize the LSTM and

3https://archive.org/details/stackexchange
4http://www.citeulike.org/

5

https://archive.org/details/stackexchange
http://www.citeulike.org/

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Re
ca

ll@
10

TLSTM1
TLSTM1+Time2Vec

(a) TLSTM1, Last.FM

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
ca

ll@
10

TLSTM1
TLSTM1+Time2Vec

(b) TLSTM1, CiteULike

0 10 20 30 40 50
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Re
ca

ll@
10

TLSTM3
TLSTM3+Time2Vec

(c) TLSTM3, Last.FM

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
ca

ll@
10

TLSTM3
TLSTM3+Time2Vec

(d) TLSTM3, CiteULike

Figure 2: Comparing TLSTM1 and TLSTM3 on Last.FM and CiteULike in terms of Recall@10
with and without Time2Vec.

offers higher accuracy (and lower variance) compared to LSTM+T. Besides N TIDIGITS18, SOF
also contains somewhat long sequences and long time horizons. The results on these two datasets
indicate that Time2Vec can be effective for datasets with long sequences and time horizons.

To verify if Time2Vec can be integrated with other architectures and improve their performance, we
integrate it with TLSTM1 and TLSTM3, two recent and powerful models for handling asynchronous
events. We replaced their notion τ of time with t2v(τ) and replaced the vectors getting multiplied to
τ with matrices accordingly. The updated formulations are presented in Appendix C. The obtained
results in Fig. 2 for TLSTM1 and TLSTM3 on Last.FM and CiteULike demonstrates that replacing
time with Time2Vec for both TLSTM1 and TLSTM3 improves the performance.

5.2 MODEL VARIANTS & ABLATION STUDY

Other activation functions: Inspired by Fourier sine series and by positional encoding, we used
sine activations in Eq. 1. To evaluate how sine activations compare to other activation functions for
our setting, we repeated the experiment on Event-MNIST in Section 5.1 when using non-periodic
activations such as Sigmoid, Tanh, and rectified linear units (ReLU) (Nair & Hinton, 2010), and
periodic activations such as mod and triangle. We fixed the length of the Time2Vec to 64 + 1, i.e. 64
units with a non-linear transformation and 1 unit with a linear transformation. From the results
shown in Fig. 5(a), it can be observed that the periodic activation functions (sine, mod, and triangle)
outperform the non-periodic ones. Other than not being able to capture periodic behaviors, we believe
one of the main reasons why these non-periodic activation functions do not perform well is because
as time goes forward and becomes larger, Sigmoid and Tanh saturate and ReLU either goes to zero or
explodes. Among periodic activation functions, sine outperforms the other two.

Fixed frequencies and phase-shifts: Vaswani et al. (2017) mention that learning sine frequencies
and phase-shifts for their positional encoding gives the same performance as fixing frequencies to
exponentially-decaying values and phase-shifts to 0 and π

2 . This raises the question of whether
learning the sine frequencies and phase-shifts of Time2Vec from data offer any advantage compared
to fixing them. To answer this question, we compare three models on Event-MNIST when using
Time2Vec of length 16 + 1: 1- fixing t2v(τ)[n] to sin (2πn

16) for n ≤ 16, 2- fixing the frequencies and
phase shifts according to Vaswani et al. (2017)’s positional encoding, and 3- learning the frequencies
and phase-shifts from the data. Fig. 5(b) represents our obtained results. The obtained results in
Fig. 5(b) show that learning the frequencies and phase-shifts rather than fixing them helps improve
the performance of the model.

Modeling Periodic Behaviours: To measure how well Time2Vec performs in capturing periodic
behaviours, we trained a model on our synthesized dataset where the input integer (day) is used as

6

Under review as a conference paper at ICLR 2020

280 300 320 340 360
Days in Test Set

25

20

15

10

5

0

5

W
ei

gh
te

d
Su

m
 o

f S
in

us
oi

ds

(a) A weighted sum of the sinusoids in
Time2Vec oscillating every 7 days.

550 575 600 625 650 675 700 725
Days in Test Set

10

5

0

5

10

15

20

W
ei

gh
te

d
Su

m
 o

f S
in

us
oi

ds

(b) A weighted sum of the sinusoids in
Time2Vec oscillating every 14 days.

Figure 3: The models learned for our synthesized dataset before the final activation. The red dots
represent the points to be classified as 1.

the time for Time2Vec and a fully connected layer is used on top of the Time2Vec to predict the class.
That is, the probability of one of the classes is a sigmoid of a weighted sum of the Time2Vec elements.
Fig. 3 (a) shows a the learned function for the days in the test set where the weights, frequencies and
phase-shifts are learned from the data. The red dots on the figure represent multiples of 7. It can
be observed that Time2Vec successfully learns the correct period and oscillates every 7 days. The
phase-shifts have been learned in a way that all multiples of 7 are placed on the positive peaks of
the signal to facilitate separating them from the other days. Looking at the learned frequency and
phase-shift for the sine functions across several runs, we observed that in many runs one of the main
sine functions has a frequency around 0.898 ≈ 2π

7 and a phase-shift around 1.56 ≈ π
2 , thus learning

to oscillate every 7 days and shifting by π
2 to make sure multiples of 7 end up at the peaks of the

signal. Fig. 4 shows the initial and learned sine frequencies for one run. It can be viewed that at the
beginning, the weights and frequencies are random numbers. But after training, only the desired
frequency (2π7) has a high weight (and the 0 frequency which gets subsumed into the bias). The
model perfectly classifies the examples in the test set which represents the sine functions in Time2Vec
can be used effectively for extrapolation and out of sample times assuming that the test set follows
similar periodic patterns as the train set5. We added some noise to our labels by flipping 5% of the
labels selected at random and observed a similar performance in most runs.

To test invariance to time rescaling, we multiplied the inputs by 2 and observed that in many runs, the
frequency of one of the main sine functions was around 0.448 ≈ 2π

2∗7 thus oscillating every 14 days.
An example of a combination of signals learned to oscillate every 14 days is in Fig. 3 (b).

The use of periodicity in sine functions: It has been argued that when sine activations are used,
only a monotonically increasing (or decreasing) part of it is used and the periodic part is ignored
(Giambattista Parascandolo, 2017). When we use Time2Vec, however, the periodicity of the sine
functions are also being used and seem to be key to the effectiveness of the Time2Vec representation.
Fig. 5(c) shows some statistics on the frequencies learned for Event-MNIST where we count the num-
ber of learned frequencies that fall within intervals of lengths 0.1 centered at [0.05, 0.15, . . . , 0.95]
(all learned frequencies are between 0 and 1). The figure contains two peaks at 0.35 and 0.85.
Since the input to the sine functions for this problem can have a maximum value of 784 (number

5Replacing sine with a non-periodic activation function resulted in always predicting the majority class.

0.0 0.2 0.4 0.6 0.8
Frequecies

0.15

0.10

0.05

0.00

0.05

0.10

0.15

In
iti

al
 W

ei
gh

ts

(a)

0.0 0.2 0.4 0.6 0.8
Frequecies

0

2

4

6

8

10

12

Fi
na

l W
ei

gh
ts

(b)

Figure 4: (a) Initial vs. (b) learned weights and frequencies for our synthesized dataset.

7

Under review as a conference paper at ICLR 2020

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LSTM + Time2Vec(sin)
LSTM + Time2Vec(mod)
LSTM + Time2Vec(triangle)
LSTM + Time2Vec(tanh)
LSTM + Time2Vec(sigmoid)
LSTM + Time2Vec(relu)

(a)

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LSTM + Time2Vec
LSTM+Time2Vec_fixed_equally_spaced
LSTM+Time2Vec_fixed_positional_encoding

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Frequency range

0

2

4

6

8

10

Co
un

t

(c)

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
ca

ll@
10

TLSTM3+Time2Vec_without_linear_term
TLSTM3+Time2Vec
TLSTM3_T

(d)

Figure 5: An ablation study of several components in Time2Vec. (a) Comparing different activation
functions for Time2Vec on Event-MNIST. Sigmoid and Tanh almost overlap. (b) Comparing fre-
quencies fixed to equally-spaced values, frequencies fixed according to positional encoding (Vaswani
et al., 2017), and learned frequencies on Event-MNIST. (c) A histogram of the frequencies learned in
Time2Vec for Event-MNIST. The x-axis represents frequency intervals and the y-axis represents the
number of frequencies in that interval. (d) The performance of TLSTM3+Time2Vec on CiteULike in
terms of Recall@10 with and without the linear term.

of pixels in an image), sine functions with frequencies around 0.35 and 0.85 finish (almost) 44 and
106 full periods. The smallest learned frequency is 0.029 which finishes (almost) 3.6 full periods.
These values indicate that the model is indeed using the periodicity of the sine functions, not just a
monotonically increasing (or decreasing) part of them.

The Linear Term: To see the effect of the linear term in Time2Vec, we repeated the experiment for
Event-MNIST when the linear term is removed from Time2VecẆe observed that the results were not
affected substantially, thus showing that the linear term may not be helpful for Event-MNIST. This
might be due to the simplicity of the Event-MNIST dataset. Then we conducted a similar experiment
for TLSTM3 on CiteULike (which is a more challenging dataset) and obtained the results in Fig. 5(d).
From these results, we can see that the linear term helps facilitate learning functions of time that can
be effectively consumed by the model.

6 CONCLUSION & FUTURE WORK

In many tasks for synchronous and asynchronous event predictions, time is an important feature.
Previous work has mainly resorted to applying hand-crafted functions to time and concatenating these
functions with the rest of the input features. In this work, we presented an approach that automatically
learns these functions from data. In particular, we developed Time2Vec, a vector representation for
time, using sine and linear activations and showed the effectiveness of this representation across
several datasets and several tasks. In the majority of our experiments, Time2Vec improved our
results, while the remaining results were not hindered by its application. While sine functions have
been argued to complicate the optimization (Lapedes & Farber, 1987; Giambattista Parascandolo,
2017), we did not experience such a complication except for the experiment in Subsection 5.2 on
our synthesized dataset when using only a few sine functions. We hypothesize that the main reasons
include combining sine functions with a powerful model (e.g., LSTM) and using many sine functions
which reduces the distance to the goal (see, e.g., (Neyshabur et al., 2019)). We leave a deeper
theoretical analysis of this hypothesis, development of better optimizers, and experimenting with
other representations for time as future work.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Hirotugu Akaike. Fitting autoregressive models for prediction. Annals of the institute of Statistical
Mathematics, 21(1):243–247, 1969.

Jithendar Anumula, Daniel Neil, Tobi Delbruck, and Shih-Chii Liu. Feature representations for
neuromorphic audio spike streams. Frontiers in neuroscience, 12:23, 2018.

George B Arfken and Hans J Weber. Mathematical methods for physicists, 1999.

Inci M Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K Jain, and Jiayu Zhou. Patient subtyping via
time-aware lstm networks. In ACM SIGKDD, pp. 65–74, 2017.

Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long
short-term memory and learning-to-learn in networks of spiking neurons. In NeurIPS, 2018.

Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and its applications.
McGraw-Hill New York, 1986.

Vı́ctor Campos, Brendan Jou, Xavier Giró-i Nieto, Jordi Torres, and Shih-Fu Chang. Skip rnn:
Learning to skip state updates in recurrent neural networks. In ICLR, 2018.

O. Celma. Music Recommendation and Discovery in the Long Tail. Springer, 2010.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Neural Information Processing Systems (NeurIPS), 2018.

Edward Choi, Mohammad Taha Bahadori, Andy Schuetz, Walter F Stewart, and Jimeng Sun. Doctor
AI: Predicting clinical events via recurrent neural networks. In Machine Learning for Healthcare
Conference, pp. 301–318, 2016.

Leon Cohen. Time-frequency analysis, volume 778. Prentice hall, 1995.

Daryl J Daley and David Vere-Jones. An introduction to the theory of point processes: volume II:
general theory and structure. Springer Science & Business Media, 2007.

Harris Drucker, Christopher JC Burges, Linda Kaufman, Alex J Smola, and Vladimir Vapnik. Support
vector regression machines. In NeurIPS, pp. 155–161, 1997.

Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez, and Le Song.
Recurrent marked temporal point processes: Embedding event history to vector. In ACM SIGKDD,
pp. 1555–1564. ACM, 2016.

Mazdak Fatahi, Mahmood Ahmadi, Mahyar Shahsavari, Arash Ahmadi, and Philippe Devienne.
evt mnist: A spike based version of traditional mnist. arXiv preprint arXiv:1604.06751, 2016.

Michael S Gashler and Stephen C Ashmore. Modeling time series data with deep fourier neural
networks. Neurocomputing, 188:3–11, 2016.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. arXiv preprint arXiv:1705.03122, 2017.

Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In IJCNN, volume 3, pp.
189–194. IEEE, 2000.

Tuomas Virtanen Giambattista Parascandolo, Heikki Huttunen. Taming the waves: sine as activa-
tion function in deep neural networks. 2017. URL https://openreview.net/pdf?id=
Sks3zF9eg.

Luke B Godfrey and Michael S Gashler. Neural decomposition of time-series data for effective
generalization. IEEE transactions on neural networks and learning systems, 29(7):2973–2985,
2018.

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):
2222–2232, 2017.

9

https://openreview.net/pdf?id=Sks3zF9eg
https://openreview.net/pdf?id=Sks3zF9eg

Under review as a conference paper at ICLR 2020

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In ACM
SIGKDD, pp. 855–864, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Hao Hu and Guo-Jun Qi. State-frequency memory recurrent neural networks. In International
Conference on Machine Learning, pp. 1568–1577, 2017.

Seyed Mehran Kazemi and David Poole. SimplE embedding for link prediction in knowledge graphs.
In NeurIPS, pp. 4289–4300, 2018.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Relational representation learning for dynamic (knowledge) graphs: A survey.
arXiv preprint arXiv:1905.11485, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Learning dynamic embedding from temporal
interaction networks. arXiv preprint arXiv:1812.02289, 2018.

Bum Chul Kwon, Min-Je Choi, Joanne Taery Kim, Edward Choi, Young Bin Kim, Soonwook Kwon,
Jimeng Sun, and Jaegul Choo. Retainvis: Visual analytics with interpretable and interactive
recurrent neural networks on electronic medical records. IEEE transactions on visualization and
computer graphics, 25(1):299–309, 2019.

Alan Lapedes and Robert Farber. Nonlinear signal processing using neural networks: Prediction and
system modelling. Technical report, 1987.

Patrick J Laub, Thomas Taimre, and Philip K Pollett. Hawkes processes. arXiv preprint
arXiv:1507.02822, 2015.

R Gary Leonard and George Doddington. Tidigits. Linguistic Data Consortium, Philadelphia, 1993.

Shuang Li, Shuai Xiao, Shixiang Zhu, Nan Du, Yao Xie, and Le Song. Learning temporal point
processes via reinforcement learning. In NeurIPS, pp. 10804–10814, 2018a.

Yang Li, Nan Du, and Samy Bengio. Time-dependent representation for neural event sequence
prediction. arXiv preprint arXiv:1708.00065, 2017.

Yang Li, Nan Du, and Samy Bengio. Time-dependent representation for neural event sequence
prediction. 2018b. URL https://openreview.net/pdf?id=HyrT5Hkvf.

Zachary C Lipton, David Kale, and Randall Wetzel. Directly modeling missing data in sequences
with rnns: Improved classification of clinical time series. In Machine Learning for Healthcare
Conference, pp. 253–270, 2016.

Peng Liu, Zhigang Zeng, and Jun Wang. Multistability of recurrent neural networks with non-
monotonic activation functions and mixed time delays. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 46(4):512–523, 2016.

Yao Ma, Ziyi Guo, Zhaochun Ren, Eric Zhao, Jiliang Tang, and Dawei Yin. Streaming graph neural
networks. arXiv preprint arXiv:1810.10627, 2018.

Hongyuan Mei and Jason M Eisner. The neural hawkes process: A neurally self-modulating
multivariate point process. In NeurIPS, pp. 6754–6764, 2017.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations
of words and phrases and their compositionality. In NeurIPS, 2013.

Luis Mingo, Levon Aslanyan, Juan Castellanos, Miguel Diaz, and Vladimir Riazanov. Fourier neural
networks: An approach with sinusoidal activation functions. 2004.

10

https://openreview.net/pdf?id=HyrT5Hkvf

Under review as a conference paper at ICLR 2020

Kevin Patrick Murphy and Stuart Russell. Dynamic bayesian networks: representation, inference and
learning. 2002.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
ICML, pp. 807–814, 2010.

Daniel Neil, Michael Pfeiffer, and Shih-Chii Liu. Phased lstm: Accelerating recurrent network
training for long or event-based sequences. In NeurIPS, pp. 3882–3890, 2016.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. The role of
over-parametrization in generalization of neural networks. In ICLR, 2019.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In EMNLP, pp. 1532–1543, 2014.

David Poole, David Buchman, Seyed Mehran Kazemi, Kristian Kersting, and Sriraam Natarajan.
Population size extrapolation in relational probabilistic modelling. In SUM. Springer, 2014.

Lawrence R Rabiner and Biing-Hwang Juang. An introduction to hidden markov models. ieee assp
magazine, 3(1):4–16, 1986.

Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced lectures on machine
learning, pp. 63–71. Springer, 2004.

Josep M Sopena, Enrique Romero, and Rene Alquezar. Neural networks with periodic and monotonic
activation functions: a comparative study in classification problems. 1999.

Charles Sutton, Andrew McCallum, and Khashayar Rohanimanesh. Dynamic conditional random
fields: Factorized probabilistic models for labeling and segmenting sequence data. Journal of
Machine Learning Research, 8(Mar):693–723, 2007.

Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time? In International
Conference on Learning Representation (ICLR), 2018.

Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In ICML, pp. 3462–3471, 2017.

Utkarsh Upadhyay, Abir De, and Manuel Gomez-Rodriguez. Deep reinforcement learning of marked
temporal point processes. In NeurIPS, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Kwok-wo Wong, Chi-sing Leung, and Sheng-jiang Chang. Handwritten digit recognition using
multilayer feedforward neural networks with periodic and monotonic activation functions. In
Pattern Recognition, volume 3, pp. 106–109. IEEE, 2002.

Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Le Song, and Hongyuan Zha. Wasserstein
learning of deep generative point process models. In NeurIPS, 2017.

Shuai Xiao, Hongteng Xu, Junchi Yan, Mehrdad Farajtabar, Xiaokang Yang, Le Song, and Hongyuan
Zha. Learning conditional generative models for temporal point processes. In AAAI, 2018.

Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. What to do
next: Modeling user behaviors by time-lstm. In IJCAI, pp. 3602–3608, 2017.

11

Under review as a conference paper at ICLR 2020

0 200 400 600 800 1000
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ac
cu

ra
cy

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

Figure 6: Comparing LSTM+T and LSTM+Time2Vec on Event-MNIST.

A IMPLEMENTATION DETAIL

For the experiments on Event-MNIST, N TIDIGITS18 and SOF, we implemented6 our model in
PyTorch Paszke et al. (2017). We used Adam optimizer Kingma & Ba (2014) with a learning rate of
0.001. For Event-MNIST and SOF, we fixed the hidden size of the LSTM to 128. For N TIDIGITS18,
due to its smaller train set, we fixed the hidden size to 64. We allowed each model 200 epochs. We
used a batch size of 512 for Event-MNIST and 128 for N TIDIGITS18 and SOF. For the experiments
on Last.FM and CiteULike, we used the code released by Zhu et al. (2017)7 without any modifications,
except replacing τ with t2v(τ). The only other thing we changed in their code was to change the
SAMPLE TIME variable from 3 to 20. SAMPLE TIME controls the number of times we do sampling
to compute Recall@10 and MRR@10. We experienced a high variation when sampling only 3 times
so we increased the number of times we sample to 20 to make the results more robust. For both
Last.FM and CiteULike, Adagrad optimizer is used with a learning rate of 0.01, vocabulary size is
5000, and the maximum length of the sequence is 200. For Last.FM, the hidden size of the LSTM is
128 and for CiteULike, it is 256. For all except the synthesized dataset, we shifted the event times
such that the first event of each sequence starts at time 0.

For the fairness of the experiments, we made sure the competing models for all our experiments
have an (almost) equal number of parameters. For instance, since adding Time2Vec as an input to
the LSTM increases the number of model parameters compared to just adding time as a feature,
we reduced the hidden size of the LSTM for this model to ensure the number of model parameters
stays (almost) the same. For the experiments involving Time2Vec, unless stated otherwise, we tried
vectors with 16, 32 and 64 sine functions (and one linear term). We reported the vector length
offering the best performance in the main text. The results for other vector lengths can be found in
Appendix B. For the synthetic dataset, we use Adam optimizer with a learning rate of 0.001 without
any regularization. The length of the Time2Vec vector is 32.

6Code and datasets available at: https://github.com/borealisai/Time2Vec
7https://github.com/DarryO/time_lstm

0 25 50 75 100 125 150 175 200
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

(a) Event-MNIST

0 25 50 75 100 125 150 175 200
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

(b) Raw N TIDIGITS18

Figure 7: Comparing LSTM+T and LSTM+Time2Vec on Event-MNIST and raw N TIDIGITS18.

12

https://github.com/borealisai/Time2Vec
https://github.com/DarryO/time_lstm

Under review as a conference paper at ICLR 2020

0 25 50 75 100 125 150 175 200
Epoch

0.65

0.70

0.75

0.80

Re
ca

ll@
3

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

0 25 50 75 100 125 150 175 200
Epoch

0.45

0.50

0.55

0.60

0.65

M
RR

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

Figure 8: Comparing LSTM+T and LSTM+Time2Vec on SOF.

0 10 20 30 40 50
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Re
ca

ll@
10

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

0 10 20 30 40 50
Epoch

0.09

0.10

0.11

0.12

0.13

M
RR

@
10

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

Figure 9: Comparing LSTM+T and LSTM+Time2Vec on Last.FM.

B MORE RESULTS

We ran experiments on other versions of the N TIDIGITS18 dataset as well. Following Anumula
et al. (2018), we converted the raw event data to event-binned features by virtue of aggregating active
channels through a period of time in which a pre-defined number of events occur. The outcome of
binning is thus consecutive frames each with multiple but a fixed number of active channels. In our
experiments, we used event-binning with 100 events per frame. For this variant of the dataset, we
compared LSTM+T and LSTM+Time2Vec similar to the experiments in Section 5.1. The obtained
results were on-par. Then, similar to Event-MNIST, we only fed as input the times at which events
occurred (i.e. we removed the channels from the input). We allowed the models 1000 epochs to make
sure they converge. The obtained results are presented in Fig. 6. It can be viewed that Time2Vec
provides an effective representation for time and LSTM+Time2Vec outperforms LSTM+T on this
dataset.

In the main text, for the experiments involving Time2Vec, we tested Time2Vec vectors with 16,
32 and 64 sinusoids and reported the best one for the clarity of the diagrams. Here, we show the
results for all frequencies. Figures 7, 8, 9, and 10 compare LSTM+T and LSTM+Time2Vec for our
datasets. Figures 11, and 12 compare TLSTM1 with TLSTM1+Time2Vec on Last.FM and CiteULike.
Figures 13, and 14 compare TLSTM3 with TLSTM1+Time2Vec on Last.FM and CiteULike. In
most cases, Time2Vec with 64 sinusoids outperforms (or gives on-par results with) the cases with
32 or 16 sinusoids. An exception is TLSTM3 where 16 sinusoids works best. We believe that is
because TLSTM3 has two time gates and adding, e.g., 64 temporal components (corresponding to
the sinusoids) to each gate makes it overfit to the temporal signals.

C LSTM ARCHITECTURES

The original LSTM model can be neatly defined with the following equations:

iiij = σ (WWW ixxxj +UUU ihhhj−1 + bbbi) (2)
fff j = σ (WWW fxxxj +UUUfhhhj−1 + bbbf) (3)
cccj = Tanh (WWW cxxxj +UUU chhhj−1 + bbbc) (4)
cccj = fff t � cccj−1 + iiij � cjcjcj (5)
oooj = σ (WWW oxxxj +UUUohhhj−1 + bbbo) (6)
hhhj = oooj � Tanh (cccj) (7)

13

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50
Epoch

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Re
ca

ll@
10

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

0 10 20 30 40 50
Epoch

0.05

0.06

0.07

0.08

M
RR

@
10

LSTM+T
LSTM+Time2Vec(l=16+1)
LSTM+Time2Vec(l=32+1)
LSTM+Time2Vec(l=64+1)

Figure 10: Comparing LSTM+T and LSTM+Time2Vec on CiteULike.

0 10 20 30 40 50
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Re
ca

ll@
10

TLSTM1
TLSTM1+Time2Vec(l=16+1)
TLSTM1+Time2Vec(l=32+1)
TLSTM1+Time2Vec(l=64+1)

0 10 20 30 40 50
Epoch

0.09

0.10

0.11

0.12

0.13

0.14

0.15

M
RR

@
10

TLSTM1
TLSTM1+Time2Vec(l=16+1)
TLSTM1+Time2Vec(l=32+1)
TLSTM1+Time2Vec(l=64+1)

Figure 11: TLSTM1’s performance on Last.FM with and without Time2Vec.

Here iiit, fff t, and ooot represent the input, forget and output gates respectively, while ccct is the memory
cell and hhht is the hidden state. σ and Tanh represent the Sigmoid and hyperbolic tangent activation
functions respectively. We refer to xxxj as the jth event.

Peepholes: Gers & Schmidhuber (2000) introduced a variant of the LSTM architecture where the
input, forget, and output gates peek into the memory cell. In this variant,wwwpi � cccj−1,wwwpf � cccj−1,
andwwwpo � cccj are added to the linear parts of Eq. (2), (3), and (6) respectively, wherewwwpi,wwwpf , and
wwwpo are learnable parameters.

LSTM+T: Let τττ j represent the time features for the jth event in the input and let xxx′j = [xxxj ;τττ j].
Then LSTM+T uses the exact same equations as the standard LSTM (denoted above) except that xxxj
is replaced with xxx′j .

TimeLSTM: We explain TLSTM1 and TLSTM3 which have been used in our experiments. For
clarity of writing, we do not include the peephole terms in the equations but they are used in
the experiments. In TLSTM1, a new time gate is introduced as in Eq. equation 8 and Eq. equa-
tion 5 and equation 6 are updated to Eq. equation 9 and equation 10 respectively:

tttj = σ (WWW txxxj + σ (uuutτj) + bbbt) (8)
cccj = fff j � cccj−1 + iiij � tttj � cjcjcj (9)
oooj = σ (WWW oxxxj + vvvtτj +UUUohhhj−1 + bbbo) (10)

tttj controls the influence of the current input on the prediction and makes the required information
from timing history get stored on the cell state. TLSTM3 uses two time gates:

t1t1t1j = σ (WWW t1xxxj + σ (uuut1τj) + bbbt1) (11)
t2t2t2j = σ (WWW t2xxxj + σ (uuut2τj) + bbbt2) (12)

where the elements ofWWW t1 are constrained to be non-positive. t1t1t1 is used for controlling the influence
of the last consumed item and t2t2t2 stores the τs thus enabling modeling long range dependencies.
TLSTM3 couples the input and forget gates following Greff et al. (2017) along with the t1t1t1 and t2t2t2
gates and replaces Eq. (5) to (7) with the following:

c̃ccj = (1− iiij � t1t1t1j)� cccj−1 + iiij � t1t1t1j � cccj (13)
cccj = (1− iiij)� cccj−1 + iiij � t2t2t2j � cccj (14)
oooj = σ (WWW oxxxj + vvvtτj +UUUohhhj−1 + bbbo) (15)
hhhj = oooj � Tanh (̃cccj) (16)

14

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50
Epoch

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
ca

ll@
10

TLSTM1
TLSTM1+Time2Vec(l=16+1)
TLSTM1+Time2Vec(l=32+1)
TLSTM1+Time2Vec(l=64+1)

0 10 20 30 40 50
Epoch

0.04

0.06

0.08

0.10

0.12

0.14

M
RR

@
10

TLSTM1
TLSTM1+Time2Vec(l=16+1)
TLSTM1+Time2Vec(l=32+1)
TLSTM1+Time2Vec(l=64+1)

Figure 12: TLSTM1’s performance on CiteULike with and without Time2Vec.

0 10 20 30 40 50
Epoch

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Re
ca

ll@
10

TLSTM3
TLSTM3+Time2Vec(l=16+1)
TLSTM3+Time2Vec(l=32+1)
TLSTM3+Time2Vec(l=64+1)

0 10 20 30 40 50
Epoch

0.09

0.10

0.11

0.12

0.13

0.14

0.15

M
RR

@
10

TLSTM3
TLSTM3+Time2Vec(l=16+1)
TLSTM3+Time2Vec(l=32+1)
TLSTM3+Time2Vec(l=64+1)

Figure 13: TLSTM3’s performance on Last.FM with and without Time2Vec.

0 10 20 30 40 50
Epoch

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Re
ca

ll@
10

TLSTM3
TLSTM3+Time2Vec(l=16+1)
TLSTM3+Time2Vec(l=32+1)
TLSTM3+Time2Vec(l=64+1)

0 10 20 30 40 50
Epoch

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
RR

@
10

TLSTM3
TLSTM3+Time2Vec(l=16+1)
TLSTM3+Time2Vec(l=32+1)
TLSTM3+Time2Vec(l=64+1)

Figure 14: TLSTM3’s performance on CiteULike with and without Time2Vec.

Zhu et al. (2017) use τj = ∆tj in their experiments, where ∆tj is the duration between the current
and the last event.

TimeLSTM+Time2Vec: To replace time in TLSTM1 with Time2Vec, we modify Eq. (8) and (10)
as follows:

tttj = σ (WWW txxxj + σ (UUU tt2v(τ)) + bbbt) (17)
oooj = σ(WWW oxxxj + VVV tt2v(τ) +UUUohhhj−1 + bbbo) (18)

i.e., τ is replaced with t2v(τ), uuut is replaced with UUU t, and vvvt is replaced with VVV t. Similarly, for
TLSTM3 we modify Eq. (11), (12) and (15) as follows:

t1t1t1j = σ (WWW t1xxxj + σ (UUU t1t2v(τ)) + bbbt1) (19)
t2t2t2j = σ (WWW t2xxxj + σ (UUU t2t2v(τ)) + bbbt2) (20)

oooj = σ(WWW oxxxj + VVV tt2v(τ) +UUUohhhj−1 + bbbo) (21)

D PROOFS

Proposition 1. Time2Vec is invariant to time rescaling.

Proof. Consider the following Time2Vec representationM1:

t2v(τ)[i] =

{
ωiτ + ϕi, if i = 0.

sin (ωiτ + ϕi), if 1 ≤ i ≤ k. (22)

15

Under review as a conference paper at ICLR 2020

Replacing τ with α · τ (for α > 0), the Time2Vec representation updates as follows:

t2v(α · τ)[i] =

{
ωi(α · τ) + ϕi, if i = 0.

sin (ωi(α · τ) + ϕi), if 1 ≤ i ≤ k. (23)

Consider another Time2Vec representationM2 with frequencies ω′i = ωi

α . ThenM2 behaves in the
same way asM1. This proves that Time2Vec is invariant to time rescaling.

16

	Introduction
	Related Work
	Background & Notation
	Time2Vec
	Properties of Time2Vec

	Experiments & Results
	On the effectiveness of Time2Vec
	Model Variants & Ablation Study

	Conclusion & Future Work
	Implementation Detail
	More Results
	LSTM Architectures
	Proofs

