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ABSTRACT

We introduce a novel neural network-based partial differential equations solver
for forward and inverse problems. The solver is grid free, mesh free and shape
free, and the solution is approximated by a neural network. We employ an un-
supervised approach such that the input to the network is a points set in an arbi-
trary domain, and the output is the set of the corresponding function values. The
network is trained to minimize deviations of the learned function from the PDE
solution and satisfy the boundary conditions. The resulting solution in turn is an
explicit smooth differentiable function with a known analytical form.
Unlike other numerical methods such as finite differences and finite elements, the
derivatives of the desired function can be analytically calculated to any order. This
framework therefore, enables the solution of high order non-linear PDEs. The
proposed algorithm is a unified formulation of both forward and inverse problems
where the optimized loss function consists of few elements: fidelity terms of L2

and L∞ norms, boundary conditions constraints and additional regularizers. This
setting is flexible in the sense that regularizers can be tailored to specific problems.
We demonstrate our method on a free shape 2D second order elliptical system with
application to Electrical Impedance Tomography (EIT).

1 INTRODUCTION

Partial differential equations are fundamental in science and mathematics with wide applications
in medical imaging, signal processing, computer vision, remote sensing, electromagnetism and
more. Classical methods such as finite differences, finite volume and finite elements are numeri-
cal discretization-based methods where the domain is divided into a uniform grid or polygon mesh.
The differential equation is then reduced to a system of algebraic equations. These methods may
have some limitations: the solution is numeric and may suffer from high condition number, highly
dependent on the discretization and even the second derivative is sensitive to noise.

In the last few years, deep learning and neural network-based algorithms are extensively used in
pattern recognition, image processing, computer vision and more. Recently, the deep learning ap-
proach had been adopted to the field of PDEs as well by converting the problem into a machine
learning one. In Supervised learning, the network maps an input to an output based on example
input-output pairs. This strategy is used in inverse problems, where the input to the network is a
set of observations/measurements (e.g. x-ray tomography, ultrasound) and the output is the set of
parameters of interest (tissue density etc.) Feigin et al. (2018); Lucas et al. (2018); McCann et al.
(2017); Seo et al. (2019). Unsupervised learning on the other hand is a self-learning mechanism
where the natural structure presents within a set of data points is inferred.

Algorithms for forward and inverse problems in partial differential equations via unsupervised learn-
ing were recently introduced. The indirect approach utilizes a neural network as a component in the
solution. Li et al. (2018) for example, proposed the NETT (Network Tikhonov) approach to inverse
problems. NETT considers regularized solutions having a small value of a regularizer defined by a
trained neural network. Khoo & Ying (2018) introduced a novel neural network architecture, Switch-
Net, for solving the wave equation based inverse scattering problems via providing maps between
the scatterers and the scattered field. Han et al. (2018) developed a deep learning-based approach
that can handle general high-dimensional parabolic PDEs. To this end, the PDEs are reformulated
using backward stochastic differential equations. The latter is solved by a temporal discretization
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and the gradient of the unknown solution at each time step is approximated by neural network. Li
et al. (2019) approximate the solution map of linear and nonlinear problems by a deep network.

Direct algorithms solve the forward problem PDEs by directly approximating the solution with a
deep neural network. The network parameters are determined by the optimization of a cost function
such that the optimal solution satisfies the PDE, boundary conditions and initial conditions. Chiara-
monte & Kiener (2017) addressed the forward problem by constructing a one layer network which
satisfies the PDE within the domain. The boundary conditions were analytically integrated in the
cost function. They demonstrated their algorithm on the Laplace and hyperbolic conservation law
PDEs. Sirignano & Spiliopoulos (2017) proposed a deep learning forward problem solver for high
dimensional PDEs. Their algorithm was demonstrated on the American option free-boundary equa-
tion. Raissi et al. (2017) focused on continuous time models and solved the Burgers and Shrödinger
equations.

In this work we address the forward and inverse PDE problems via a direct unsupervised method.
Our key contributions are four fold: (1) inverse problems can be solved in the same framework as the
forward problems. (2) In the forward part we extend the standard L2-based fidelity term in the cost
function by adding L∞-like norm. Moreover, (3) some regularization terms which impose a-priori
knowledge on the solution can be easily incorporated. (4) An important feature of our construction
is the ability to handle free-form domain in a mesh free manner. We demonstrate our algorithm by a
second order elliptic equation, in particular the Electrical Impedance Tomography (EIT) application
on circular and three other arbitrary domains.

2 MATHEMATICAL FORMULATION

Let Ω be a bounded open and connected subset of Rd, and A = A(x) = (aij(x)) be any given d×d
symmetric positive definite matrix of functions for 1 ≤ i, j ≤ d. Let b = b(x) = (bj(x)) be any
given n-tuple of functions and let c = c(x) be any given function. A second order operator L is said
to be in divergence form, if L acting on some u has the form

Lu = ∂i(a
ij(x)∂ju) + bj(x)∂ju+ c(x)u, i, j = 1, . . . , d (1)

where we use the Einstein summation convention. Consider the partial differential problem with
Dirichlet boundary conditions

Lu = 0, x ∈ Ω

u(x) = u0(x), x ∈ ∂Ω.
(2)

The forward problem solves u given the coefficients θ := {aij(x), bj(x), c(x)} while the inverse
problem determines the coefficients set θ given u.

The proposed algorithm approximates the solutions in both problems by neural net-
works u(x;wu), aij(x;wij), b

j(x;wb), c(x;wc) such that the networks are parameterized by
wu, wij , wb, wc, and the input to the network is x ∈ Rd. Figure 1 depicts a network architecture of
u in R2. The network consists of few fully connected layers with tanh activation and linear sum in
the last layer. The network is trained to satisfy the PDE with boundary conditions by minimizing a
cost function. In the forward problem

F(u) = λ‖Lu‖22 + µ‖Lu‖∞ + ‖u− u0‖1,∂Ω +RF (u), (3)
and in the inverse problem

I(θ) = λ‖Lu‖22 + µ‖Lu‖∞ + ‖θ − θ0‖1,∂Ω +RI(θ). (4)
The first two terms enforce the solution to satisfy the equation. The first term minimizes the error in
L2 sense while the second term minimizes the maximal error. The second term is important since
the L2 term only forces the equation up to a set of zero measure. The L∞ term takes care of possible
outliers. The third term imposes boundary conditions and the last term is a regularizer which can be
tailored to the application. There are few advantages of this setting. First, the solutions are smooth
analytic functions and are therefore analytically differentiable. In addition, this framework enables
setting a prior knowledge on the solution by designing the regularizers RF and RI . Moreover, the
training procedure is mesh free. Unlike finite differences or finite elements methods, we use random
points in the domain and its boundary in the course of the optimization of equation 3 and equation 4,
see Figure 2. This means that the solution does not depend upon a coordinate mesh and we can also
define an arbitrary regular domain Ω.
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Figure 1: Network architecture: the point (x, y) ∈ R2 serves as an input and u as the output.

Figure 2: Left to right: finite differences grid, finite elements mesh and random points samples used
in the proposed algorithm.

3 APPLICATION TO ELECTRICAL IMPEDANCE TOMOGRAPHY

Let us address a special case of equation 1,

∇ ·
(
σ(x)∇u(x)

)
= 0, x ∈ Ω ⊂ R2

u(x) = u0(x), x ∈ ∂Ω.
(5)

We assume that 0 < σ(x) ∈ C1(Ω), which guarantees existence and uniqueness of a solution
u ∈ C2(Ω) Evans (2010).

The elliptical system equation 5 was addressed by Siltanen et al. (2000) in the context of Electrical
Impedance Tomography (EIT) which is a reconstruction method for the inverse conductivity prob-
lem. The function σ indicates the electrical conductivity density, and u is the electrical potential.
An electrical current

ψn,ϕ = σ
∂un
∂ν

∣∣∣
∂Ω

=
1√
2π

cos(nκ+ ϕ), n ∈ Z

is applied on electrodes on the surface ∂Ω, where κ is the angle in polar coordinate system along
the domain boundary, ϕ is the phase and ν is the normal unit. The resulting voltage u|∂Ω = u0

is measured through the electrodes. The conductivity σ is determined from the knowledge of the
Dirichlet-to-Neumann map or voltage-to-current map

Λγ : u|∂Ω → σ
∂un
∂ν

∣∣∣
∂Ω
,

Mueller & Siltanen (2012); Alsaker & Mueller (2018); Bera et al. (2011); Fan & Ying (2019).

We demonstrate our framework by solving the forward and inverse problem of equation 5 which is a
first step towards a full tomography. Following Mueller & Siltanen (2012), we simulate the voltage
measurement u|∂Ω by the Finite Elements Method (FEM) given three variants of a conductivity
phantom σ(x) depicted in Figure 3. We calculate the FEM solution with different triangle mesh
densities and select as ground truth the one such that finer meshes do not improve the numerical
solution. With our suggested method, the forward problem determines the electrical potential u in
the whole domain Ω given σ, while the inverse problem uses the approximated u and calculates the
conductivity σ given that σ|∂Ω = σ0.
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Figure 3: Left to right: phantom 1, phantom 2 and phantom 3

Table 1: Forward problem results for phantom 1 compared with the DGM method Sirignano &
Spiliopoulos (2017)

n ϕ
u: GDM u: Proposed ux: GDM ux: Proposed

MSE PSNR MSE PSNR MSE PSNR MSE PSNR
1 1 0 2.50e-1 9.02 2.38e-4 39.23 6.01e-6 11.17 7.11e-9 40.43
2 1 π/8 4.20e-2 14.90 1.13e-4 40.60 7.95e-7 19.27 5.92e-9 40.55
3 1 π/4 5.46e-2 13.54 1.23e-4 40.03 1.87e-6 13.36 5.62e-9 38.58
4 2 0 5.12e-2 16.90 4.50e-5 47.46 1.64e-6 14.28 2.81e-9 41.94
5 2 π/4 6.11e-2 6.51 8.31e-5 35.18 1.99e-6 11.08 2.74e-9 39.69

4 FORWARD PROBLEM

In the forward problem the conductivity σ(xi) and boundary conditions u0(xb) are given for random
points set {xi} ∈ Ω ⊂ R2, {xb} ∈ ∂Ω ⊂ R2 with sets size of Ns and Nb respectively. A neural
network having the architecture shown in Figure 1 approximates u(x). Let

Li := ∇ ·
(
σ(xi)∇u(xi)

)
. (6)

The cost function equation 3 is then rewritten as

F
(
u(x;wu

)
=

λ

Ns

Ns∑
i=1

|Li|2 +
µ

K

∑
k∈topK(|Li|)

|Lk|+
1

Nb

Nb∑
b=1

∣∣∣u(xb)− u0(xb)
∣∣∣+ α‖wu‖22. (7)

The first term is the L2 norm of the differential operator, the second term is a relaxed version of the
infinity norm where we take the mean value of the top-K values of |Li|. The third term imposes the
boundary conditions and the last term serves as a regularizer of the network parameters.

The first phantom is shown in Figure 3 left. The impedance values associated with the background
ellipses and circle were 1, 5 and 2 respectively. The original piecewise constant function σ was
slightly smoothed by a Gaussian kernel.

Figure 4 shows the forward problem results for current ψ with n = 1 and ϕ = π/8. The left
column is the FEM solution which is referred to as ground truth, where the top row indicates the
solution u and the bottom row the derivative of u with respect to x calculated as the finite difference
approximation of the FEM result. The middle column depicts the outcome of the proposed method
where ∂u/∂x is an analytical derivative of our result. The right column shows the outcome of the
DGM method Sirignano & Spiliopoulos (2017) which is a special case of equation 3 with λ = 1 and
µ = 0. Quantitative results of the Mean square error (MSE) and PSNR are summarized in Table 1.
Clearly, the proposed method outperforms the DGM method since the weighting parameters and the
L∞ norm play a significant role in the loss function.

The forward problem was repeated using phantom 2 where the background and circle conductivities
were 1 and 0.2 respectively (Figure 3, middle). Four different current combinations were applied.
Quantitative results are summarized in lines 1-4 of Table 2. Figure 5 shows the results for both
u and ∂u/∂x for n = 2 and ϕ = π/2. The right column presents the relative error defined as
e(x, y) = (ufem(x, y)− u(x, y))/max(ufem).
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(a) u: FEM (b) u: proposed (c) u: DGM

(d) ∂u/∂x: FEM (e) ∂u/∂x: proposed (f) ∂u/∂x: DGM

Figure 4: Forward problem results of u and ∂u/∂x for n = 1, ϕ = π/8 given phantom 1. Left
column: ground truth (FEM). Middle column: proposed method. Right column: DGM method.
MSE and PSNR are noted in line 2 of Table 1

(a) u: FEM (b) u: proposed (c) u: relative error

(d) ∂u/∂x: FEM (e) ∂u/∂x: proposed (f) ∂u/∂x: relative error

Figure 5: Forward problem results of u and ∂u/∂x for n = 2, ϕ = π/2 given phantom 2. Left
column: ground truth (FEM). Middle column: proposed method. Right column: relative error. MSE
and PSNR are reported in line 4 of Table 2
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Table 2: Forward problem results of phantom 2 given a circular domain Ω, and phantom 3 with
domains Ω1, Ω2 and Ω3 as defined in Figure 7

phantom n ϕ
u ux

MSE PSNR MSE PSNR
1 2,Ω 1 0 2.86e-4 47.43 1.70e-8 40.61
2 2,Ω 1 π/2 1.74e-3 38.90 1.03e-8 33.79
3 2,Ω 2 0 1.29e-4 45.52 3.26e-9 41.18
4 2,Ω 2 π/2 1.30e-4 45.49 8.63e-4 37.07
5 3,Ω1 1 π/4 6.42e-5 47.16 5.64e-9 39.43
6 3,Ω1 2 π/4 1.08e-4 34.03 2.61e-9 41.32
7 3,Ω2 1 π/4 1.08e-4 44.91 4.51e-9 40.39
8 3,Ω2 2 π/4 5.93e-5 36.64 2.74e-9 41.11
9 3,Ω3 1 π/4 1.22e-4 44.37 9.17e-9 37.31
10 3,Ω3 2 π/4 1.74e-4 31.96 2.24e-9 41.99

Figure 6: Reconstructed σ by the generalized inverse problem. Left: phantom 1, Right: phantom 2.
MSE and PSNR are summed up in lines 1-2 of Table 3.

5 INVERSE PROBLEM

In the inverse problem, the electrical potential u(x) is known while σ(x) is unknown. Since we have
a network which approximates u(x), we can evaluate it at any point x. The objective function equa-
tion 4 then takes the form

I
(
σ(x;wσ)

)
=
λ

Ns

Ns∑
i=1

|Li|2 +
µ

K

∑
k∈topK(|Li|)

|Lk|

+
1

Nb

Nb∑
b=1

∣∣∣σ(xb)− σ0(xb)
∣∣∣+ α‖wσ‖22 +

β

Ns

Ns∑
i=1

|∇σ(xi)|p.

(8)

As in the forward problem, the first two terms enforce σ to satisfy the PDE, where Li is defined
in equation 6. The third term imposes the boundary conditions, and the fourth regularizes the net-
work parameters. The last term is the total variation regularization (p = 1) which promotes the
solution towards a piecewise constant function.

Table 3: σ reconstruction by the generalized inverse problem

phantom MSE PSNR
1 1,Ω 4.06e-2 27.90
2 2,Ω 9.04e-5 40.44
3 3,Ω1 1.07e-2 33.67
4 3,Ω2 5.9e-3 36.27
5 3,Ω3 1.12e-2 33.51
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Figure 7: Free shapes. Left to right: Ω1, Ω2, Ω3 and sample points of Ω3.

(a) u: proposed, Ω1 (b) u: proposed, Ω2 (c) u: proposed, Ω3

(d) ∂u/∂x: proposed, Ω1 (e) ∂u/∂x: proposed, Ω2 (f) ∂u/∂x: proposed, Ω3

Figure 8: Forward problem results of u and ∂u/∂x for n = 2, ϕ = π/4 given phantom 3 applied on
different domains. Left to right: Ω1, Ω2, Ω3. MSE and PSNR are summed up in lines 6, 8 and 10 of
Table 2.

Additional inverse problem generalization may exploit multiple u approximations for several cur-
rents ψj . The σ calculation thus, simultaneously relies on all {uj}, resulting a more stable solution,

Lij := ∇ ·
(
σ(xi)∇uj(xi)

)
. (9)

Then equation 8 is generalized to

Jj
(
σ(x;wσ)

)
=
λ

Ns

Ns∑
i=1

|Lij |2 +
µ

K

∑
k∈topK(|Lij |)

|Lkj |, (10)

and

I
(
σ(x;wσ

)
=
∑
j

Jj
(
σ(x;wσ)

)
+

1

Nb

Nb∑
b=1

∣∣∣σ(xb)− σ0(xb)
∣∣∣+ α‖wσ‖22 +

β

Ns

Ns∑
i=1

|∇σ(xi)|p.

(11)
Reconstruction results by the generalized inverse problem are shown in Figure 6 and lines 1-2 in
Table 3. In both phantoms we used four current combinations ψn,ϕ: (1, 0), (1, π/4), (2, 0), (2, π/4),
and σ0 = 1.

6 FREE SHAPE GEOMETRY

We applied the proposed method to arbitrary domains Ω1, Ω2 and Ω3, see Figure 7. The random
sample points within the domain and along its boundary can be easily obtained as can be seen in
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Figure 7 right. The forward problem results applied on phantom 3 are presented in lines 5-10 of
Table 2. Figure 8 shows the results for n = 2 and ϕ = π/4 for the three domains. The outcome of
the generalized inverse problem equation 11 is shown in Figure 9 and lines 3-5 of Table 3.

7 IMPLEMENTATION DETAILS

The network architecture has 4 layers having 26, 26, 26 and 10 neurons. The algorithm was im-
plemented by TensorFlow Ten (2015) using the ADAM optimizer which is a variant of the SGD
algorithm. We used the same hyper parameters set in all our experiments. Batch size=1000, de-
caying learning rate starting at 5e − 3. The learning rate was factored by 0.8 every 200 epochs,
Ns = 80000, Nb = 1200, λ = 0.01, α = 1e − 8, K = 40, µ = 0.01, and β = 0.01. Running
time on Intel i7-8650u CPU was about 15 minutes for the forward problem and 13 minutes for the
generalized inverse problem.

8 DISCUSSION

Deep networks by their nature use compositions of simple functions such as matrix multiplication
and non-linear activations like sigmoid or tanh. This structure (i) enables the approximation of an ar-
bitrary function Hornik (1989) and (ii) is inherently differentiable. The network architecture dictates
the number of degrees of freedom which in turn enables the expressibility of complex functions. In
this work we present a unified framework for the solution of forward and inverse problems in partial
differential equations in an arbitrary domain. The algorithm relies on direct approximation of the
unknown function by a neural network which yields an analytical smooth solution. The network is
trained to satisfy the PDE and boundary conditions in an unsupervised fashion by the minimization
of a cost function. The optimization procedure depends on random points set within the domain
and its boundary. The problem is therefore mesh free with free-form domain. We introduce a cost
function which is composed of both L2 and L∞ fidelity terms, boundary conditions constraints
and additional regularizers. The mathematical rationale of the L∞ norm which controls possible
outliers was verified in our numerical experiments. We also stress the robustness of our approach
exemplified by having the same hyper parameters set for all our experiments.

This framework alleviates several problems of the finite differences and finite elements methods. In
particular meshing, discretization and derivatives approximation are solved in a simple and natural
way. Numerical solutions of PDEs in an arbitrary domain are of extreme importance, in particular in
medical imaging applications. The framework is demonstrated by an elliptic system in R2 applied to
Electrical Impedance Tomography for both forward and inverse problems. Promising results were
achieved for complex and non monotonic functions. Rigorous analysis of the approximation error
and its relation to the network architecture and design are under current study and will be published
elsewhere. Future research includes also full tomography solution, higher dimensional problems
and other classes of PDEs such as dynamic non-linear equations (Burgers, Navier-Stokes etc.)

Figure 9: Reconstructed σ by the generalized inverse problem given phantom 3 applied on different
domains. Left to right: Ω1, Ω2, Ω3. MSE and PSNR are given in lines 3-5 of Table 3
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