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ABSTRACT

Label shift refers to the phenomenon where the marginal probability p(y) of ob-
serving a particular class changes between the training and test distributions, while
the conditional probability p(x|y) stays fixed. This is relevant in settings such as
medical diagnosis, where a classifier trained to predict disease based on observed
symptoms may need to be adapted to a different distribution where the baseline
frequency of the disease is higher. Given estimates of p(y|x) from a predictive
model, one can apply domain adaptation procedures including Expectation Max-
imization (EM) and Black-Box Shift Estimation (BBSE) to efficiently correct
for the difference in class proportions between the training and test distributions.
Unfortunately, modern neural networks typically fail to produce well-calibrated
estimates of p(y|x), reducing the effectiveness of these approaches. In recent years,
Temperature Scaling has emerged as an efficient approach to combat miscalibration.
However, the effectiveness of Temperature Scaling in the context of adaptation
to label shift has not been explored. In this work, we study the impact of various
calibration approaches on shift estimates produced by EM or BBSE. In experi-
ments with image classification and diabetic retinopathy detection, we find that
calibration consistently tends to improve shift estimation. In particular, calibra-
tion approaches that include class-specific bias parameters are significantly better
than approaches that lack class-specific bias parameters, suggesting that reducing
systematic bias in the calibrated probabilities is especially important for domain
adaptation. Colab notebooks reproducing the results are available at (anonymized
link): https://github.com/blindauth/labelshiftexperiments

1 INTRODUCTION

Imagine we train a classifier in country A to predict whether or not a person has a disease based
on observed symptoms, and that we hope to deploy this classifier in country B, which has poorer
access to healthcare. If the prevalence of the disease in country B is higher in than in country A, the
classifier might systematically misdiagnose people as not having the disease. How can we adapt the
classifier to cope with the difference in the baseline prevalence of the disease in the two countries?

Formally, let y denote our labels (e.g. whether or not a person is diseased), and let x denote
the observed symptoms. Let us denote the joint distribution (x, y) in country A (our “source”
domain) as P, and let us denote the distribution in country B (our “target” domain, where we do
not have labels) as Q. How can we adapt a classifier trained to estimate p(y|x) (the conditional
probability in distribution P) so that it can instead estimate q(y|x) (the conditional probability in
distribution Q)? Absent assumptions about the nature of the shift between P and Q, this problem is
intractable. However, if the disease generates similar symptoms in both countries, we can assume
that p(x|y) = q(x|y), and that the shift in the joint distribution q(x, y) is due to a shift in the label
proportion q(y). Formally, we assume that q(x, y) = p(x|y)q(y). This is known as label shift
or prior probability shift (Amos, 2008), and it corresponds to anti-causal learning (i.e. predicting
the cause y from its effects x) (Schoelkopf et al., 2012). Anti-causal learning is appropriate for
diagnosing diseases given observations of symptoms because diseases cause symptoms.

Given estimates of p(y) and p(y|x), there exist algorithms that can be applied to estimate q(y)
without needing to estimate p(x|y) (Saerens et al., 2002; Lipton et al., 2018). However, estimates of
p(y|x) derived from modern neural networks are often poorly calibrated (Guo et al., 2017), which
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could in turn impact the estimates of q(y). To reduce miscalibration, Guo et al. (2017) proposed
Temperature Scaling, in which the logits of the output softmax are scaled by a temperature parameter
to minimize the negative log likelihood (NLL) on a validation set. Guo et al. (2017) showed that
Temperature Scaling is effective at minimizing a quantity they define as the Expected Calibration
Error. However, the performance of Temperature Scaling (TS) in the context of domain adaptation to
label shift has not, to our knowledge, been evaluated. We seek to bridge this gap. Our contributions
are as follows:

• We explore the impact of calibration on two methods designed to perform domain adaptation
to label shift: the EM algorithm of Saerens et al. (2002), and the Black Box Shift Estimation
(BBSE) algorithm of Lipton et al. (2018). In both cases, we find that calibration significantly
improves the quality of the label shift adaptation.
• We observed that TS alone can sometimes leave large systematic biases in the calibrated

probabilities (Fig. 1), consistent with the findings of Kumar et al. (2019). Inspired by this
observation, we tested whether variants of TS that contain class-specific bias parameters
could correct for this systematic bias. We find this is indeed the case, and that such variants
give superior performance on domain adapation to label shift - particularly for EM.
• We identify a theoretically-grounded strategy for computing the source-domain priors in

EM-based domain adaptation that can be critically important when calibrated probability
estimates have systematic bias. We find that when the source priors are computed in this
way, label shift estimates computed though EM can perform surprisingly well compared to
BBSE, even when predictions are not calibrated.
• We show that the calibration method that produces the largest improvement in Expected

Calibration Error does not necessarily produce the largest improvement in negative log-
likelihood (NLL), and that the NLL is more indicative of the improvement that a particular
calibration approach gives in the context of domain adaptation to label shift.

2 BACKGROUND

2.1 TEMPERATURE SCALING, VECTOR SCALING AND EXPECTED CALIBRATION ERROR

Figure 1: Temperature Scaling exhibits system-
atic bias. On CIFAR10 data, systematic bias was
quantified by the Jensen-Shannon divergence be-
tween the true class label proportions and the aver-
age class predictions on a held-out test set drawn
from the same distribution as the dataset used for
calibration. TS: Temperature Scaling, NBVS: No-
Bias Vector Scaling, BCTS: Bias-Corrected Tem-
perature Scaling, VS: Vector Scaling. BCTS and
VS had significantly lower systematic bias com-
pared to TS and NBVS. Results are averaged over
multiple models and dataset samples (Sec. 4.1).

Calibration has a long history in the ma-
chine learning literature (DeGroot and Fienberg,
1983; Platt, 1999; Zadrozny and Elkan; 2002;
Niculescu-Mizil and Caruana, 2005; Kuleshov
and Liang, 2015; Naeini et al., 2015; Kuleshov
and Ermon, 2016). In the context of modern
neural networks, Guo et al. (2017) showed that
Temperature Scaling, a single-parameter vari-
ant of Platt Scaling (Platt, 1999), was effective
at reducing miscalibration. Temperature scal-
ing performs calibration by introducing a tem-
perature parameter T to the logit vector of the
softmax. Let z(xk) represent a vector of the
original softmax logits for example xk, and let
yi be a random variable representing the label
for class i. With temperature scaling, we have

p(yi|xk) = ez(x
k)i/T∑

j ez(x
k)j/T

, where T is optimized

with respect to the Negative Log Likelihood
(NLL) on a held-out portion of the training set,
such as the validation set. Guo et al. (2017) com-
pared TS to an approach defined as Vector Scal-
ing (VS), where a different scaling parameter
was used for each class along with class-specfic
bias parameters. Formally, in vector scaling,

p(yi|xk) = e(z(x
k)iWi)+bi∑

j e(z(x
k)jWj)+bj

. Guo et al. (2017) found that vector scaling had a tendency to perform
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slightly worse than TS as measured by a metric known as the Expected Calibration Error (Naeini
et al., 2015). To compute the ECE, the predicted probabilities for the output class are partitioned into
M equally spaced bins, and the weighted average of the difference between the bin’s accuracy and
the bin’s confidence is computed, where the weights are determined by the proportion of examples
falling in the bin. Formally, ECE =

∑M
m=1

|Bm|
n |acc(Bm)− conf(Bm)|, where n is the number of

samples.

2.2 LABEL SHIFT ADAPTATION VIA EXPECTATION MAXIMIZATION

In a seminal paper on label shift adaptation, Saerens et al. (2002) proposed an EM algorithm for
estimating the shift in the class priors between the training and test distributions. Let q̂(s)(y = i)
denote the estimate (from EM iteration s) of the prior probability q(y = i) of observing class i in the
test set. The algorithm proceeds as follows: first, q̂(0)(y = i) is initialized to be equal to the class
priors p̂(y = i) estimated from the training set. Then, the conditional probabilities in the E-step are

computed as q̂(s)(y = i|xk) =
q̂(s)(y=i)
p̂(y=i)

p̂(y=i|xk)∑n
j=1

q̂(s)(y=j)
p̂(y=j)

p̂(y=j|xk)
. Finally, the prior estimates in the M-step

are updated as q̂(s+1)(y = i) = 1
N

∑N
k=1 q̂

(s)(y = i|xk), where N is the number of examples in the
testing set. The E and M steps are iterated until convergence. As there is no need to estimate p(x|y)
in any step of the EM procedure, the algorithm can scale to high-dimensional datasets. Note this
procedure assumes the conditional probability estimates p̂(y = i|xk) are calibrated.

2.3 LABEL SHIFT ADAPTATION VIA BLACK BOX SHIFT ESTIMATION

Following the EM approach of Saerens et al. (2002), several additional approaches for labels shift
adaptation have emerged (Chan and Ng; Storkey; Schoelkopf et al., 2012; Zhang et al., 2013; Lipton
et al., 2018; Azizzadenesheli et al., 2019). Several of these approaches build estimates p(x|y),
which can scale poorly with dataset sizes and underperform on high-dimensional data (Lipton et al.,
2018). Lipton et al. (2018) proposed Black-Box Shift Estimation (BBSE), which strives to efficiently
estimate the weights [w]i = q(y=i)

p(y=i) even in cases where the prediction model p̂(y = i|xk) is poorly
calibrated or biased. BBSE proceeds as follows: let f be a function that accepts an input and returns
the model’s predicted class, xk denote an example from a held-out portion of the training set, and
x′k denote an example from the testing set. The empirical estimate of w, denoted as ŵ, is computed
as ŵ = Ĉ−1ŷ,yûŷ, where [ûŷ]i =

∑
k 1{f(x

′
k)=i}

m and [Ĉŷ,y]ij = 1
n

∑
k 1{f(xk) = i and yk = j}.

Because the approach above is not guaranteed to produce positive values for all elements of ŵ, any
negative elements of ŵ are set to 0 after they are estimated. Domain adaptation is then performed by
retraining the model on the entire training set distribution with examples upweighted in accordance
with ŵ. Lipton et al. (2018) denote the version of BBSE described above as BBSE-hard. They
also compare to a variant that they call BBSE-soft, which they describe as the case where where
f outputs probabilities rather than hard classes. We interpreted this to mean [ûŷ]i =

∑
k f(x′

k)i
m

and [Ĉŷ,y]ij = 1
n

∑
k f(xk)i1{yk = j}. Although BBSE is designed to work even with classifiers

that are poorly calibrated or biased, in our experiments we found that BBSE-soft combined with an
appropriate calibration method tended to outperform both the original BBSE-soft and BBSE-hard,
neither of which used calibration. Note that BBSE requires a portion of the training set to be held
out during the initial training phase in order to accurately estimate the confusion matrix Ĉŷ,y; in our
experiments involving calibration, we use this same heldout set to calibrate the model.

3 METHODS

3.1 NO-BIAS VECTOR SCALING AND BIAS-CORRECTED TEMPERATURE SCALING

As shown in Fig. 1, we often found that TS alone resulted in systematically biased estimates of
p(yi|xk), while VS, a generalization of TS that contains both class-specific bias terms and class-
specific scaling terms, did not exhibit as much systematic bias. Intrigued by this observation, we
investigated the performance of two intermediaries between Temperature Scaling and Vector Scaling.
The first, which we refer to as No Bias Vector Scaling (NBVS), is equivalent to vector scaling but with
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all the class-specific bias parameters fixed at zero. The second, which we refer to as Bias-Corrected
Temperature Scaling, is equivalent TS Scaling but with the addition of the class-specific bias terms
from VS. As with TS and VS, the parameters are optimized to minimize the NLL on the validation
set. Note that in the case of two-class (binary) classification, the parameterization of BCTS reduces to
Platt Scaling (Platt, 1999). Thus, BCTS can be viewed as a multi-class generalization of Platt scaling.

3.2 DEFINING SOURCE-DOMAIN PRIORS IN THE EM ALGORITHM

The EM algorithm of (Saerens et al., 2002) requires the user to provide estimates of the source-
domain prior class probabilities p̂(y = i). Let us consider two possible approaches to estimating
these probabilities. The first, and most obvious, is to set p̂(y = i) to the expected value of the
binary label y = i over the source domain dataset. A second, slightly less obvious approach is
to set it to the expected value of p̂(y = i|x) over the source domain dataset, formally denoted as
Ex∼p(x)[p̂(y = i|x)]. If p̂(y = i|x) were unbiased, we would anticipate that the two approaches
agree. However, depending on the calibration of p̂(y = i|x), this may not be the case, bringing us to:

Lemma 1: In the absence of domain shift and in the limit of sufficient data, the EM algorithm will
converge to the original priors p̂(y = i) if and only if p̂(y = i) = Ex∼p(x)[p̂(y = i|x)].
Proof: Note that the EM algorithm will converge when q̂(s+1)(y = i) = q̂(s)(y = i). From the
M-step, we know that q̂(s+1)(y = i) = 1

N

∑N
k=1 q̂

(s)(y = i|xk), where the examples xk are drawn
from the target distribution. Substituting the formula for q̂(s)(y = i|xk) from the E-step, we have

q̂(s+1)(y = i) = 1
N

∑N
k=1

q̂(s)(y=i)
p̂(y=i)

p̂(y=i|xk)∑n
j=1

q̂(s)(y=j)
p̂(y=j)

p̂(y=j|xk)
. To prove our lemma, we consider the scenario

where q̂(y = i) = p̂(y = i) and check whether convergence is attained. If the samples in the target
distribution are drawn from the same distribution as the source, then in the limit of sufficient N ,
the value of q̂(s+1)(y = 1) will approach Ex∼p(x)

1
1 p̂(y=i|xk)∑n

j=1
1
1 p̂(y=j|xk)

= Ex∼p(x)p̂(y = i|xk). Thus,

convergence at p̂(y = i) will be attained if and only if p̂(y = i) = Ex∼p(x)[p̂(y = i|x)] �

We reason that, in the absence of domain shift, it is desirable that EM converge to the original priors
p̂(y = i). In light of Lemma 1, we set p̂(y = i) to be the average value of p̂(y = i|x) over the
source-domain validation set (we use the validation set to avoid the effects of overfitting on the
training set; this is the same validation set used for calibration). If we instead compute p̂(y = i) as the
average of the binary label in the validation set, we observe very poor (even detrimental) performance
with EM when the calibrated probabilities do not have bias correction (Tab. A.1).

If the source domain priors p̂(y = i) are defined to be the average of p̂(y = i|x) over the source
domain samples (as outlined here), and q̂(y = i) is estimated in accordance with the standard EM
update rules, we observe that the ratio of priors q̂(y = i)/p̂(y = i) can serve as a surprisingly good
estimate of the true ratio q(y = i)/p(y = i), even when p̂(y = i) is systematically biased relative
p(y = i). See Sec. 4.4 for more details.

3.3 METRICS FOR EVALUATING ADAPTATION TO LABEL SHIFT

3.3.1 JENSEN-SHANNON DIVERGENCE

The first metric we will consider in evaluating adaptation to label shift is the Jensen-Shannon
divergence between the true target-domain priors and the target-domain priors that are estimated
by a given domain adaptation method. Let us denote the true target-domain prior as q(y = i)
and the estimate as q′(y = i). In the case of BBSE, q′(y = i) can be calculated using the class
weights ŵi, which are intended to estimate q(y = i)/p(y = i). Specifically, we use the formula
q′(y = i) = ŵip

′(y=i)∑
j ŵjp′(y=j) , where p′(y = i) is defined as the average of the true class labels in the

source domain.

In the case of EM, some nuance is required. In Sec. 3.2, we noted that when performing EM,
the source domain priors p̂(y = i) should be defined as the average of the predictions p̂(y = i|x)
over the examples from the source domain (rather than being defined as the average of the labels).
Once the EM algorithm has reached convergence, it will output an estimate q̂(y = i) of the target
domain priors. Naively, it would seem that we could use q̂(y = i) as our estimate of q(y = i) when
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computing the Jensen-Shannon divergence. However, if p̂(y = i) is systematically biased, the target
domain priors output by EM would likely also be systematically biased. We found that we can obtain
superior estimates of q(y = i) by leveraging the true labels in the source domain as follows: first, we
average the labels in the source domain to obtain to obtain p′(y = i), which is an unbiased estimate
of p(y = i). Then, we use the ratio q̂(y = i)/p̂(y = i) from EM as a shift estimate. That is, we

compute our estimate of the target domain priors using the formula q′(y = i) =
q̂(y=i)
p̂(y=i)

p′(y=i)∑
j

q̂(y=j)
p̂(y=j)

p′(y=j)
.

We find that target domain priors computed in this way can perform surprisingly well even when the
predictions themselves are poorly calibrated (Sec. 4.4).

3.3.2 ACCURACY

The second metric we consider is the improvement in accuracy of the domain-adapted model
predictions relative to using the original model predictions. Given the ratio q̂(y = i)/p̂(y = i),

the adapted model predictions can be computed as q̂(y = i|xk) =
q̂(y=i)
p̂(y=i)

p̂(y=i|xk)∑
j

q̂(y=j)
p̂(y=j)

p̂(y=j|xk)
, similar to

the E-step of EM. For EM, we use these adapted predictions to assess accuracy. In the case of
BBSE, Lipton et al. (2018) recommend retraining the model to obtain adapted predictions. Due to
computational constraints, we did not perform model retraining, and thus we limit the comparisons of
domain-adapted accuracy only to those calibration techniques that were used in conjunction with EM.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We evaluated the efficacy of BBSE and EM coupled to different calibration approaches on CIFAR10,
CIFAR100, and a diabetic retinopathy detection dataset. For our experiments on CIFAR10 and
CIFAR100, we trained ten different models, each with a different random seed, using the code from
Geifman and El-Yaniv (2017). For both CIFAR10 and CIFAR100, 10K examples of the training
set were reserved as a held-out validation set. Dirichlet shift was simulated on the testing set by
sampling with replacement in accordance with class proportions generated by a dirichlet distribution
with uniform α values of 0.1 or 1.0 (smaller values of α result in more extreme label shift). Samples
from the validation set were used for calibration, EM initialization and BBSE confusion matrix
estimation. Accuracy and JS Divergence were reported on the label-shifted testing set, while the
calibration metrics of NLL and ECE (with 15 bins) were reported on the unshifted testing set. In
addition to exploring different degrees of dirichlet shift, we also investigated how the algorithms
behaved when the number of samples used in the validation and testing set were varied. For example,
in experiments with n = 8000, only 8000 samples from the validation set and 8000 samples from
the shifted testing set were presented to the domain adaptation and calibration algorithms. For each
model, for a given α and n, 10 trials were performed, where each trial consisted of a different
sampling (without replacement) of the validation set as well as a different sampling of the dirichlet
prior and the label-shifted testing set. This resulted in a total of 100 experiments (10 for each of
the 10 different models). Statistical significance was calculated using a signed Wilcoxon test with a
one-sided p-value threshold of 0.01. For CIFAR10, we also explored “tweak one” shift (Lipton et al.,
2018), where the prior of the “cat” class was set to a parameter ρ and the remaining class priors were
set to (1− ρ)/9. We explored ρ = 0.01 and ρ = 0.9.

The Kaggle Diabetic Retinopathy dataset Kaggle (2015) is a collection of retinal fundus images and
an associated “grade” from 0-4, where 0 indicates healthy and 1-4 indicate progressively more severe
stages of retinopathy. For our experiments, we used the publicly-available pretrained model from
De Fauw (2015), but it modified so as to make predictions on only one eye at a time (specifically, we
supplied the mirror image of a given eye as the input for the second eye). Because test-set labels are
unavailable, we separated the validation set used during the training of the model (consisting of 3514
examples) into “pseudo-validation” and “pseudo-test” sets. Specifically, for each of 100 trials, we
sampled n examples from the original validation set without replacement to form a pseudo-validation
set, and kept the remaining examples as the pseudo-test set. Calibration was performed on the
pseudo-validation set, and calibration metrics of NLL and ECE were reported on the pseudo-test
set. Domain shift was then simulated by sampling from the pseudo-test set in such a way that the
proportion of “healthy” labels was set to a fraction ρ, and the relative proportions of diseased labels
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was kept the same as in the source distribution. In the source distribution, ρ = 0.73; for the simulated
domain shift, we explored ρ = 0.5 and ρ = 0.9.

4.2 CALIBRATION IMPROVES LABEL SHIFT ADAPTATION

Across datasets, we observe that calibration tends to improve label shift adaptation for both EM and
BBSE (Tables 1, 3, 4, 5, D.1, & E.1). In particular, we observe that the variants of TS that
contain bias-correction parameters (namely BCTS and VS) tend to be among the best-perfoming
methods, particularly in the case of EM.

Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM None 6.986; 2.77 6.926; 3.17 6.938; 3.31 1.968; 3.36 2.016; 3.44 2.055; 3.69
EM TS 7.251; 1.68 7.2; 2.13 7.217; 2.21 2.127; 2.83 2.172; 2.92 2.204; 3.05
EM NBVS 7.324; 1.63 7.314; 1.59 7.314; 1.69 2.5; 1.46 2.592; 1.47 2.631; 1.45
EM BCTS 7.328; 1.69 7.337; 1.42 7.347; 1.4 2.593; 0.98 2.664; 1.0 2.688; 1.09
EM VS 7.255; 2.23 7.331; 1.69 7.372; 1.39 2.548; 1.37 2.652; 1.17 2.724; 0.72

Table 1: CIFAR10: Comparison of calibration methods when using EM adaptation to dirchlet
shift, with ∆%accuracy as the metric. Value before the semicolon is the average change in
%accuracy relative to a baseline of no adaptation. Value after the semicolon is the average rank
compared to other methods in the same column. α represents the dirichlet shift parameter, n represents
the sample size for both the validation set and the label-shifted test set. Bold values in a column are
not significantly different from the best performing method in the column, as measured by a paired
Wilcoxon test at p ≤ 0.01. See Sec. 4.1 for details on the experimental setup.

Shift
Estimator

Calibration
Method

ρ = 0.01 ρ = 0.9
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM None 0.784; 2.91 0.798; 3.04 0.761; 3.31 16.304; 3.79 16.356; 3.84 16.369; 3.92
EM TS 0.807; 2.92 0.807; 3.14 0.775; 3.4 17.193; 2.48 17.26; 2.67 17.288; 2.75
EM NBVS 1.149; 1.31 1.172; 1.56 1.199; 1.39 17.588; 1.52 17.674; 1.51 17.738; 1.68
EM BCTS 1.175; 1.38 1.224; 1.27 1.262; 1.15 17.724; 1.09 17.779; 1.17 17.84; 1.24
EM VS 1.182; 1.48 1.258; 0.99 1.301; 0.75 17.727; 1.12 17.874; 0.81 17.988; 0.41

Table 2: CIFAR10: Comparison of calibration methods when using EM adaptation to “tweak-
one” shift, with ∆%accuracy as the metric. Analogous to Table 1

Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

BBSE-soft None 0.068; 2.47 0.056; 2.43 0.049; 2.46 0.027; 2.48 0.019; 2.29 0.014; 2.2
BBSE-soft TS 0.067; 1.88 0.056; 2.0 0.048; 1.98 0.026; 2.0 0.019; 1.97 0.013; 1.88
BBSE-soft NBVS 0.067; 2.18 0.055; 1.96 0.048; 2.13 0.026; 1.98 0.018; 1.79 0.013; 1.89
BBSE-soft BCTS 0.066; 1.71 0.055; 1.73 0.047; 1.7 0.025; 1.77 0.018; 1.91 0.014; 1.97
BBSE-soft VS 0.066; 1.76 0.055; 1.88 0.047; 1.73 0.025; 1.77 0.018; 2.04 0.014; 2.06

Table 3: CIFAR10: Comparison of calibration methods when using BBSE adaptation to dirich-
let shift, with JS Divergence (Sec. 3.3) as the metric. Analogous to Table 1.

Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=7000 n=8500 n=10000 n=7000 n=8500 n=10000

EM None 14.41; 4.0 14.483; 4.0 14.463; 4.0 12.25; 4.0 12.292; 4.0 12.319; 4.0
EM TS 26.112; 1.63 26.101; 1.64 26.048; 1.68 21.625; 1.82 21.638; 1.9 21.622; 1.9
EM NBVS 26.332; 1.6 26.323; 1.73 26.464; 1.7 21.588; 1.86 21.711; 1.91 21.708; 2.04
EM BCTS 26.485; 1.67 26.638; 1.47 26.731; 1.44 21.907; 1.17 22.004; 1.23 22.015; 1.24
EM VS 26.889; 1.1 26.901; 1.16 26.954; 1.18 21.94; 1.15 22.097; 0.96 22.183; 0.82

Table 4: CIFAR100: Comparison of calibration methods when using EM adaptation to dirich-
let shift, with ∆%accuracy as the metric. Analogous to Table 1.

4.3 BIAS-CORRECTION IMPROVES NLL OF CALIBRATED PREDICTIONS

We find that bias-corrected versions of TS (namely BCTS and VS) tend to yield the best NLL on
an unshifted test set, even if they do not always yield the best ECE (Tables 6, 7 & E.2). Recall
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Shift
Estimator

Calibration
Method

ρ = 0.5 ρ = 0.9
n=500 n=1000 n=1500 n=500 n=1000 n=1500

EM None 1.926; 3.09 2.076; 3.49 2.196; 3.64 1.296; 3.42 1.375; 3.81 1.477; 3.8
EM TS 1.902; 2.96 2.225; 3.17 2.495; 3.13 1.626; 3.01 1.923; 2.88 1.973; 2.97
EM NBVS 3.23; 1.69 3.789; 1.49 4.062; 1.54 2.074; 2.44 2.266; 2.24 2.405; 2.17
EM BCTS 3.766; 0.88 4.356; 0.74 4.58; 0.82 3.548; 0.35 3.567; 0.36 3.722; 0.44
EM VS 3.67; 1.38 4.278; 1.11 4.545; 0.87 3.5; 0.78 3.57; 0.71 3.746; 0.62

Table 5: Kaggle Diabetic Retinopathy: Comparison of calibration methods when using EM
adaptation to domain shift, with ∆%accuracy as the metric. ρ represents proportion of healthy
examples in shifted domain; source distribution has ρ = 0.73. Analogous to Table 1, but with a
different type of domain shift (described in Sec. 4.1).

that the calibration metrics are optimized with respect to NLL on the validation set. Empirically, we
find the NLL corresponds better with the improvement that a calibration method will give to domain
adaptation (see Sec. B).

Calibration
Method

NLL ECE
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

None 0.299; 4.0 0.299; 4.0 0.299; 4.0 2.726; 4.0 2.726; 4.0 2.726; 4.0
TS 0.291; 2.99 0.291; 3.0 0.291; 3.0 1.069; 1.23 1.06; 1.83 1.027; 2.12

NBVS 0.277; 1.67 0.275; 1.92 0.274; 1.99 1.109; 1.51 1.023; 1.51 0.952; 1.35
BCTS 0.274; 0.34 0.272; 0.54 0.271; 0.71 1.06; 1.02 0.987; 1.02 0.937; 1.06

VS 0.275; 1.0 0.272; 0.54 0.271; 0.3 1.161; 2.24 1.035; 1.64 0.976; 1.47

Table 6: CIFAR10: NLL and ECE for different calibration methods. Metrics were computed on
a test set that had the same distribution as the validation set. Value before the semicolon is the average
of the metric over all the runs. Value after the semicolon is the average rank of the method relative to
other methods in the column. Bold values in a column are not significantly different from the best
performing method in the column, as measured by a paired Wilcoxon test at p ≤ 0.01. See Sec. 4.1
for details on the experimental setup.

Calibration
Method

NLL ECE
n=7000 n=8500 n=10000 n=7000 n=8500 n=10000

None 1.735; 4.0 1.735; 4.0 1.735; 4.0 20.041; 4.0 20.041; 4.0 20.041; 4.0
TS 1.286; 3.0 1.286; 3.0 1.286; 3.0 3.134; 2.87 3.151; 2.87 3.135; 2.9

NBVS 1.241; 2.0 1.24; 2.0 1.239; 2.0 2.263; 0.09 2.281; 0.1 2.324; 0.1
BCTS 1.234; 0.71 1.233; 0.9 1.232; 1.0 2.879; 2.11 2.9; 2.12 2.881; 2.1

VS 1.234; 0.29 1.231; 0.1 1.229; 0.0 2.458; 0.93 2.48; 0.91 2.456; 0.9

Table 7: CIFAR100: NLL and ECE for different calibration methods. Analogous to Table 6.

4.4 EM IS SURPRISINGLY EFFECTIVE AT ESTIMATING SHIFT RATIOS

In this work, we made the surprising observation that when the source domain priors are initialized
to be the average of the predicted probabilities on the source samples (as discussed in Sec. 3.2),
the ratio q̂(y = i)/p̂(y = i) estimated by EM can be a surprisingly good estimate of the true ratio
q(y = i)/p(y = i) (Tables 8, 9, C.2, E.3). In fact, EM performs competitively with BBSE even
when predicted probabilities retain systematic bias (as is the case with TS - see Fig. 1). BBSE
shows advantages over EM in the presence of no calibration, although EM still sometimes performs
unexpectedly well. However, EM performed in the absence of good calibration lacks the theoretical
guarantees of BBSE, and therefore may not be preferable if the quality of the calibration is doubtful.

5 DISCUSSION

In this work, we explored the effect of calibration on procedures designed to perform domain
adaptation to label shift. In experiments on CIFAR10, CIFAR100 and diabetic retinopathy detection,
we found that calibration consistently improves the quality of the label shift adaptation for both EM

7
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Shift
Estimator

Calibration
Method

ρ = 0.1 ρ = 1.0
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM None 0.035; 0.09 0.033; 0.11 0.033; 0.21 0.021; 0.37 0.018; 0.54 0.016; 0.69
BBSE-soft None 0.068; 0.91 0.056; 0.89 0.049; 0.79 0.027; 0.63 0.019; 0.46 0.014; 0.31

EM TS 0.024; 0.02 0.022; 0.04 0.021; 0.07 0.019; 0.29 0.017; 0.47 0.014; 0.59
BBSE-soft TS 0.067; 0.98 0.056; 0.96 0.048; 0.93 0.026; 0.71 0.019; 0.53 0.013; 0.41

EM NBVS 0.021; 0.01 0.017; 0.02 0.017; 0.02 0.017; 0.15 0.013; 0.19 0.01; 0.23
BBSE-soft NBVS 0.067; 0.99 0.055; 0.98 0.048; 0.98 0.026; 0.85 0.018; 0.81 0.013; 0.77

EM BCTS 0.02; 0.01 0.016; 0.01 0.015; 0.04 0.016; 0.11 0.012; 0.17 0.009; 0.18
BBSE-soft BCTS 0.066; 0.99 0.055; 0.99 0.047; 0.96 0.025; 0.89 0.018; 0.83 0.014; 0.82

EM VS 0.023; 0.01 0.017; 0.0 0.015; 0.03 0.016; 0.15 0.013; 0.14 0.009; 0.22
BBSE-soft VS 0.066; 0.99 0.055; 1.0 0.047; 0.97 0.025; 0.85 0.018; 0.86 0.014; 0.78

Table 8: CIFAR10: Comparison of EM and BBSE (dirichlet shift). Value before the semicolon is
the avg. JS divergence between true and estimated target priors (Sec. 3.3). Value after the semicolon
is the avg. rank of a method relative to the other in the pair. A bold value is significantly better than
the non-bold value in the pair (paired Wilcoxon test, p ≤ 0.01). See Sec. 4.1 for experimental setup.

Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=7000 n=8500 n=10000 n=7000 n=8500 n=10000

EM None 0.233; 0.34 0.232; 0.41 0.232; 0.45 0.232; 0.84 0.231; 0.93 0.23; 0.97
BBSE-soft None 0.248; 0.66 0.241; 0.59 0.237; 0.55 0.21; 0.16 0.204; 0.07 0.198; 0.03

EM TS 0.113; 0.0 0.113; 0.0 0.113; 0.0 0.109; 0.0 0.107; 0.0 0.106; 0.0
BBSE-soft TS 0.224; 1.0 0.218; 1.0 0.214; 1.0 0.187; 1.0 0.181; 1.0 0.176; 1.0

EM NBVS 0.119; 0.01 0.119; 0.01 0.119; 0.01 0.118; 0.0 0.117; 0.0 0.116; 0.0
BBSE-soft NBVS 0.226; 0.99 0.22; 0.99 0.216; 0.99 0.189; 1.0 0.183; 1.0 0.178; 1.0

EM BCTS 0.118; 0.01 0.117; 0.01 0.117; 0.01 0.112; 0.0 0.111; 0.0 0.11; 0.0
BBSE-soft BCTS 0.224; 0.99 0.218; 0.99 0.214; 0.99 0.187; 1.0 0.181; 1.0 0.176; 1.0

EM VS 0.113; 0.01 0.112; 0.0 0.112; 0.01 0.111; 0.0 0.108; 0.0 0.107; 0.0
BBSE-soft VS 0.226; 0.99 0.22; 1.0 0.215; 0.99 0.188; 1.0 0.182; 1.0 0.177; 1.0

Table 9: CIFAR100: Comparison of EM and BBSE (dirichlet shift). Analogous to Table 8.

and BBSE, with EM benefiting particularly well when the calibration approach contains class-specific
bias parameters that can reduce systematic bias in the class probabilities.

In addition, we observed that when the calibrated probabilities retain systematic bias, domain
adaptation to EM is sensitive to the strategy used to compute the source-domain priors. If the source-
domain priors p̂(y = i) are not defined in a way that mirrors the systematic bias in the predicted
probabilities p̂(y = i|x), then EM will estimate a label shift even if the target domain is identical to
the source domain (Lemma 1) and can produce highly detrimental results (Tables A.1 & A.2).

If, however, the source domain priors for EM are initialized as we recommend in Sec. 3.2, the shift
ratios q̂(y = i)/p̂(y = i) from EM can serve as surprisingly good estimates of the true shift estimate
q(y = i)/p(y = i) (Sec. 4.4), and occasionally outperform BBSE even when the probabilities are
not well calibrated. However, EM performed in the absence of good calibration lacks the theoretical
guarantees of BBSE, and thus might not be preferable in practice.

Finally, we observed that calibration strategies that included class-specific bias parameters, namely
VS and BCTS, tend to produce superior NLL on the unshifted held-out test set, even when they do not
produce the best ECE (Sec. 4.3). Further, the NLL appears to correspond better to the improvement
in domain adaptation to label shift (Sec. B). This suggests ECE and NLL may offer complementary
measures of calibration quality; the ECE is concerned only with the output for the class with the
highest probability (i.e. the predicted class), whereas the NLL considers the probabilities output
for all classes. In many applications, we are concerned only with the calibration quality of the
predicted class; however, for domain adaptation, the predicted probabilities of all classes come into
play. Calibrating these probabilities in class-specific ways works well in the face of label shifts.
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A COMPARISON OF STRATEGIES FOR INITIALIZING EM SOURCE
PROBABILITIES

Shift
Estimator

Calibration
Method

ρ = 0.5 ρ = 0.9
n=500 n=1000 n=1500 n=500 n=1000 n=1500

EM: source priors from preds None 1.926; 0.0 2.076; 0.0 2.196; 0.0 1.296; 0.26 1.375; 0.17 1.477; 0.14
EM: source priors from labels None -3.488; 1.0 -3.541; 1.0 -3.382; 1.0 0.782; 0.74 0.937; 0.83 1.043; 0.86
EM: source priors from preds TS 1.902; 0.0 2.225; 0.0 2.495; 0.0 1.626; 0.0 1.923; 0.0 1.973; 0.0
EM: source priors from labels TS -56.162; 1.0 -62.552; 1.0 -64.195; 1.0 -69.146; 1.0 -76.619; 1.0 -83.083; 1.0
EM: source priors from preds NBVS 3.23; 0.0 3.789; 0.0 4.062; 0.0 2.074; 0.02 2.266; 0.01 2.405; 0.02
EM: source priors from labels NBVS -9.448; 1.0 -5.134; 1.0 -4.772; 1.0 -2.616; 0.98 0.431; 0.99 0.631; 0.98
EM: source priors from preds BCTS 3.766; 0.0 4.356; 0.03 4.58; 0.01 3.548; 0.0 3.567; 0.01 3.722; 0.01
EM: source priors from labels BCTS 3.764; 1.0 4.357; 0.97 4.58; 0.99 3.548; 1.0 3.568; 0.99 3.723; 0.99
EM: source priors from preds VS 3.67; 0.08 4.278; 0.08 4.545; 0.08 3.5; 0.03 3.57; 0.03 3.746; 0.03
EM: source priors from labels VS 3.662; 0.92 4.278; 0.92 4.559; 0.92 3.506; 0.97 3.572; 0.97 3.746; 0.97

Table A.1: The strategy for computing EM source priors heavily affects domain adaptation if
probabilities retain systematic bias. Value before the semicolon is the average improvement in
%accuracy (across 100 trials) caused by applying domain adaptation to the predictions on a diabetic
retinopathy prediction task. Value after the semicolon is the average rank of a particular method
relative to the other method in the pair. Domain shift is induced by varying the proportion of “healthy”
examples ρ; in the source distribution, ρ = 0.73. We see that calibration methods that lack class-
specific bias parameters (i.e. no calibration, TS and NBVS) can hurt domain adaptation if source
priors are initialized by averaging true labels rather than the predicted probabilities. A bold value in a
pair is significantly better than the non-bold value according to a paired Wilcoxon test at p ≤ 0.01.
See Table A.2 for analogous results using JS Div. See Sec. 4.1 for details on the experimental setup.

Shift
Estimator

Calibration
Method

ρ = 0.5 ρ = 0.9
n=500 n=1000 n=1500 n=500 n=1000 n=1500

EM: source priors from preds None 0.077; 0.0 0.059; 0.0 0.054; 0.0 0.111; 0.4 0.1; 0.37 0.102; 0.32
EM: source priors from labels None 0.253; 1.0 0.256; 1.0 0.256; 1.0 0.125; 0.6 0.116; 0.63 0.114; 0.68
EM: source priors from preds TS 0.09; 0.0 0.068; 0.0 0.061; 0.0 0.104; 0.0 0.094; 0.0 0.094; 0.0
EM: source priors from labels TS 0.61; 1.0 0.628; 1.0 0.647; 1.0 0.629; 1.0 0.639; 1.0 0.643; 1.0
EM: source priors from preds NBVS 0.107; 0.0 0.089; 0.0 0.079; 0.0 0.11; 0.0 0.1; 0.0 0.102; 0.0
EM: source priors from labels NBVS 0.348; 1.0 0.327; 1.0 0.32; 1.0 0.214; 1.0 0.192; 1.0 0.188; 1.0
EM: source priors from preds BCTS 0.111; 0.4 0.095; 0.44 0.082; 0.41 0.078; 0.49 0.065; 0.54 0.063; 0.52
EM: source priors from labels BCTS 0.111; 0.6 0.095; 0.56 0.082; 0.59 0.078; 0.51 0.065; 0.46 0.063; 0.48
EM: source priors from preds VS 0.108; 0.43 0.088; 0.5 0.076; 0.48 0.077; 0.58 0.062; 0.45 0.059; 0.54
EM: source priors from labels VS 0.108; 0.57 0.088; 0.5 0.076; 0.52 0.077; 0.42 0.062; 0.55 0.059; 0.46

Table A.2: Similar to Table A.1, but using Jensen-Shannon Divergence as a metric to assess the
quality of domain adaptation. See Sec. 3.3 for a description of how the Jensen-Shannon Divergence
metric is calculated.

B NLL CORRESPONDS BETTER TO BENEFITS IN LABEL SHIFT ADAPTATION

To investigate whether NLL or ECE corresponded better to the benefits offered by a calibration method
in the context of label shift adaptation, we adopted the following strategy: in a given experimental
run, we identified the calibration method that provided the best NLL (or ECE) on the unshifted test
set. We then looked at the performance of label shift adaptation using this calibration method. Note
that the calibration method selected can differ from one run to the next. Across datasets, we observed
that, by and large, selecting a calibration method according to the NLL produced better performance
after domain adaptation as compared to selecting a calibration method according to ECE. Results are
show in Tables B.1, B.2, B.3, B.4, B.5, B.6, B.7 & B.8.
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Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM Best NLL 7.332; 0.3 7.326; 0.32 7.37; 0.28 2.593; 0.36 2.664; 0.09 2.688; 0.06
EM Best ECE 7.298; 0.7 7.302; 0.68 7.318; 0.72 2.548; 0.64 2.172; 0.91 2.204; 0.94

Table B.1: CIFAR10: NLL vs. ECE, metric: ∆%accuracy, dirichlet shift. Entry in “calibration
method” column indicates how the calibration method for any given run was selected: either according
to whether it produced the best NLL or whether it produced the best ECE, where NLL and ECE were
calculated on the unshifted test set. Value before the semicolon is the average change in %accuracy
relative to unadapted predictions. Value after the semicolon is the average rank of the given metric
relative to the other metric in the pair. A bold value is significantly better than the non-bold value in
the pair using a paired Wilcoxon test at p ≤ 0.01. See Sec. 4.1 for details on the experimental setup.

Shift
Estimator

Calibration
Method

ρ = 0.01 ρ = 0.9
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM Best NLL 1.192; 0.17 1.253; 0.21 1.301; 0.15 17.724; 0.47 17.779; 0.08 17.84; 0.07
EM Best ECE 1.053; 0.83 1.149; 0.79 1.16; 0.85 17.727; 0.53 17.26; 0.92 17.288; 0.93

Table B.2: CIFAR10: NLL vs. ECE, metric: ∆%accuracy, “tweak-one” shift. Analogous to
Table B.1. The “tweak-one” shift strategy is explained in Sec. 4.1.

Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM Best NLL 2.003; 0.33 1.625; 0.4 1.488; 0.36 1.6; 0.38 1.24; 0.14 0.918; 0.12
EM Best ECE 2.144; 0.67 1.635; 0.6 1.642; 0.64 1.647; 0.62 1.714; 0.86 1.398; 0.88

BBSE-soft Best NLL 6.636; 0.41 5.493; 0.35 4.689; 0.49 2.543; 0.49 1.804; 0.47 1.356; 0.55
BBSE-soft Best ECE 6.65; 0.59 5.526; 0.65 4.703; 0.51 2.55; 0.51 1.87; 0.53 1.339; 0.45

Table B.3: CIFAR10: NLL vs. ECE, metric: JS Divergence, dirichlet shift. Analogous to Table
B.1, but using JS Divergence (Sec. 3.3) as the metric rather than change in %accuracy.

Shift
Estimator

Calibration
Method

ρ = 0.01 ρ = 0.9
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM Best NLL 1.566; 0.29 1.0; 0.33 0.793; 0.29 2.787; 0.39 2.339; 0.13 2.132; 0.04
EM Best ECE 1.695; 0.71 1.099; 0.67 0.906; 0.71 2.908; 0.61 3.388; 0.87 3.223; 0.96

BBSE-soft Best NLL 2.012; 0.4 1.409; 0.51 0.985; 0.55 7.431; 0.59 5.737; 0.25 3.84; 0.16
BBSE-soft Best ECE 2.005; 0.6 1.389; 0.49 0.959; 0.45 7.393; 0.41 6.214; 0.75 4.328; 0.84

Table B.4: CIFAR10: NLL vs. ECE, metric: JS Divergence, “tweak-one” shift. Analogous to
Table B.1.

Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=7000 n=8500 n=10000 n=7000 n=8500 n=10000

EM Best NLL 26.889; 0.3 26.901; 0.31 26.954; 0.31 21.958; 0.27 22.106; 0.26 22.183; 0.2
EM Best ECE 26.332; 0.7 26.323; 0.69 26.464; 0.69 21.63; 0.73 21.77; 0.74 21.777; 0.8

Table B.5: CIFAR100: NLL vs. ECE, metric: ∆%accuracy, dirichlet shift. Analogous to Table
B.1.

Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=7000 n=8500 n=10000 n=7000 n=8500 n=10000

EM Best NLL 0.113; 0.31 0.112; 0.27 0.112; 0.29 0.11; 0.15 0.108; 0.1 0.107; 0.1
EM Best ECE 0.119; 0.69 0.119; 0.73 0.119; 0.71 0.117; 0.85 0.116; 0.9 0.115; 0.9

BBSE-soft Best NLL 0.226; 0.41 0.22; 0.35 0.215; 0.39 0.188; 0.21 0.182; 0.26 0.177; 0.23
BBSE-soft Best ECE 0.226; 0.59 0.22; 0.65 0.216; 0.61 0.189; 0.79 0.183; 0.74 0.178; 0.77

Table B.6: CIFAR100: NLL vs. ECE, metric: JS Divergence, dirichlet shift. Analogous to Table
B.1.
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Shift
Estimator

Calibration
Method

ρ = 0.5 ρ = 0.9
n=500 n=1000 n=1500 n=500 n=1000 n=1500

EM Best NLL 3.79; 0.21 4.315; 0.26 4.543; 0.19 3.548; 0.02 3.57; 0.0 3.746; 0.02
EM Best ECE 3.49; 0.79 4.099; 0.74 4.179; 0.81 2.074; 0.98 3.57; 1.0 2.405; 0.98

BBSE-soft Best NLL 1.546; 0.22 3.584; 0.26 4.164; 0.19 3.282; 0.07 3.442; 0.0 3.621; 0.06
BBSE-soft Best ECE 2.048; 0.78 3.026; 0.74 3.76; 0.81 1.93; 0.93 3.442; 1.0 2.759; 0.94

Table B.7: Kaggle Diabetic Retinopathy: NLL vs. ECE, metric: ∆%accuracy, “change pro-
portion of healthy” shift. Analogous to Table B.1.

Shift
Estimator

Calibration
Method

ρ = 0.5 ρ = 0.9
n=500 n=1000 n=1500 n=500 n=1000 n=1500

EM Best NLL 0.11; 0.42 0.093; 0.31 0.079; 0.33 0.078; 0.08 0.062; 0.0 0.059; 0.07
EM Best ECE 0.104; 0.58 0.092; 0.69 0.079; 0.67 0.11; 0.92 0.062; 1.0 0.102; 0.93

BBSE-soft Best NLL 0.166; 0.37 0.12; 0.32 0.096; 0.31 0.107; 0.24 0.079; 0.0 0.077; 0.32
BBSE-soft Best ECE 0.158; 0.63 0.123; 0.68 0.101; 0.69 0.125; 0.76 0.079; 1.0 0.086; 0.68

Table B.8: Kaggle Diabetic Retinopathy: NLL vs. ECE, metric: JS Divergence, “change pro-
portion of healthy” shift. Analogous to Table B.1.

C CIFAR10 SUPPLEMENTARY TABLES

Shift
Estimator

Calibration
Method

ρ = 0.01 ρ = 0.9
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

BBSE-soft None 0.021; 2.37 0.014; 2.05 0.01; 2.16 0.08; 2.97 0.064; 3.15 0.045; 3.25
BBSE-soft TS 0.021; 2.07 0.014; 1.65 0.01; 1.9 0.078; 2.31 0.062; 2.47 0.043; 2.76
BBSE-soft NBVS 0.02; 1.8 0.014; 2.08 0.01; 1.94 0.075; 1.75 0.058; 1.74 0.04; 1.75
BBSE-soft BCTS 0.02; 1.8 0.014; 2.12 0.01; 1.8 0.074; 1.56 0.057; 1.52 0.038; 1.26
BBSE-soft VS 0.02; 1.96 0.014; 2.1 0.01; 2.2 0.074; 1.41 0.057; 1.12 0.038; 0.98

Table C.1: CIFAR10: Comparison of calibration methods when using BBSE adaptation to
“tweak-one” shift, with JS Divergence (Sec. 3.3) as the metric. Analogous to Table 1

Shift
Estimator

Calibration
Method

ρ = 0.01 ρ = 0.9
n=2000 n=4000 n=8000 n=2000 n=4000 n=8000

EM None 0.018; 0.38 0.013; 0.48 0.012; 0.76 0.047; 0.05 0.045; 0.19 0.044; 0.52
BBSE-soft None 0.021; 0.62 0.014; 0.52 0.01; 0.24 0.08; 0.95 0.064; 0.81 0.045; 0.48

EM TS 0.02; 0.49 0.015; 0.55 0.014; 0.73 0.036; 0.02 0.034; 0.07 0.032; 0.24
BBSE-soft TS 0.021; 0.51 0.014; 0.45 0.01; 0.27 0.078; 0.98 0.062; 0.93 0.043; 0.76

EM NBVS 0.016; 0.28 0.01; 0.3 0.008; 0.38 0.033; 0.02 0.028; 0.09 0.026; 0.21
BBSE-soft NBVS 0.02; 0.72 0.014; 0.7 0.01; 0.62 0.075; 0.98 0.058; 0.91 0.04; 0.79

EM BCTS 0.016; 0.34 0.01; 0.27 0.009; 0.39 0.028; 0.0 0.023; 0.05 0.021; 0.12
BBSE-soft BCTS 0.02; 0.66 0.014; 0.73 0.01; 0.61 0.074; 1.0 0.057; 0.95 0.038; 0.88

EM VS 0.016; 0.29 0.01; 0.21 0.008; 0.27 0.029; 0.01 0.023; 0.04 0.02; 0.05
BBSE-soft VS 0.02; 0.71 0.014; 0.79 0.01; 0.73 0.074; 0.99 0.057; 0.96 0.038; 0.95

Table C.2: CIFAR10: Comparison of EM and BBSE at correcting for “tweak-one” shift. Metric
is JS Divergence. Analogous to Table 8.

D CIFAR100 SUPPLEMENTARY TABLES
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Shift
Estimator

Calibration
Method

α = 0.1 α = 1.0
n=7000 n=8500 n=10000 n=7000 n=8500 n=10000

BBSE-soft None 0.248; 3.85 0.241; 3.84 0.237; 3.94 0.21; 4.0 0.204; 4.0 0.198; 4.0
BBSE-soft TS 0.224; 0.9 0.218; 1.08 0.214; 1.21 0.187; 1.26 0.181; 1.46 0.176; 1.52
BBSE-soft NBVS 0.226; 2.12 0.22; 2.12 0.216; 2.04 0.189; 2.15 0.183; 2.15 0.178; 2.23
BBSE-soft BCTS 0.224; 1.22 0.218; 1.2 0.214; 1.11 0.187; 1.06 0.181; 0.83 0.176; 0.82
BBSE-soft VS 0.226; 1.91 0.22; 1.76 0.215; 1.7 0.188; 1.53 0.182; 1.56 0.177; 1.43

Table D.1: CIFAR100: Comparison of calibration methods when using BBSE adaptation to
dirichlet shift, with JS Divergence (Sec. 3.3) as the metric. Analogous to Table 1

E DIABETIC RETINOPATHY SUPPLEMENTARY TABLES

Shift
Estimator

Calibration
Method

ρ = 0.5 ρ = 0.9
n=500 n=1000 n=1500 n=500 n=1000 n=1500

BBSE-soft None 0.17; 2.08 0.127; 2.51 0.105; 2.21 0.131; 2.89 0.096; 2.93 0.091; 2.82
BBSE-soft TS 0.16; 1.86 0.119; 1.86 0.1; 1.9 0.122; 2.52 0.092; 2.53 0.089; 2.57
BBSE-soft NBVS 0.176; 2.32 0.121; 2.05 0.106; 2.32 0.125; 2.26 0.093; 2.18 0.086; 2.13
BBSE-soft BCTS 0.167; 1.9 0.116; 1.63 0.096; 1.85 0.107; 1.32 0.079; 1.13 0.077; 1.17
BBSE-soft VS 0.159; 1.84 0.118; 1.95 0.093; 1.72 0.101; 1.01 0.079; 1.23 0.077; 1.31

Table E.1: Kaggle Diabetic Retinopathy: Comparison of calibration methods when using BBSE
adaptation to domain shift, with JS Divergence (Sec. 3.3) as the metric. Analogous to Table 1.
See Sec. 4.1 for details.

Calibration
Method

NLL ECE
n=500 n=1000 n=1500 n=500 n=1000 n=1500

None 0.64; 4.0 0.639; 4.0 0.639; 4.0 8.734; 4.0 8.737; 4.0 8.767; 4.0
TS 0.571; 3.0 0.57; 3.0 0.569; 3.0 3.65; 2.77 3.729; 2.92 3.853; 2.76

NBVS 0.543; 2.0 0.54; 2.0 0.539; 2.0 2.13; 0.67 2.028; 0.97 2.129; 1.01
BCTS 0.514; 0.21 0.511; 0.57 0.511; 0.63 2.255; 1.21 2.097; 1.17 2.171; 1.14

VS 0.518; 0.79 0.512; 0.43 0.51; 0.37 2.323; 1.35 2.065; 0.94 2.153; 1.09

Table E.2: Kaggle Diabetic Retinopathy: NLL and ECE for different calibration methods.
Analogous to Table 6.

Shift
Estimator

Calibration
Method

ρ = 0.5 ρ = 0.9
n=500 n=1000 n=1500 n=500 n=1000 n=1500

EM None 0.077; 0.04 0.059; 0.05 0.054; 0.09 0.111; 0.4 0.1; 0.5 0.102; 0.59
BBSE-soft None 0.17; 0.96 0.127; 0.95 0.105; 0.91 0.131; 0.6 0.096; 0.5 0.091; 0.41

EM TS 0.09; 0.06 0.068; 0.07 0.061; 0.05 0.104; 0.37 0.094; 0.43 0.094; 0.51
BBSE-soft TS 0.16; 0.94 0.119; 0.93 0.1; 0.95 0.122; 0.63 0.092; 0.57 0.089; 0.49

EM NBVS 0.107; 0.12 0.089; 0.18 0.079; 0.16 0.11; 0.47 0.1; 0.54 0.102; 0.62
BBSE-soft NBVS 0.176; 0.88 0.121; 0.82 0.106; 0.84 0.125; 0.53 0.093; 0.46 0.086; 0.38

EM BCTS 0.111; 0.22 0.095; 0.24 0.082; 0.34 0.078; 0.22 0.065; 0.29 0.063; 0.26
BBSE-soft BCTS 0.167; 0.78 0.116; 0.76 0.096; 0.66 0.107; 0.78 0.079; 0.71 0.077; 0.74

EM VS 0.108; 0.17 0.088; 0.2 0.076; 0.28 0.077; 0.18 0.062; 0.22 0.059; 0.25
BBSE-soft VS 0.159; 0.83 0.118; 0.8 0.093; 0.72 0.101; 0.82 0.079; 0.78 0.077; 0.75

Table E.3: Kaggle Diabetic Retinopathy: Comparison of EM and BBSE at correcting for do-
main shift. Metric is JS Divergence. Analogous to Table 8. See Sec. 4.1 for details.
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