
Under review as a conference paper at ICLR 2020

A NEW MULTI-INPUT MODEL WITH THE ATTENTION
MECHANISM FOR TEXT CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, deep learning has made extraordinary achievements in text classifica-
tion. However, most of present models, especially convolutional neural network
(CNN), do not extract long-range associations, global representations, and hier-
archical features well due to their relatively shallow and simple structures. This
causes a negative effect on text classification. Moreover, we find that there are
many express methods of texts. It is appropriate to design the multi-input model
to improve the classification effect. But most of models of text classification only
use words or characters and do not use the multi-input model. Inspired by the
above points and Densenet (Huang et al. (2017)), we propose a new text classi-
fication model, which uses words, characters, and labels as input. The model,
which is a deep CNN with a novel attention mechanism, can effectively leverage
the input information and solve the above issues of the shallow model. We con-
duct experiments on six large text classification datasets. Our model achieves the
state of the art results on all datasets compared to multiple baseline models.

1 INTRODUCTION

Text classification, including sentiment analysis (Pang et al. (2002); Yang & Cardie (2014)), topic
classification (Tong & Koller (2002)), and spam detection (Jindal & Liu (2007)), is an important
subdomain of natural language processing (NLP). It is widely used in public opinion monitoring,
advertising filtering, user and product analysis and other fields. In recent years, deep learning has
been frequently used in text classification. Compared with traditional methods (Wang & Manning
(2012)) that rely on hand-crafted features, deep learning methods are employed to learn features
from texts by a variety of neural network structures, especially recurrent neural network (RNN) and
convolutional neural network (CNN), and attention mechanisms. There are some examples of text
classification in Table 1. Both the first and the second cases should be classified as the topic of
science and technology, and the third case should be classified as the topic of animals. Most of
key words or phrases of case1 and case2, which determine the category, are similar (e.g., NASA,
moons, and Saturn), but the location of them is different.It can be well captured by CNN, because
of the position invariance of CNN. However, the key words or phrases of case3 are scattered. The
dependencies between them are long distance. Compared with case1 and case2, these key words or
phrases are relatively hard to capture by straightforward or shallow models. And case3 contains a
lot of geographical names, which make it possible to be misclassified as geographic topics.

By the above examples, we find a problems in present models: These models are shallow, especially
CNN. It limits the final classification effect. Specifically, texts have the hierarchical structure which
includes characters, words, phrase, sentences, and documents. The shallow models are hard to
capture the hierarchical, high-level, long distance or global features form texts, which is why the
models are limited.. Nowadays, the amount of text information on the Internet is increasing rapidly.
Thus, the model which can cope with texts of various lengths and levels is needed, especially deep
models of complicated texts. Compared with the CNN models (He et al. (2016); Huang et al. (2017))
of computer vision (CV), the CNN models of text classification are very shallow. It indicates that
deeper models can be tried to improve the result of text classification, as they have done in CV.

Moreover, most of models utilize words or character as the single input, but the multi-input model is
well suited to text classification. The natural language has a variety of carriers or expressions, such
as words and characters, which can be related to others. This is very helpful for designing multiple

1

Under review as a conference paper at ICLR 2020

Table 1: Examples of text classification. The Bold is the key word or phrase.

case1: Two new moons were spotted around Saturn by the Cassini space probe,
raising the total to 33 moons for the ringed planet, NASA said on Mon-
day

case2: NASA’s Cassini spacecraft has spied two new little moons around
satellite-rich Saturn, the space agency said Monday.

case3: Rendall’s serotine (Neoromicia rendalli) is a species of vesper bat.It is
found in Benin Botswana Burkina Faso Cameroon Central African Re-
public Chad Republic of the Congo Democratic Republic of the Congo
Gambia Ghana Kenya Malawi Mali Mozambique Niger Nigeria Rwanda
Senegal Sierra Leone Somalia South Africa Sudan Tanzania Uganda and
Zambia.Its natural habitats are dry savanna moist savanna subtropical
or tropical dry shrubland and subtropical or tropical moist shrubland.It is
threatened by habitat loss.

inputs. We think the multi-input model can obtain better results because it provides more useful
information. Some related works (Amplayo et al. (2018); Xue & Li (2018)) have been done in order
to solve this problem, but most of works used multi-input models in some special subdomains such
as user sentiment analysis. Those are not the general methods for text classification.

In order to solve these problems, we propose a novel deep multi-input model for text classification.
Our model uses words, characters, and labels as inputs. These are proved to be beneficial for text
classification in previous works. Both the multi-input model and deep model have relatively more
parameters and more expensive computing cost, and more effective feature extraction is needed on
the multi-input model. Thus, we use a structure that is similar to Dense block of Densenet (Huang
et al. (2017)) to alleviate the above problems, because it has narrow feature maps and can reduce the
numbers of parameters. Moreover, we employ a new attention mechanism, which allows capturing
of dependencies without regard to their distance in inputs, to replace the global pooling. It can
strengthen feature extraction from several inputs. We conduct extensive experiments on several
public text classification datasets. The results show that our model outperforms all baseline models
on all datasets, and has fewer parameters in comparison to similar works.

Our primary contributions are as follows:

1. We propose a novel multi-input model for text classification. Our model inputs include words,
characters, and labels. Most of previous works only use a single input such as the word or use the
multi-input model in certain subdomains like user sentiment analysis (Amplayo et al. (2018)).

2. Inspired by Densenet, we design a 42-layers network. It is deeper than most of present models.
Compared with shallow and straightforward models, our model can extract more global or long-term
features, and have fewer parameters.

3. We use a new attention mechanism in our model. It is used to replace the global pooling that
commonly used in CNN. Compared with global pooling, our method can effectively utilize inputs
information to capture key part more precisely. Compared with using the attention mechanism at the
beginning of the model, this method can significantly reduce parameters and computation, because
the feature maps of high layers are much smaller than that after embedding.

2 RELATED WORK

Deep learning has been shown their values in many domains of artificial intelligence, including text
classification. This paper will introduce some significant works about it in text classification.

For the past few years, deep learning or deep neural networks have been considered the most preva-
lent machine learning method in the field of text classification. Most of them use pre-trained word
embedding methods such as word2vec (Mikolov et al. (2013)) or glove (Pennington et al. (2014))
and models based on CNN or RNN, but some of them employ the word embedding without pre-
trained (Joulin et al. (2017)) or other embedding methods such as utilizing characters (Zhang et al.
(2015)).

2

Under review as a conference paper at ICLR 2020

words characters

softmax/sigmoid

embedding block

Dense block

compress block

Dense block

compress block

Dense block

compress block

classification block

attention block

labels

3 conv 128

3 max pool, stride 2

Figure 1: Our model architecture.

CNN is regarded as the predominant model in the computer vision due to its friendliness in obtaining
local features and processing in parallel. Recently it also has achieved high performance in NLP.
In text classification, Kim (2014) combines several 1D CNNs to classify sentence. The convolution
filter widths and feature maps are various between these 1D CNNs. Similarly, Kim (2014) also use
convolutional layers with several kinds convolution filter widths. And they propose the dynamic
k-max pooling, the k of which is related to the sentence length and the network depth. Zhang et al.
(2015) propose a character-level CNN model. The model consists of 6 convolutional layers and uses
English letters, digits and punctuations instead of the word to represent text. Their work shows that
characters can be used as the input of text classification and the characters method can obtain good
results. Zhang et al. (2017) propose a representation method which use the convolutional encoder
and deconvolutional decoder to classify text. The convolutional encoder has the stride structure and
no more than 4 layers. Xue & Li (2018) propose a CNN model with a gating mechanism to figure
out the tasks of aspect based sentiment analysis and achieve excellent performance. It is enlightened
from recent advances in computer vision (He et al. (2016)), Conneau et al. (2017) design a 29-layer
deep CNN model to improve the performance on large datasets.

The NLP input and the sequence input are highly compatible. Therefore, RNN variants, such as long
short term memory (LSTM) (Hochreiter & Schmidhuber (1997)), are often used in NLP tasks due
to the suitable for sequence features. Tang et al. (2015a) propose the gated recurrent neural network,
which employs LSTM and gated neural network to solve the document sentiment classification
task. The attention mechanisms, especially Transformer (Vaswani et al. (2017)), have achieved great
results in many fields of NLP. Most attention mechanisms are used with RNN to extract features
more accurately. Zhou et al. (2016) propose an attention mechanism based on bidirectional LSTM
in cross-lingual sentiment classification. Yang et al. (2016) design a hierarchical attention network
(HAN) that can better capture document structure features. It uses bidirectional GRU and attention
mechanism on words and sentences, respectively. Moreover, Lai et al. (2015) propose the recurrent
convolutional neural networks (RCNN), which add a recurrent structure before convolutional layers.
It can utilize the left and right contents of the word to improve the performance of classification.

Moreover, labels, as the potential information, can effectively extend the input to help improve the
precision of the model (Yogatama et al. (2015)). However, it is not employed much in text classi-
fication. Tang et al. (2015b) propose a heterogeneous text network, which utilizes an embedding
including the labeled information and different levels of word co-occurrence information. This
embedding has a good performance for the particular task. Zhang et al. (2018) propose a multi-
task label-embedding to transform labels into semantic vectors, which utilizes semantic correlations
among tasks to enhance performances.

3

Under review as a conference paper at ICLR 2020

3 METHODS

Our model is briefly illustrated in Figure 1. It mainly consists of embedding block, Dense block,
compression block, attention block and classification block. The embedding block, including words,
characters, and labels, is the first part of this model. There are a convolutional layer and a pooling
layer after the embedding block. And then the combination of Dense block and compression block is
repeated several times, but it is an attention block after the final Dense block instead of a compression
block. The classification block is the final part. It consists of three full-connected layers, followed
by dropout. The max pooling is used for all pooling layers, and batch normalization (BN) (Szegedy
et al. (2015)) is applied after all convolutional layers. The activation function is the rectified linear
unit (RELU) for all convolutional layers and full-connected layers.

Embedding block The word embedding and the label embedding are similar to common pre-
trained word embedding, but we use three consecutive operations after the word embedding layer:
dropout, adding Gaussian noise and BN. Inspired by character-level CNN (Zhang et al. (2015)),
the characters embedding utilizes multi-layer CNN to encode the character information. The CNN
encoder has a max pooling layer in the last. And to reduce the parameters, its structure refers to
the Inception (Szegedy et al. (2015)). We also use three identical consecutive operations as the
word-level embedding after the character-level embedding layer. Finally, we concatenate the words
embedding part and the characters embedding part as the first output, which is used as the input
of the convolutional layer after the embedding block. The labels embedding part is the second
output, which is used as one of the inputs of attention block. Comparing with using the word
embedding only or the character embedding only, our methods can express text more fully and
extract more detailed information, which can help to improve the model performance. Figure 1
shows the embedding block architecture.

Dense block The structural design of this block is based on Densenet (Huang et al. (2017)), so
we call it Dense block. Dense block consists of several convolutional blocks, which have two 1D
convolutional layers. The filter widths of the first convolution layer and the second are 1 and 3,
and the size of feature maps of the first layer is 4 times that of the second layer. It can reduce
the number of feature maps, and thus to make computational cheaper. Each convolution block is
directly connected to all the other convolutional blocks. In a Dense block which has X convolutional
blocks, there are X(X − 1)/2 connections between convolutional blocks. However, in X layers
typical CNN, there are only X connections. In other words, the final output includes all previous
convolutional blocks output and the initial input, not just the output of the last convolutional layer as
the typical CNN model. In this block, features are utilized efficiently to reduce relearning, and the
change of gradient from loss function can affect each layer more directly to address the problem of
vanishing-gradient. It is substantially beneficial for designing very deep models. Thus, our model
can be deeper and perform better than the typical CNN model. Figure 1 shows the Dense block
architecture.

Noticeably, the input size of the convolutional block will grow gradually, because each convolution
block input includes the output of all the previous convolution blocks and the initial input. If m is
the size of feature maps of the second layer of each convolution block, and that of the first should
be 4m, the input feature maps of the next convolutional block will increase by m compared to the
previous. Define M as the size of input feature maps of the h-th convolutional block:

M = M0 + g × (h− 1) (1)
g = i× n (2)

Where M0 is the size of input feature maps of the first convolutional block, g are the number of
growth feature maps, i is the number of channels in the growth feature maps, n is the dimensions of
feature maps. We call the hyperparameter i the growth rate of the model. It can control the amount
of information that each convolutional block gives the final output. The growth rate is usually small
but enough to obtain an excellent result. Therefore, the feature maps of convolutional blocks are
very narrow. It makes our model have fewer parameters. Since Dense block is used repeatedly, our
model become very deep and can better extract long-range associations, global representations, and
hierarchical features. It is why this model is called the multiple shortcut connections CNN.

4

Under review as a conference paper at ICLR 2020

attention block

labels embedding

conv

max pool

softmax

conv

conv

weighted

cosine similarityDense block

features

Figure 2: The attention block architecture.

Compression block The feature maps of our model, especially the number of channels, are in-
creased due to the Dense block. If the Dense block is repeated several times, the feature maps may
become huge. After the Dense block, we design a structure which is used to compress the feature
maps to avoid this problem. The 1D max pooling though can perform downsampling to reduce the
number of feature maps, but the number of channels is usually not changed. Thus, a 1D convo-
lutional layer with 1 convolution filter width is used before the max pooling layer. The number of
channels of this convolutional layer is compressed to that of the previous Dense block input. We
call this combination of convolutional layer and max pooling layer as the compression block. After
the compression block, the feature maps have been compressed on both dimensions and channels.
In other words, this block makes feature maps not only not become huge and harmful, but also
reduce periodically to improve the model efficiency. Figure 1 shows the compress block and the
classification block architecture.

Attention block The traditional CNN methods for text classification usually use global pooling or
k-max pooling after the last convolutional layer. The attention block is different from conventional
pooling operations, which is roughly filtered out one or several features. It utilizes the relation
between labels and extracted features to give suitable weights to extracted features. Most labels text
usually short and recapitulative, which are much simpler than common texts. Thus, extracting label
features do not need complex structures such as that of common texts to increase computational
complexity. We choose the label embedding and the features extracting from texts and characters as
the block input. It has smaller and narrower feature maps in comparison to designing an attention
mechanism after the embedding block, so it has fewer parameters and avoids using more complex
attention structures to deal with huge feature maps. Figure 2 shows the attention block architecture.

The input of this block are the labels embedding and the output of the last compression block. All
labels are concatenated as a sentence. In the embedding block, we embed the label sentence as
well as the word-level embedding. Then we use average pooling to map each label to a vector.
Besides, we employ one Dense block to extract global text features further and convert the features
to the dimension of label-embedding. Define L = [L:,1,L:,2, . . . ,L:,k] as the label-embedding,
V = [V:,1,V:,2, . . . ,V:,d] as the extracted features of a sample, which are gotten from the features
extracting step. Where k is the number of classes, d is the dimension of the extracted feature maps.
We use the cosine similarity C ∈ Rd×k to describe the degree of correlation between L and V .

C =


C1,1

. . .
Ci,j

. . .
Cd,k

 (3)

Where Ci,j =
V T

:,i·L:,j

|V T
:,i|·|L:,j |

is the cosine similarity between the i-th feature vector V:,i and j-th label-
embedding vector L:,j . The cosine similarity is a simple way that is difficult to obtain relative
information between labels and extracted features fully. To generate more precise attention weights,

5

Under review as a conference paper at ICLR 2020

Table 2: Summary statistics of datasets.

Datasets Classes Train Test Average Word Character Batch
Samples Samples Words Lengths Lengths Sizes

AG 4 120,000 7,600 45 50 300 512
Sogou 5 450,000 60,000 578 1,300 5,000 32
Yahoo 10 1400,000 60,000 112 223 1358 128
Dbpedia 14 560,000 70,000 55 100 610 256
Yelp.p 2 560,000 38,000 153 337 1350 128
Yelp.f 5 650,000 50,000 155 305 1194 128

Table 3: Test error rates (%) on six datasets. The Bold is the best result.

Methods AG Dbpedia Yelp.p Yelp.f Yahoo Sogou

Linear model [30] 7.64 1.31 4.36 40.14 28.96 2.81
FastText [8] 7.5 1.4 4.3 36.1 27.7 3.2
Region.emb [16] 7.2 1.1 4.7 35.1 26.3 2.4
LSTM [30]) 13.94 1.45 5.26 41.83 29.16 4.82
char-CNN [30] 9.51 1.55 4.88 37.95 28.80 4.88
word-CNN [30] 8.55 1.37 4.60 39.58 28.84 4.39
D-LSTM [28] 7.9 1.3 7.4 40.4 26.3 5.1
VDCNN [2] 8.67 1.29 4.28 35.28 26.57 3.18
char-CRNN [23] 8.64 1.43 5.51 38.18 28.26 4.80

Our model (word) 7.17 1.10 3.95 34.85 26.22 2.40
Our model (word+character) 6.53 1.09 3.34 34.4 25.89 2.36

we utilize the CNN structure to capture further location correlation. We use a multi-layer CNN
structure with small convolution filter width. It results in fewer parameters and larger coverage of
the convolution filter. Therefore, this block has an advantage when facing with large feature maps
of complex models. After multi-layer CNN structures, the max pooling is employed to select the
most relevant vector h = [h1, h2, . . . , hd] between labels and extracted features. We can compute
the i-th attention score/weight ai by h:

ai =
exp(hi)∑d
j=1 exp(hj)

(4)

Where hi is the i-th element of h. The final text representation t is the sum of weighted features:

t =

d∑
i=1

aiV:,i (5)

The final output t is used as the input of the classification block. The attention block can assign
weights between labels information and features extracting by words and characters more accurately.
In other words, it can take full advantage of a large amount of information of the multi-input model.
Thus, our multi-input model with this label-attention mechanism is capable of improve classification
accuracy effectively.

4 EXPERIMENTS

4.1 DATASETS

We experiment on six public datasets1, which are proposed by Zhang et al. (2015). Table 2 shows
the summary statistics. AG and Sogou are news topic classification datasets. Dbpedia is an ontology
classification dataset. Yahoo is a topic classification dataset about Q&A. Yelp.p and Yelp.f are
review sentiment classification datasets, the former is coarse granularity (two classes: positive and
negative), and the latter is fine granularity (five classes). Sogou is the Chinese pinyin dataset, the
others are English text datasets.

4.2 THE EXPERIMENT SETUP

We randomly selected 10000 documents from the training data as the validation set. In word embed-
ding part, we tokenized all the English texts with NLTK (Bird & Loper (2004)) and used the 300d

1https://github.com/zhangxiangxiao/Crepe

6

Under review as a conference paper at ICLR 2020

Table 4: Comparison of model parameters

Methods CNN LSTM VDCNN Our model

9-layers 17-layers 29-layers 49-layers

Parameters 541 k 1.8 M 2.2 M 4.3 M 4.6 M 7.8 M 1.1-1.2 M

Table 5: Test error rates (%) for different variations of our model. We run all experiments on AG
and Yelp.p.

Methods Embedding Dense block Convolution Block Growth Rate AG Yelp.p

Our model(global pooling) word 3 8.67 5.35

word+character 3 4 32 7.26 4.51

Our model (single) 4 6.72 3.57

Our model

word 4

4 32

7.17 3.95

word+character

2 7.36 3.72
3 6.86 3.56
4 6.53 3.34
5 6.96 3.70
6 6.92 3.82

4
2

32
7.19 3.96

6 6.84 4.04
8 6.55 3.72

4 4

8 6.89 4.52
16 7.03 4.70
48 7.03 3.57
64 6.72 3.85

glove 840B vectors by Pennington et al. (2014) as initialization. In addition, we used the word2vec
(Mikolov et al. (2013)) to train the pinyin representation, which is used as initialization of the Sogou
dataset. In character embedding part, the processing was like Zhang et al. (2015). The characters
consist of letters (all uppercase letters were converted to lowercase), digits and punctuations. We
initialized the character embedding weights using a Gaussian distribution. The initial mean and stan-
dard deviation were (0,0.05). Word and character lengths were set according to the datasets. They
are also shown in Table 2. The drop rate of both parts was set to 0.5. Empirically, A convolutional
layer of 128 convolutions of size 3 was applied to the first after embedding block. We used 4 Dense
blocks in our model, each including 4 convolution blocks. And the growth rate was set to 32. The
max pooling with size 3 and stride 2 was used for all pooling layers except to the global max pooling.
The feature maps were halved in both dimension and channel after each compression blocks. We
performed three full-connected layers with size 256 and dropout rate 0.2 or 0.5 in the classification
block. Moreover, in the attention block, the processing was similar to the word embedding part. We
employed 3 convolutional layers with filter width 3 or 4, the number of channels of which was the
same as the number of the classes. Finally, we selected Nadam as the optimizer. The initial learning
rate was set to 0.002. We used cross entropy as the loss function. All experiments were performed
on the NVidia 1080Ti GPU, using different mini-batch sizes on different datasets as shown in Table
2.

4.3 BASELINES

We compared our method using with various baseline methods, including CNN, RNN, the hybrid
method, and other methods. The CNN based methods consist of the word-CNN, char-CNN [30] and
the 29-layers very deep CNN (VDCNN) (Conneau et al. (2017)). The RNN based methods consist
of LSTM (Zhou et al. (2016)) and the discriminative LSTM (D-LSTM) (Yogatama et al. (2017)).
The char-CRNN (Xiao & Cho (2016)) is the hybrid method based on the combination of CNN and
RNN. The other methods include the linear model (Zhang et al. (2015)), the FastText (Joulin et al.
(2017)), and a region embedding method (Qiao et al.). We also tested our model without characters
inputs.

4.4 RESULTS

Error rates Table 3 shows the test error rates results. The simple methods (rows 1-3) perform
better on small datasets such as AG than the large such as Yelp.f. The sophisticated methods (rows
7-9) are the opposite. The result is consistent with common sense that the demand degree of the
number of training data is usually positively correlated with model complexity. Simple models may
even have an advantage on small datasets. The best simple baseline is region embedding method
(Qiao et al.), and the best complex baseline is VDCNN (Conneau et al. (2017)). Compared with

7

Under review as a conference paper at ICLR 2020

them, our methods including 2 embedding structures variants work well on both small and large
data sets. It ranks the 1st (word+character) or 2nd (word) on all datasets. The results of long lengths
datasets validates that our model can extract more global or long-term features. And the result of
our model with the combination embedding of words and characters outperforms that of only word
embedding, which validates the effectiveness of the characters input. We observe error reduction
are less significant on Yahoo, Sogou, and Dbpedia. There may be some reasons: (i) The training
samples of Sogou and Dbpedia are relatively small, and Yahoo have a special text structure (Q&A).
Both may require more data to training for complex methods because all the complex baselines do
not perform well on those datasets. (ii) The number of classes of Dbpedia and that of Yahoo are
fourteen and ten respectively, and the others are no more than five. It is relatively more difficult to
train label-attention mechanism to get the most similar labels exactly when there are relatively more
classes. (iii) Sogou is a Chinese pinyin dataset. Unlike other datasets, the pre-train pinyin word
vector is got by Sogou dataset. Compared with 300d glove 840B vectors (Pennington et al. (2014)),
the number of pre-train samples of pinyin is much smaller. Thus, the representation of words and
labels may become less effective on Sogou dataset.

Parameters We compared the parameters with CNN, LSTM, and VDCNN. Table 4 shows the
parameters results. Except for shallow CNN with very few parameters, our model has far fewer
parameters than LSTM and the shallowest VDCNN which have the least number of parameters.
And our model (42-layers) is deeper than all the baseline except for 49-layers VDCNN. It means
that our method avoids excessive parameters while achieving a low error rate.

Impact of structures We compared the impact of using different structures on our model as shown
in Table 5, including embedding structures, attention block structures, and other hyperparameters.
We tested 2 embedding structures variants (using global pooling and attention block): only word
embedding and the combination embedding of words and characters. We also tested two attention
block structures: a single convolutional layer with large convolution filter width (55) and three
convolutional layers with small convolution filter width (3). Besides, we compared the impacts
of different growth rates, the number of multiple direct connections blocks, and the number of
convolution blocks on the results. The results show that the combination embedding is better than
only word embedding (rows 1 and 2, 4 and 7), our model with attention block outperformed that
without attention block (rows 1 and 4, 2 and 3, 2 and 7), three convolutional layers attention block is
better than the single convolutional layer (rows 3 and 7), and the best combination is 4 Dense block
with 4 convolution blocks and growth rate i = 32 (rows 5 -16).

5 CONCLUSION AND FUTURE WORK

This paper proposes a novel deep CNN model with a new label-embedding attention mechanism
for text classification. Our model adds shortcut connections between any two convolutional layers.
Compared to the traditional deep model and attention mechanism, our method has fewer parameters,
deeper structure, and takes full advantage of the inputs information. Therefore, our model achieves
the state of the art results on several public text classification datasets. Moreover, we also analyze
the effects of different structures on the method and the reasons for the relatively poor performance
of the method. In the future, we will apply and improve our method to the multi-label problem and
the classification of obscure label information.

REFERENCES

Reinald Kim Amplayo, Jihyeok Kim, Sua Sung, and Seungwon Hwang. Cold-start aware user
and product attention for sentiment classification. In 56th Annual Meeting of the Association for
Computational Linguistics, ACL 2018, pp. 2535–2544. Association for Computational Linguistics
(ACL), 2018.

Steven Bird and Edward Loper. Nltk: The natural language toolkit. In Proceedings of the ACL
Interactive Poster and Demonstration Sessions, pp. 214–217, 2004.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and Yann Lecun. Very deep convolutional net-
works for text classification. In European Chapter of the Association for Computational Linguis-
tics EACL’17, 2017.

8

Under review as a conference paper at ICLR 2020

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Nitin Jindal and Bing Liu. Review spam detection. In Proceedings of the 16th international confer-
ence on World Wide Web, pp. 1189–1190. ACM, 2007.

Armand Joulin, Edouard Grave, and Piotr Bojanowski Tomas Mikolov. Bag of tricks for efficient
text classification. EACL 2017, pp. 427, 2017.

Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751,
2014.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for text
classification. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
2267–2273. AAAI Press, 2015.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information pro-
cessing systems, pp. 3111–3119, 2013.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up?: sentiment classification using
machine learning techniques. In Proceedings of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pp. 79–86. Association for Computational Linguistics,
2002.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp. 1532–1543, 2014.

Chao Qiao, Bo Huang, Guocheng Niu, Daren Li, Daxiang Dong, Wei He, Dianhai Yu, and Hua Wu.
A new method of region embedding for text classification.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015 conference on empirical methods in natural
language processing, pp. 1422–1432, 2015a.

Jian Tang, Meng Qu, and Qiaozhu Mei. Pte: Predictive text embedding through large-scale hetero-
geneous text networks. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1165–1174. ACM, 2015b.

Simon Tong and Daphne Koller. Support vector machine active learning with application sto text
classification. Machine Learning Research, 2(1):999–1006, 2002.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Sida Wang and Christopher D Manning. Baselines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th annual meeting of the association for computational
linguistics: Short papers-volume 2, pp. 90–94. Association for Computational Linguistics, 2012.

9

Under review as a conference paper at ICLR 2020

Yijun Xiao and Kyunghyun Cho. Efficient character-level document classification by combining
convolution and recurrent layers. arXiv preprint arXiv:1602.00367, 2016.

Wei Xue and Tao Li. Aspect based sentiment analysis with gated convolutional networks. In Pro-
ceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 2514–2523, 2018.

Bishan Yang and Claire Cardie. Context-aware learning for sentence-level sentiment analysis with
posterior regularization. In Proceedings of the 52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 325–335, 2014.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 conference of the North
American chapter of the association for computational linguistics: human language technologies,
pp. 1480–1489, 2016.

D Yogatama, C Dyer, W Ling, and P Blunsom. Generative and discriminative text classification
with recurrent neural networks. In Thirty-fourth International Conference on Machine Learning
(ICML 2017). International Machine Learning Society, 2017.

Dani Yogatama, Daniel Gillick, and Nevena Lazic. Embedding methods for fine grained entity type
classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume
2: Short Papers), pp. 291–296, 2015.

Honglun Zhang, Liqiang Xiao, Wenqing Chen, Yongkun Wang, and Yaohui Jin. Multi-task label
embedding for text classification. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 4545–4553, 2018.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text clas-
sification. In Advances in neural information processing systems, pp. 649–657, 2015.

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao, and Lawrence Carin. De-
convolutional paragraph representation learning. In Advances in Neural Information Processing
Systems, pp. 4169–4179, 2017.

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. Attention-based lstm network for cross-lingual sen-
timent classification. In Proceedings of the 2016 conference on empirical methods in natural
language processing, pp. 247–256, 2016.

10

	Introduction
	Related Work
	Methods
	Experiments
	Datasets
	The Experiment Setup
	Baselines
	Results

	Conclusion and Future Work

