
Under review as a conference paper at ICLR 2020

COMPOSITIONAL CONTINUAL LANGUAGE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Motivated by the human’s ability to continually learn and gain knowledge over
time, several research efforts have been pushing the limits of machines to con-
stantly learn while alleviating catastrophic forgetting Kirkpatrick et al. (2017b);
significant drop of a machine skill accessed/gained far earlier in time. Most of
the existing methods have been focusing on label prediction tasks to study contin-
ual learning. Humans, however, naturally interact and learn from natural language
statements and instructions which is far less studied from continual learning angle.
One of the key skills that enables humans to excel at learning language efficiently
is ability to produce novel composition. To learn and complete new tasks, robots
need to continually learn novel objects and concepts in a linguistic form which
requires compositionality for efficient learning. Inspired by that, in this paper, we
propose a method for compositional continual learning of sequence-to-sequence
models. Experimental results show that the proposed method has significant im-
provement over state of the art methods, and it enables knowledge transfer and
prevents catastrophic forgetting, resulting in more than 85% accuracy up to 100
stages, compared with less 50% accuracy for baselines. It also shows significant
improvement in a machine translation task. This is the first work to combine
continual learning and compositionality for natural language instruction learning
and machine translation, and we hope this work will make robots more helpful in
various tasks.

1 INTRODUCTION

Continual Learning is a key element of human intelligence that enables us to accumulate knowledge
from a never ending stream of data. From machine learning perspective, there is no guarantee that
information accessed at a current task to be revisited later in future tasks. This leads to what is
known as Catastrophic Forgetting (McCloskey & Cohen, 1989; McClelland et al., 1995); significant
drop in previously obtained knowledge of an AI system as it learns new information and gets less/no
exposure to old information. Several approaches have been proposed to bridge the map between
machine and human continual learning skills with catastrophic forgetting being the central prob-
lem. Existing continual learning methods have focused mostly on classification tasks (e.g. (Rebuffi
et al., 2017; Lopez-Paz & Ranzato, 2017; Shin et al., 2017; Li & Hoiem, 2016; Shmelkov et al.,
2017; Triki et al., 2017; Li & Hoiem, 2016; Triki et al., 2017; Rusu et al., 2016; Lee et al., 2017;
Elhoseiny et al., 2018; Kirkpatrick et al., 2017c; Zenke et al., 2017b; Chaudhry et al., 2018)). How-
ever, humans learn language by leveraging systematic compositionality; the algebraic capacity to
understand and produce large amount of novel combinations from known components (Chomsky,
1957; Montague, 1970). Compositional generalization is critical in human cognition (Minsky, 1986;
Lake et al., 2017). It also helps humans acquire language from a small amount of data, and expand
vocabulary sequentially (Biemiller, 2001). Modeling continual language learning with improved
compositional understanding is at the heart of this paper. In contrast to humans’ ability to acquire
this skill continually, State-of-the-art continual learning approaches fail to achieve the expected gen-
eralization. Table 1 and Figure 2 show the performance of state-of-the-art approaches (Kirkpatrick
et al., 2017a; Aljundi et al., 2018) when tested in instruction learning and machine translation tasks.
This highlights the lack of generalization of these approaches, designed after classification tasks, on
sequence generation language tasks and the importance of studying the design of continual learning
methods for language learning.

In this paper, we address the question of how compositionality could enable better continual lan-
guage learning. We show that designing compositional continual learning approach significantly re-
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Transfer Forget Long-forget
Method \Stage 1 10 100 1 10 100 1 10 100
Standard 2.3 0.2 0.0 30.8 0.9 0.0 30.8 11.2 7.9
Compositional 98.8 15.0 0.0 99.3 71.7 0.7 99.3 85.5 47.4
EWC 2.8 0.2 0.0 35.0 1.0 0.2 35.0 11.5 11.1
MAS 0.6 0.2 0.0 20.0 0.8 0.1 20.0 10.8 9.8
Proposed 99.9 99.8 90.7 100.0 99.9 89.5 100.0 100.0 86.0

Table 1: Mean of evaluation accuracy (%) on instruction learning tasks (Section 4 for details). Base-
lines include Compositional (Li et al., 2019), EWC (Kirkpatrick et al., 2017a), and MAS (Aljundi
et al., 2018). Please refer to Table 3 in Appendix for more results and standard deviations.

duces catastrophic forgetting in Natural Language instructions and machine translation tasks. From
language perspective, continual language learning is important due to changing and growing vo-
cabulary. Continual language learning may facilitate a variety of applications in NLP systems. For
example, it enables a robot to keep on learning new tasks via natural language instruction, a conver-
sational agent to adapt to new conversation topics quickly, and a neural machine translation system
to expand its vocabulary continually.

More concretely, we address the challenge of open and growing vocabulary problem with continual
learning. Continual learning of language is less studied in deep neural networks especially with
ever-growing vocabulary set. It requires optimizing over two objectives. First, previously learned
knowledge should be transferred and combined with new knowledge. Second, the learned model
should resist catastrophic forgetting (Kirkpatrick et al., 2017b), where a model adapted to a new
distribution no longer works on the original one. To achieve these objectives, we use composition-
ality to separate semantics and syntax of an input sentence, so that we can convert label prediction
algorithm to sequence to sequence algorithm for continual learning.

The contributions of this paper can be summarized as follows.

• We propose a new scenario of continual learning which handles sequence-to-sequence tasks
common in language learning.

• We propose an approach to convert label prediction continual learning algorithm to
sequence-to-sequence continual learning algorithm by leveraging compositionality. To our
knowledge, this is the first work for applying compositionality to continual learning of
sequence-to-sequence tasks, targeting at both knowledge transfer to later stages and catas-
trophic forgetting prevention on previous stages.

• Experiments show that the proposed method has significant improvement over multiple
state-of-the-art baselines in both knowledge transfer and catastrophic forgetting prevention
with almost 85% accuracy up to 100 stages on language instruction tasks. It also shows
significant improvement in a machine translation task. The source codes are included in
supplementary material, and will be publicly available upon acceptance.

2 RELATED WORK

Our work is closely related to compositionality, continual learning or lifelong learning. Here, we
briefly review some related work in these areas.

Compositionality Compositional generalization is critical in human cognition Minsky (1986);
Lake et al. (2017), and it helps humans acquire language from a small amount of data, and expand
vocabulary sequentially Biemiller (2001). Therefore, researchers have been studying how to enable
human-level compositionality in neural networks for systematic behaviour (Wong & Wang, 2007;
Brakel & Frank, 2009), counting ability (Rodriguez & Wiles, 1998; Weiss et al., 2018) and sen-
sitivity to hierarchical structure (Linzen et al., 2016). Recently, people proposed multiple related
tasks (Lake & Baroni, 2018; Loula et al., 2018; Lake et al., 2019) and methods (Lake & Baroni,
2018; Loula et al., 2018; Kliegl & Xu, 2018) with different kinds of RNN models and attention
mechanisms. Though these methods enable generalization when the training and test sentences
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have small difference, it has been an open problem (Yang et al., 2019) to reach human-level compo-
sitionality generalization. More recently, Li et al. (2019) proposed an entropy regularization method
that achieves high performance on several NLP tasks. By leveraging the compositional learning
approach, we propose the continual learning algorithm by encoding compositionality into DNN. To
our knowledge, our work is the first to apply compositionality to continual learning in DNN.

Continual learning Continual learning or lifelong learning involves multiple stages. Each stage
has a set of classes and corresponding data, and the training can only access the data in the current
stage. Based on the way for overcoming catastrophic forgetting, continual learning work may be
categorized into data-based and model-based approaches. In data-based approaches, some methods
store previous data either with replay buffer (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017) or
generative model (Shin et al., 2017); other approaches (Li & Hoiem, 2016; Shmelkov et al., 2017;
Triki et al., 2017), employ the new task data to estimate and preserve the model behavior on previous
tasks, mostly via a knowledge distillation loss as proposed in Learning without Forgetting (Li &
Hoiem, 2016). These approaches are typically applied to a sequence of tasks with different output
spaces. To reduce the effect of distribution difference between tasks, (Triki et al., 2017) propose
to incorporate a shallow auto-encoder to further control the changes to the learned features, while
(Aljundi et al., 2017) train a model for every task (an expert) and use auto-encoders to help determine
the most related expert at test time given an example input. In model-based approaches, some
methods dynamically increase model size for the growing information (Rusu et al., 2016; Xu &
Zhu, 2018); other methods (Fernando et al., 2017; Lee et al., 2017; Kirkpatrick et al., 2017c; Zenke
et al., 2017b) focus on the parameters of the network. The key idea is to define an importance weight
ωk for each parameter θk in the network indicating the importance of this parameter to the previous
tasks. When training a new task, network parameters with high importance are discouraged from
being changed. In Elastic Weight Consolidation, (Kirkpatrick et al., 2017c) estimate the importance
weights Ω based on the inverse of the Fisher Information matrix. (Zenke et al., 2017b) propose
Synaptic Intelligence, an online continual model where Ω is defined by the contribution of each
parameter to the change in the loss, and weights are accumulated for each parameter during training.
Memory Aware Synapses (Aljundi et al., 2018) measures Ω by the effect of a change in the parameter
to the function learned by the network, rather than to the loss. This allows to estimate the importance
weights not only in an online fashion but also without the need for labels. Finally, Incremental
Moment Matching (Lee et al., 2017) is a scheme to merge models trained for different tasks. Model-
based methods seem particularly well suited for our setup, given that we work with an embedding
instead of disjoint output spaces. In this paper, we propose a method with minimal increase of model
structure in each stage, and we leverage compositionality with explainable mechanisms that align
with human learning.

Multi-stage continual learning has been mainly explored with classification tasks (Zenke et al.,
2017a; Nguyen et al., 2017; Aljundi et al., 2019). Conventional continual learning algorithms are
designed for fixed size input and label classification output. However in many tasks, such as lan-
guage, both input and output are sequence. Our approach bridges the gap by using compositionality
in language.

3 CONTINUAL LEARNING WITH COMPOSITIONALITY

3.1 PROBLEM DEFINITION

Conventional continual learning algorithms are designed after fixed size input and label classification
output. However in many tasks, such as language, both input and output are sequences and bridging
this gap between continual learning and sequence-to-sequence models is at the heart of our work. We
facilitate more accurate continual sequence-to-sequence artificial learner by proposing an approach
that can leverage Label Prediction Continual Learning (LP-CL) compositionally into Sequence-to-
Sequence Continual Learning (S2S-CL) .

LP-CL: Label Prediction Continual Learning In LP-CL, we consider a word to label mapping
problem, with input word x and corresponding output label y. In initial learning stage, y takes
one of K classes: y ∈ Vinit = {c1, c2, . . . , cK}. In continual learning stage, y takes a new class:
y ∈ Vcont = {cK+1}. In test, y takes all previous classes: y ∈ Vinit ∪ Vcont. For example, in
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language instruction task, input x is a primitive word, and output Y is the corresponding action
symbol; in word-level machine translation, input x is an English content word, and output Y is the
corresponding French word. In initial training stage, we have multiple iuput word and output symbol
pairs. In continual learning stage, we have a new input and output word pair. We train a model in
initial training stage, and do not use the data any longer. We then switch to the data in continual
learning stage, and continually updating the model. In test stage, we evaluate whether model can
predict labels from both initial and continual learning stages. We denote label prediction continual
learning model (LP-CL) as P (y|x; θ) .

S2S-CL: Sequence to Sequence Continual Learning For sequence to sequence continual learn-
ing (S2S-CL), we consider sequential input X = x1, x2, . . . , xn and output Y = y1, y2, . . . , ym.
Each output label yi, i ∈ {1, . . . ,m} is from the corresponding label set in label prediction problem.
We want to make a model P (Y |X) for sequence to sequence continual learning.

Our goal is to facilitate better Sequence to Sequence Continual Learning (S2S-CL) capability quan-
tified as P (Y |X) by leveraging access and joint-learning with Label Prediction Continual Learning
(LP-CL) model, P (y|x; θ).

3.2 USE LP-CL ALGORITHM FOR S2S-CL WITH COMPOSITIONALITY

The core idea of this work is to use compositionality to separate semantics and syntax, so that we
can convert label prediction algorithm to sequence to sequence algorithm for continual learning. In
Kirkpatrick et al. (2017a), continual learning can be probabilistically defined as follows.

logP (θ|D) = logP (DT |θ) + logP (θ|D1···T−1)− logP (DT )

Here, logP (DT |θ) is the negative of loss function in task T , and logP (θ|D1···T−1) is regularization
related to parameters learned during 1 · · ·T − 1. In this work, we have two parts of parameters
ψ = θ, φ for semantics θ and syntax φ. With compositionality (Li et al., 2019), we make θ and φ
conditionally independent given input of data D1···T−1.

logP (ψ|D) = logP (DT |ψ) + logP (θ, φ|D)− logP (DT )

logP (ψ|D) = logP (DT |ψ) + logP (θ|D1···T−1) + logP (φ|D1···T−1)− logP (DT )

We assume syntax φ do not change over time, so we realize regularization logP (φ|D1···T−1) by
freezing φ during learning in task T . We use label prediction continual learning algorithm for
regularization logP (θ|D1···T−1).

Based on the above arguments, we derive the proposed approach. To use label prediction algorithm
in sequence to sequence problem, we need to extract label prediction problem from sequence to se-
quence model. Language is generally composed of semantics p and syntax f , so that we decompose
an input sequence to them with compositionality.

In this task, input X is a word sequence, and output Y is a label sequence. To better compositional
access to word sequences, we consider X has two types of information: which labels are present
(Xp), and how the labels should be ordered (Xf ). Y is constructed by the output label types (Y p),
and output label order (Y f ). We can use a sequence of attention maps on input index for the output
order Y f . Y f functionally depends only on Xf . Given Y f , Y p depending only on Xp. For an
intuitive example, in language instruction example, output order of actions depends only on input
function words (syntax), and given the order, each output action (semantic) only depends on the
corresponding input primitive. In machine translation, output order only depends on input part-of-
speech information (syntax), and given the order, each output word label (semantics) only depends
on the corresponding input word.

P (Y |X) = P (Y f , Y p|Xf , Y p)

= P (Y f |Xf , Y p)P (Y p|Y f , Xf , Y p)

= P (Y f |Xf )P (Y p|Y f , Xp)
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Since we aim to enable LP continual learning to communicate with S2S continual learning (our
goal), we decompose output sequence to labels. We assume that the labels y1, . . . , ym are con-
ditionally independent given output order Y f and semantic information Xp. We then use total
probability and further design that xpi depends only on yfj and Xp, which can be implemented by
attention mechanism. With label prediction component, ypj depends only on input word xpi .

P (Y |X) = P (Y f |Xf )

m∏
j=1

P (ypj |Y
f , Xp)

= P (Y f |Xf )

m∏
j=1

n∑
i=1

P (xpi |Y
f , Xp)P (ypj |x

p
i , Y

f , Xp)

= P (Y f |Xf )

m∏
j=1

n∑
i=1

P (xpi |y
f
j , X

p)P (ypj |x
p
i )

P (xpi |y
f
j , X

p) is an operation to apply attention map yfj on value vector Xp, so that it does not have
parameters. Let θ be the parameter for label prediction module P (ypj |x

p
i ; θ), and φ be the parameter

for attention map generator P (Y f |Xf ;φ).

P (Y |X) = P (Y f |Xf ;φ)

m∏
j=1

n∑
i=1

Patt(x
p
i |y

f
j , X

p)P (ypj |x
p
i ; θ)

Since the continual learning stage contains only new semantic word, we may expect the syntactic
information Y f and Xf are not new, so we can just freeze φ during continual learning stage. θ is
the parameter for label prediction module. Therefore, we can use label prediction continual learning
model (LP-CL) to enable compositional sequence to sequence continual learning (S2S-CL) as we
detail in the next subsection.

3.3 DISENTANGLE SEMANTIC AND SYNTACTIC REPRESENTATIONS

Our S2S-CL approach is inspired from the idea decomposing syntactic and semantic representa-
tion from the compositional sequence-to-sequence by Li et al. (2019). Note that (Li et al., 2019) is
not a continual learning approach but shows how compositionality can be encoded in sequence-to-
sequence models. In this section we briefly describe the how (Li et al., 2019) enable such disentan-
glement and in the following section we detail our continual learning approach while modeling the
compositional characteristic continually. In (Li et al., 2019), the method disentangles syntactic and
semantic1 representations. It processes an input sentence by generating a sequence of attention maps
from the syntactic representation and then use the attended semantic representation to generate an
output sequence.

Suppose there are input x and output y. x contains a sequence of words, where each input word
is from an input vocabulary of size U . y contains a sequence of output symbols, where each out-
put symbol is from an output vocabulary of size V . Both vocabularies contain an end-of-sentence
symbol which appears at the end of x and y, respectively. The model output ŷ is a prediction for y.
Suppose both input words and output symbols are in one-hot representation, i.e.,

x = [x1, . . . , xn] ∈ {0, 1}U×n, y = [y1, . . . , ym] ∈ {0, 1}V×m

To disentangle information, an input sentence x is converted to semantic representation p and syn-
tactic representation f . Specifically, each word is encoded with two embeddings.

pi = Embp(xi) ∈ Rkp , fi = Embf (xi) ∈ Rkf

Then, they are concatenated to form two representations for the entire input sequence, i.e.,

p = [p1, . . . , pn] ∈ Rkp×n, f = [f1, . . . , fn] ∈ Rkf×n

1We make a loose usage of syntactic and semantic. In natural instruction learning, syntactic refers to func-
tional and semantic refers to primitive.
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Entropy regularization is introduced to achieve disentanglement by regularizing the L2 norm of the
representations Lregularize = L2(p) + L2(f), and then adding noise to the representations.

p′ = p+ αεp ∈ Rkp×n, εp ∼ N (0, I), f ′ = f + αεf ∈ Rkf×n, εf ∼ N (0, I)

f ′ is fed to a sequence-to-sequence module for decoding. At each step j, the decoder generates
bj ∈ Rn, and attention map aj is obtained with Softmax. With the attention map, weighted average
vj on noised semantic representations p′ is computed. Then it is fed to a fully connected one-layer
network fpredict to get score lj , and a Softmax is used to compute the output distribution ŷj . The
decoding ends if argmax ŷj is an end-of-sentence symbol.

aj = Softmax(bj), vj = ajp
′ ∈ Rkp , lj = fpredict(vj) ∈ RV , ŷj = Softmax(lj)

The cross entropy of y and ŷ is used as prediction loss Lprediction, and the final loss L is the combi-
nation of prediction loss and entropy regularization loss. λ is regularization weight.

Lprediction =

m∑
j=1

CrossEntropy(yj , ŷj), L = Lprediction + λLregularize

3.4 LABEL PREDICTION ALGORITHM FOR CONTINUAL LANGUAGE LEARNING

In language problem, it is natural to use non-parametric algorithm as label prediction continual
learning algorithm, because each word is usually associated with embeddings. In each stage, since
the original method uses two embeddings for a word, we append the word embeddings for the
new word in the stage for semantic, syntactic and action embeddings (Fig. 1). We freeze the old
embedding parameters and only learn the newly added ones in the stage.

Figure 1: Illustration for the first continual learning stage. Left is input word embedding (we only
show one of two input word embeddings for simplicity). Middle is model architecture. Right is
output action embedding. Parameters and data for the input word and output action embeddings of
previous stage are in blue (filled boxes, solid lines), and for the new stage are in red (unfilled boxes,
dashed lines). Other parts of the network are in black (unfilled boxes, solid lines).

4 EXPERIMENTS

We evaluate the proposed method in a continual learning task with multiple stages. The first stage
is a standard process in which we train a model with combinations of multiple words in various
sentence structures. In each of continual stage, we add a new input word and corresponding new
output symbol. The training dataset contains only one sample, whose input is a sentence with the
new word, and output is a sequence with the new symbol. For each stage, we can only use the data
in that stage, and have no access to data in previous or future stages.

We have two objectives in continual learning. We want previously learned knowledge to be trans-
ferred and combined with new knowledge (transfer learning), and an updated model to work on
previous data (catastrophic forgetting prevention). We evaluate transfer learning by testing whether
the model works on data where the new word appears with old ones (Transfer). We evaluate catas-
trophic forgetting prevention by testing whether the model works on data that only contain words
up to the last stage (Forget). We are also interested in preventing long-term catastrophic forgetting,
because it is more difficult than preventing short-term one. Thus, we test whether the new model
works on the evaluation dataset in the initial stage (Long-forget).
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Baselines. We designed baseline methods for compositionality Sequence-to-Sequence contin-
ual learning to validate our approach since, to our knowledge, this is the first work for continual
learning of natural language instructions and machine translation. We applied standard sequence-to-
sequence model (Standard)to our continual setting, and also and the compositional generalization
method (Compositional) (Li et al., 2019). We also compare with state of the art continual learn-
ing baselines. To fit in the experimental setting, we focus on those that do not use replay buffer,
and require minimum model structure extension, so that we added EWC (Kirkpatrick et al., 2017a)
and MAS (Aljundi et al., 2018) as comparable baselines due to their popularity and competitive
performance in label prediction setting. The detailed implementation of the baseline and proposed
methods can be found in Appendix B.

Metric. We use accuracy as metric for both instruction learning and machine translation experi-
ments. A prediction is correct if and only if it is completely identical to the ground truth. We run all
experiments for five times with different random seeds.
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Machine translation.
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Figure 2: Mean of evaluation accuracy (%) for all methods (best viewed in color). Baselines include
Compositional (Li et al., 2019), EWC (Kirkpatrick et al., 2017a), and MAS (Aljundi et al., 2018).
The proposed method is significantly better than all baselines. Please refer to Figure 3 and Figure 4
in Appendix for details and deviations.
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Instruction Learning We first experiment on instruction learning task using SCAN dataset (Lake
& Baroni, 2017). The task is summarized in Table 2 in Appendix. The details of dataset generation
is in Appendix A. The results are in Figure 2 (left) and Table 1 (more details on Table 3 in Ap-
pendix). The proposed method has significantly better results than the baselines. It maintains high
accuracy up to 100 stages for both transferring knowledge from previous stages to future stages,
and catastrophic forgetting prevention. On the other hand, baseline methods drop performance over
time. Methods without compositionality (EWC, MAS) reduces quickly, maybe because they are
not designed for transferring knowledge, and since the representations are entangled, all parame-
ters are quickly changed, causing catastrophic forgetting. Compositional method is better, but still
drops, maybe because the parameters for syntax are changed over time. This experiment shows the
advantage of the proposed method over baselines.

Machine Translation We also investigated whether the proposed approach works for other con-
tinual language learning problems. As an example, we conduct a proof-of-concept experiment for
machine translation. We modified the English-French translation task in (Lake & Baroni, 2018). In
each continual learning stage, we add an additional English-French word pair, in the format (“I am
ENGLISH”, “je suis FRENCH”). Neither English word nor French word appears in previous stages.
This pair is used as training data in the stage, but test data contains other patterns. Appendix A
provides more details on dataset and model configuration. The result is shown in Figure 2 (right)
and Table 4 in Appendix. It shows that the proposed approach has stable and significantly higher
performance than baselines. For Transfer and Forget evaluation, the baseline methods drop quickly.
However, for Long-forget evaluation, they keep positive accuracy over time. This means the baseline
methods have ability to learn knowledge and remember for long time, but they are not as strong as
the proposed method. This experiment shows that the proposed approach has promise to be applied
to real-world tasks.

5 DISCUSSIONS

5.1 ATTENTION MAP VISUALIZATION

We hope to use compositionality for continual learning, so we want to find whether the model works
in the expected mechanism. We visualize activations of attention maps on the evaluation data in the
first continual stage (Figure 3).
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Figure 3: Visualization of attention maps. The horizontal and vertical dimensions are the input and
output position sequences respectively. The figures show that the model identifies the appropriate
input to output position mapping. This indicates that the proposed method successfully leverages
compositionality in continual learning.

The visualization shows that, for each output action, the attention is on the corresponding input
word. Also, for the output end-of-sentence symbol, it is on the input end-of-sentence symbol. It is
consistent with the original work, and the way humans apply compositionality. This indicates that
the proposed method may be applicable to other tasks where humans use compositionality.
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5.2 EMBEDDING VISUALIZATION

We visualize how the new embedding parameters fit in the space with predefined dimensions, and
accommodate with previously learned parameters. The visualization of attention maps explains the
syntactic information, and we are also interested in semantic information.

We use t-SNE (Maaten & Hinton, 2008) to project high dimensional embeddings to two dimen-
sional space for visualization. Our analysis focuses on semantic embedding, because it reflects how
new information is encoded in the model. Since action embedding shares much information with
semantic embedding, and syntactic embedding is not supposed to contain new information because
grammar does not change over stages, we leave them in Appendix D.
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Figure 4: Embedding visualization for semantic embeddings. We see two phases. In (1-50), embed-
dings explore outside space. In (51-100), embeddings squeeze into the explored space.

Figure 4 shows two phases in the continual learning experiment. The first phase is from the first
stage to around stage 50, where the new embeddings explore outside space. The second phase is the
rest of the stages, where the embeddings squeeze into the explored space, maybe because exploring
becomes expensive with the dense population under regularization.

6 CONCLUSION

In this paper, we propose an approach to use label prediction continual learning algorithm for
sequence-to-sequence continual learning problem by leveraging compositionality. To our knowl-
edge, this is the first work to combine continual learning and compositionality for sequence-to-
sequence learning. Experiments show that the proposed method has significantly better results than
baseline methods, and it maintains almost more than 85% accuracy for both transfer learning and
catastrophic forgetting prevention up to 100 stages. The results demonstrate that language composi-
tionality helps continual learning of natural language instruction both efficiently and effectively. We
hope this work will advance the communication between humans and robots, and make robots more
helpful in various tasks.
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A DATASET PREPARATION

We extend the grammar in SCAN dataset (Lake & Baroni, 2017) to generate data. For the initial
stage, we generate data with three action words (walk, look, run). We then randomly and uniformly
divide the data to two disjoint sets. We use one set for initial stage training data (6,601 samples), and
reserve the other set as initial dataset to evaluate catastrophic forgetting in continual stages (Forget,
6,602 samples). The reserved data is also used to evaluate long-term catastrophic forgetting (Long-
forget). In each continual stage, we generate data that contain a new action word (jump for the first
continual stage). The data contain a one-word sentence (jump: JUMP), and we use it as training data
(1 sample). We use other data in the generated data as evaluation dataset (Transfer, 7,706 samples
for the first continual stage). We then add Transfer to Forget for the next stage. We set a limitation
of 100,000 samples for each evaluation dataset. When it has more samples than that, we select the
amount uniformly at random after generating all data once. Machine translation dataset is generated
similarly from the translation dataset in SCAN dataset (Lake & Baroni, 2017).

Stage Train Transfer Forget Long-forget
Initial walk twice - - run and look

1 jump jump twice walk look before run
2 skip look and skip look twice walk after run
3 crawl crawl after skip skip after jump run thrice

Table 2: Example inputs for continual learning setup (initial and first three continual learning stages).
Initial stage training data contain action words of “walk”, “run” and “look”. Bold words are intro-
duced in current continual stage. Italic words are introduced in previous continual stages.

B IMPLEMENTATION

We use bidirectional LSTM as encoder, and unidirectional LSTM with attention as decoder for
sequence to sequence architecture. The first and last states of encoder are concatenated as initial
state of decoder. The state size is h = 32 for encoder, and 2h = 64 for decoder. We also use
kp = 64, kf = 8, α = 0.1. For EWC (Kirkpatrick et al., 2017a) and MAS (Aljundi et al., 2018), we
use 10 for parameter regularization weight. In initial stage, batch size is 512, and we run training
5,000 steps. In each continual stage, batch size is 1, as each continual stage only contains one
sample, and we run training 1,000 steps. We have 100 continual stages. We implement all methods
with TensorFlow (Abadi et al., 2016).

C DETAILED EXPERIMENT RESULTS

More results and standard deviation for continual learning can be found in Table 3 for instruction
learning and Table 4 for machine translation experiments.

D EMBEDDING VISUALIZATION

Syntax embeddings in Figure 5 show that the embeddings in continual learning stages do not explore
outside space, but live in the space explored in the initial stage.

Action embeddings in Figure 6 show two phases for exploration, similar with semantic embeddings.
This fits expectation, because the compositionality and training encourage semantic embeddings and
action embeddings to be similar.
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Method \Stage 1 2 3 10 100
Standard 2.3 ± 3.0 1.8 ± 1.1 1.0 ± 1.2 0.2 ± 0.1 0.0 ± 0.0
Compositional 98.8 ± 1.5 98.1 ± 1.7 97.5 ± 1.8 15.0 ±29.9 0.0 ± 0.0
EWC 2.8 ± 3.7 1.4 ± 1.2 0.4 ± 0.3 0.2 ± 0.2 0.0 ± 0.0
MAS 0.6 ± 0.7 1.4 ± 1.6 0.3 ± 0.4 0.2 ± 0.1 0.0 ± 0.0
Proposed 99.9 ± 0.1 99.9 ± 0.2 99.8 ± 0.2 99.8 ± 0.3 90.7 ±14.5

(a) Transfer learning evaluation (Transfer).
Method \Stage 1 2 3 10 100
Standard 30.8 ±16.4 10.0 ± 8.6 4.3 ± 3.7 0.9 ± 0.6 0.0 ± 0.0
Compositional 99.3 ± 1.2 98.7 ± 1.3 98.2 ± 1.5 71.7 ±17.6 0.7 ± 0.2
EWC 35.0 ±25.9 11.0 ± 9.8 5.5 ± 4.9 1.0 ± 1.0 0.0 ± 0.0
MAS 20.0 ±13.3 8.1 ± 6.6 4.6 ± 4.0 0.8 ± 0.7 0.0 ± 0.0
Proposed 100.0 ± 0.0 100.0 ± 0.1 99.9 ± 0.1 99.9 ± 0.2 89.5 ±19.6

(b) Catastrophic forgetting evaluation (Forget).
Method \Stage 1 2 3 10 100
Standard 30.8 ±16.4 20.9 ±17.5 13.5 ±12.3 11.2 ± 7.2 7.9 ± 4.6
Compositional 99.3 ± 1.2 99.1 ± 1.1 98.9 ± 1.1 85.5 ±18.1 47.4 ±28.4
EWC 35.0 ±25.9 23.1 ±20.0 17.7 ±15.9 11.5 ±11.5 11.1 ±11.6
MAS 20.0 ±13.3 17.2 ±13.7 14.7 ±12.5 10.8 ± 8.5 9.8 ± 7.9
Proposed 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 86.0 ±22.0

(c) Long-term catastrophic forgetting evaluation (Long-forget).

Table 3: Evaluation accuracy (%) for proposed and baseline methods in instruction learning ex-
periment. Baselines include Compositional (Li et al., 2019), EWC (Kirkpatrick et al., 2017a), and
MAS (Aljundi et al., 2018).

Method \Stage 1 2 3 10 100
Standard 30.0 ±17.0 22.5 ±22.9 52.5 ±21.5 10.0 ±14.6 0.0 ± 0.0
Compositional 40.0 ±28.9 40.0 ±14.6 42.5 ±10.0 5.0 ±10.0 0.0 ± 0.0
EWC 52.5 ±14.6 45.0 ±15.0 37.5 ±20.9 7.5 ±15.0 0.0 ± 0.0
MAS 42.5 ±15.0 25.0 ±17.7 45.0 ±20.3 5.0 ±10.0 0.0 ± 0.0
Proposed 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0

(a) Transfer learning evaluation (Transfer).
Method \Stage 1 2 3 10 100
Standard 30.0 ±17.0 32.5 ±11.5 38.3 ±15.2 18.8 ± 6.8 1.8 ± 0.9
Compositional 40.0 ±28.9 37.5 ±22.4 37.5 ±11.5 20.2 ±12.6 1.8 ± 0.9
EWC 52.5 ±14.6 52.5 ±11.6 50.8 ±11.3 29.3 ± 8.5 3.0 ± 1.0
MAS 42.5 ±15.0 41.3 ±20.0 33.3 ±10.9 17.7 ± 6.0 2.0 ± 1.0
Proposed 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0 62.4 ± 0.1

(b) Catastrophic forgetting evaluation (Forget).
Method \Stage 1 2 3 10 100
Standard 37.5 ± 7.9 37.5 ± 7.9 42.5 ±10.0 27.5 ± 9.4 30.0 ±12.7
Compositional 35.0 ±26.7 40.0 ±21.5 40.0 ± 5.0 27.5 ±24.2 17.5 ±15.0
EWC 50.0 ±13.7 52.5 ±16.6 50.0 ±11.2 42.5 ±20.3 37.5 ±15.8
MAS 55.0 ± 6.1 42.5 ±17.0 57.5 ±12.7 45.0 ± 6.1 47.5 ±18.4
Proposed 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0 62.5 ± 0.0

(c) Long-term catastrophic forgetting evaluation (Long-forget).

Table 4: Evaluation accuracy (%) for proposed and baseline methods in machine translation ex-
periment. Baselines include Compositional (Li et al., 2019), EWC (Kirkpatrick et al., 2017a), and
MAS (Aljundi et al., 2018).
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Figure 5: Embedding visualization for syntax embeddings.
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Figure 6: Embedding visualization for action embeddings.
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