
Under review as a conference paper at ICLR 2020

GENERALIZING REINFORCEMENT LEARNING TO UN-
SEEN ACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

A fundamental trait of intelligence is the ability to achieve goals in the face of novel
circumstances. In this work, we address one such setting which requires solving a
task with a novel set of actions. Empowering machines with this ability requires
generalization in the way an agent perceives its available actions along with the
way it uses these actions to solve tasks. Hence, we propose a framework to enable
generalization over both these aspects: understanding an action’s functionality,
and using actions to solve tasks through reinforcement learning. Specifically, an
agent interprets an action’s behavior using unsupervised representation learning
over a collection of data samples reflecting the diverse properties of that action. We
employ a reinforcement learning architecture which works over these action repre-
sentations, and propose regularization metrics essential for enabling generalization
in a policy. We illustrate the generalizability of the representation learning method
and policy, to enable zero-shot generalization to previously unseen actions on chal-
lenging sequential decision-making environments. More training and testing videos
can be found at sites.google.com/view/action-generalization/

1 INTRODUCTION

Imagine visiting your friend for the first time, and you decide to cook your favorite dish there. But
since you have never been in their kitchen before, there could be certain tools you have never seen,
like an odd-shaped sponge. However, by looking at its porous texture or observing its interaction with
water, you can understand that this object can absorb liquid. Later during cooking when you want
to clean the table, you can select that sponge since you can relate its absorbing characteristics with
another tool you have used for cleaning. Just like in this scenario, our tasks often involve making
selections from novel or unseen entities. When we encounter such choices, we examine them to first
understand their functionality which informs our selection process while solving a task.

Can machines also understand previously unseen choices and subsequently use them for solving
tasks? From a reinforcement learning perspective, this brings an interesting question of how to
enable generalization of discrete action policies to solve tasks using unseen sets of actions. Prior
work in deep reinforcement learning has explored generalization over environments (Cobbe et al.,
2018; Nichol et al., 2018), and tasks (Finn et al., 2017; Parisi et al., 2018). However, action space
generalization is relatively unexplored and is crucial for agents to be flexible in the face of novel
circumstances, like selecting an unseen sponge for a known task of cleaning in above example.

In this work, our goal is to develop a framework that reflects the two phases of solving action general-
ization: (1) general understanding of unseen discrete actions from their characteristic information
(like appearance or behaviors), and (2) training a policy to solve tasks by utilizing this general
understanding. However, an action can have diverse behaviors and hence requires a collection of data
(e.g. different viewpoints, videos or state trajectories of how it effects on environment) to sufficiently
express this diversity. Hence, the primary challenge is to develop a generalizable unsupervised
learning method which can extract an action’s characteristics from a dataset constituting its diverse
effects. To this end, we propose to embed actions’ datasets by extending the work on hierarchical
variational autoencoders (Edwards & Storkey, 2017).

The obtained embeddings reflect an action’s general utility, and can be used as action representations
in the downstream task of reinforcement learning. However, conventional reinforcement learning

1

sites.google.com/view/action-generalization/

Under review as a conference paper at ICLR 2020

Goal

Moving
Ball

GoalGoal

Initial State Scenario A Scenario B

(a) Chain Reaction Tool Environment (CREATE)

Scenario A Scenario BInitial State

(b) Shape Stacking
Figure 1: Generalizing the knowledge of solving a task to a new set of actions. (a) CREATE is a
sequential environment where the task is to help the green ball reach the goal (blue) by selecting tools
and deciding where to place them. (b) In Shape Stacking the goal is to stack a tall tower by selecting
the right shapes and their placements. Scenario A depicts the training scenario when the agent learns
to utilize a given set of actions to solve the task. Scenario B presents an unseen set of actions to the
agent which is expected to generalize to solve the task zero-shot.

algorithms utilize the available actions in a way that best optimizes a reward. This directly incen-
tivizes a policy to overfit to the actions seen during training, just like the problem of overfitting to
training data in supervised learning. To address this challenge, we formulate this problem as risk
minimization (Vapnik, 1992) for reinforcement learning, and propose regularization objectives to
enforce generalization of policy to unseen actions.

The main contributions of this paper are: (1) introducing the problem and a proposed solution to
enable action space generalization in reinforcement learning, (2) representing an action with a dataset
reflecting its diverse characteristics, and employing a generalizable unsupervised learning approach
to embed these datasets. (3) a method to use learned action representations in reinforcement learning,
and regularization methods to enable learning of generalizable policies.

2 RELATED WORK

Generalization in reinforcement learning In typical deep reinforcement learning (RL) set-
tings (Mnih et al., 2015; 2016; Lillicrap et al., 2015; Schulman et al., 2017), a policy or value
network learns to act over an action space of fixed dimensionality. By taking states or observations as
input to neural networks, these methods are able to generalize to unseen environment states drawn
from a similar distribution as training (Cobbe et al., 2018; Nichol et al., 2018). Similarly, prior
works have explored generalization in RL for unseen instructions (Oh et al., 2017), new sequences of
subtasks (Andreas et al., 2017), manipulation of unseen tools (Fang et al., 2018; Xie et al., 2019),
task demonstrations (Xu et al., 2017), and agent morphologies (Wang et al., 2018; Sanchez-Gonzalez
et al., 2018; Pathak et al., 2019). In contrast, our framework enables zero-shot generalization of RL
policies when the agent gets a previously unseen action set.

Unsupervised representation learning for downstream tasks Bengio et al. (2013) state represen-
tation learning of data makes it easier to extract useful information when building predictors. Prior

2

Under review as a conference paper at ICLR 2020

works show that such representations have been useful for a variety of downstream tasks, like classifi-
cation and video prediction (Denton et al., 2017), visually representing objects for relational reasoning
tasks (Steenbrugge et al., 2018), representing image-states for domain adaptation in RL (Higgins
et al., 2017), and, representing goals for better exploration (Laversanne-Finot et al., 2018) and sample
efficiency (Nair et al., 2018) in RL. In this paper, we show how unsupervised representation learning
over datasets (Edwards & Storkey, 2017) can be used for embedding discrete actions, and enable
generalization in the downstream task of reinforcement learning.

Action Representations Using continuous representations of discrete actions, a policy can be trained
through a combined Q-function over state and action representations (He et al., 2015), or in an
actor-critic architecture by selecting the nearest neighbor action vector to the policy’s continuous
output (Van Hasselt & Wiering, 2009; Dulac-Arnold et al., 2015). Unlike our work, these prior works
assume access to ground truth action representations, which are usually not readily available. In
other related work, action representations are learned implicitly through inverse model on a fixed
action space to ease learning in large discrete action spaces (Chandak et al., 2019) or for intrinsic
reward (Kim et al., 2019). In contrast, we do not have the assumption of fixed action space as
we learn action representations separately, and hence are able to incorporate new actions for the
same policy. While Tennenholtz & Mannor (2019) pre-learn action representations explicitly using
co-occurrence of actions in task-specific demonstrations, our generic embedding method applies to
various modalities of datasets to represent actions, which are task-independent and hence suited for
generalization to unseen actions.

Skill and Trajectory Embeddings In reinforcement learning, variational autoencoders
(VAE) (Kingma & Welling, 2014) are often used for learning an abstraction for continuous en-
tities like skills and state-action trajectories. Specifically, Co-Reyes et al. (2018) utilize a trajectory
autoencoder for hierarchical RL, and Lynch et al. (2019) learn a latent space of trajectories and
employ a goal-conditioned planner over it. Hausman et al. (2018) learn an embedding space of skills
through a shared policy for different tasks, and utilize this space for solving other related tasks. In this
paper, we extend the framework of hierarchical VAE (Edwards & Storkey, 2017; Achille et al., 2019)
to trajectories, so as to embed even sequential datasets which are better indicative of action behavior.
In general, an action can be a discrete skill choice, and an action’s behavior can be represented as
the trajectory of effects it causes on the environment. Since individual trajectories are incapable of
capturing the diverse effects of actions, we propose to use datasets for representing actions.

3 GENERALIZATION TO UNSEEN ACTIONS

Our approach is based on the intuition that when humans encounter previously unseen discrete
entities, we examine them to understand their functionality through visual inspection or physical
interaction, before deciding what to select for a task. Once the general functionality is inferred, these
discrete objects can be used as actions in decision-making tasks, like selecting a tool for cooking or
furniture assembly. In this paper, we incorporate these two phases (Figure 2) to enable agents to utilize
previously unseen actions: (1) extracting representations of actions from datasets of unstructured
information (e.g. image, videos), and (2) training a reinforcement learning policy to utilize these
action representations with the joint objective of generalization and reward maximization.

In order to represent actions, we note that an action can have diverse behaviors like how it interacts
with its environment. Further, there can be various ways an agent observes this dataset. In the
sponge example, the action exhibits diverse properties like absorption or compression, and the agent
can observe this through porous texture (image) or through interacting with it (states trajectory).
Therefore, in its most general form, information about an action can be expressed in the form
of a diverse collection of unstructured data like images, videos or trajectories. To learn action
representations in an unsupervised and generalizable, we use a hierarchical VAE and extend it to
sequence data like videos (Section 3.2). Next, we show how a policy is trained to use these action
representations as input, and propose training objectives for enabling generalization (Section 3.3).

3.1 PRELIMINARIES

For a learning agent, we denote the entire set of possible discrete actions as A. For evaluation, we
assume an episodic setting, where the agent only has a subset A ⊂ A of actions available to it. Each
action a ∈ A has an associated dataset D = {x1, . . . ,xL} of observable samples xn ∼ P (x|a)

3

Under review as a conference paper at ICLR 2020

Policy

Action Datasets
Action

Embeddings ActionHVAE

Train

Inference
< la te xi t sh a1 _ ba se 64 =" l0 HF 0 M3 Bd Y3 25 hD Bj c 1X Lt hC 4C k= "> A AA B/ 3i cb VA 7T 8 Mw GH R4 lv IK IL G wW LR IT FX SB cZ K MD AW RB 9S E1 WO 4 7R WH Tu yH aQ qZ O Cv sD CA EC t/ g4 1 /g 9N mg Ja TL J/ u vk 8+ X5 Aw qr Tj f Fs rq 2v rG 5u Vr e r2 zu 7e vn 1w 2F U il Zh 0s GB C9 gO k CK Oc dD TV jP QT S VA cM NI LJ le F3 3 sg Ul HB 7/ U0 IX 6 MR px GF CN tp KF 9 XP cC wU I1 jc 2V eWO ks +s 8r w/ tm tNw Zo DL xC 1J DZ Ro D +0 vL xQ 4j Qn Xm C Gl Bq 6T aD 9D Ul P MS F7 1U kU Sh Cd o RA aG ch QT 5W ez / Dk 8M 0o II yH N4 R rO 1N 8b GY pV kd B Mx ki P1 aJ Xi P9 5 g1 RH l3 5G eZ Jq w vH 8o Sh lU At Yl A FD Kg nW bG oI wp K ar BC Pk UR Ym 8q q pg R3 8c vL pN ts u E7 Dv W3 WW nd lH R Vw Ak 7B OX DB BW i BG 9A GH YD BI 3g G r+ DN er Je rH fr Y z6 6Y pU 7R +A Pr M 8f Lu +W PQ == </ l at ex it >

<l atex it s ha1_bas e64= "AOU VXH DvXI ISLp Z9/3 iAq h8JA NI=" >AA AB/3 icbV A7T8 MwG HR4l vIKI LGw WLRI TFXS BcZK LIw F0Yf URJX jOK 1Vx4 5sB1 GFDP wVF gYQY uVvs PFv cNoM 0HKS 5dPd 98n nCxJ GlXa cb2 tldW 19Y7 OyVd 3e2 d3bt w8Ou 0qk EpMO FkzI foAU YZS Tjqa akX4 iCY oDRn rB5K rwe/ dEK ir4n Z4mx I/R iNOI YqSN NLSP 614 gWKi msbk yb4 x09p Dn9a Fdcx rOD HCZu CWpg RLt of3l hQKn MeEa M6T UwHU S7Wd Iao oZya teqk iC8A SNy MBQj mKi/ GyW P4dn Rglh JKQ5 XMO Z+ns jQ7E qEp rJGO mxWv QK8T 9vk Oro0 s8oT 1JN OJ4/ FKUM agGL MmB IJcG aTQ1 BWF KTFe Ixkg hrU1 nVl OAuf nmZd JsN 12m4 N81a 67as owJ OwCk 4By6 4AC 1wDd qgAz B4BM /gF bxZT 9aL9 W59 zEdX rHLn CPyB 9fk Dflu WcQ= =</late xit>

<l atex it s ha1_bas e64= "Tvh j4V 3ILp HxK4 jMzj XbK dyWS kg=" >AA AB+X icbV DNTg IxG PwW/ xD/V j16 aQQT T2SX ix5J vHh EI2A CG9L tFm jotp u2S4 Ib3s SLB 43x6 pt48 23s wh4U nKTp ZOb7 0um ECWf aeN6 3U9 rY3N reKe 9W9v YPD o/c4 5OOl qki tE0k l+ox xJpy Jmj bMMP pY6I ojk NOu+ HkJv e7U6 o0k +LBz BIax Hgk 2JAR bKw0 cN1a P5Q 80rP YXtn TvD Zwq1 7dWw CtE7 8gV SjQG rhf/ UiS NKbC EI61 7vle YoI MK8M Ip/N KP9 U0wW SCR7 Rnqc Ax1 UG2S D5HF 1aJ 0FAq e4RB C/X3 RoZ jnWe zkzE 2Y7 3q5e J/Xi 81w+ sgY yJJD RVk+ dAw 5chI lNeA IqYo MXx mCSa K2ay IjL HCxN iyKr YEf/ XL6 6TTq Pte3 b9r VJv3 RR1l OINz uAQ frqA Jt9C CNh CYwj O8wp uTOS /Ou /OxH C05x c4p /IHz +QOR qJOm </l atex it>

<l atex it s ha1_bas e64= "WcP puJ HhDD Zwar u7VP J0k Iqqv 5E=" >AA AB+X icbV DNTg IxG PwW/ xD/V j16 aQQT T2SX ix5J vHh EI2A CG9L tFm jotp u2Sy Qb3s SLB 43x6 pt48 23s wh4U nKTp ZOb7 0um ECWf aeN6 3U9 rY3N reKe 9W9v YPD o/c4 5OOl qki tE0k l+ox xJpy Jmj bMMP pY6I ojk NOu+ HkJv e7U6 o0k +LBz BIax Hgk 2JAR bKw0 cN1a P5Q 80rP YXtn TvD Zwq1 7dWw CtE7 8gV SjQG rhf/ UiS NKbC EI61 7vle YoI MK8M Ip/N KP9 U0wW SCR7 Rnqc Ax1 UG2S D5HF 1aJ 0FAq e4RB C/X3 RoZ jnWe zkzE 2Y7 3q5e J/Xi 81w+ sgY yJJD RVk+ dAw 5chI lNeA IqYo MXx mCSa K2ay IjL HCxN iyKr YEf/ XL6 6TTq Pte3 b9r VJv3 RR1l OINz uAQ frqA Jt9C CNh CYwj O8wp uTOS /Ou /OxH C05x c4p /IHz +QOO nJOk </l atex it>

<l atex it s ha1_bas e64= "7uJ lkP yWCR eP+C S5bz A93 RhH8 Q4=" >AA AB9H icbV BNT8 JAE J3iF +IX6 tHL RjDB xJCW ix5J vHh EIx8 JNGS 7bG HDdl t2t0 Ss/A 4vH jTGq z/Gm //G BXpQ 8CWT vLw3 k5l 5XsS Z0rb 9bW XW1j c2t7 LbuZ 3dv f2D/ OFRQ 4Wx JLRO Qh7K locV 5Uz Quma a01Y kKQ 48Tp ve8H rmN8 dUK haKe z2Jq Bvg vmA+ I1gb yS1G pQf 0hB4 vEDk vdv MFu2 zPgV aJk5 ICp Kh18 1+dX kji gApN OFaq 7diR dhM sNSO cTnO dWN EIky Hu07 ahAg dUu cn86 Ck6M 0oP +aE0 JTSa q78n Ehw oNQk 80xl gPV DL3k z8z2 vH2r 9yE yaiW FNBF ov8 mCMd olkC qMck JZp PDMF EMnM rIg MsMd Emp5 wJwV l+e ZU0K mXHL ju3 lUL1 Lo0j Cydw CiV w4BK qcAM 1qA OBET zDK7 xZY+ vFe rc+F q0ZK 505 hj+w Pn8A LIuQ cA= =</l atex it>

<l atex it s ha1_bas e64= "ZqF 1DL QLXP 6xI8 KS6S OWD HmAc jo=" >AA AB+X icbV C7Ts MwF L0pr 1JeA UYW ixaJ qUq6 wFiJ hbE g+pD aqHI cp7 Xq2J HtVK qi/g kLA wix8 ids/ A1O 2wFa jmT5 6Jx7 5eM Tppx p43n fTm lre2 d3r7 xfOT g8O j5xT 886W maK 0DaR XKpe iDXl TNC 2YYb TXqo oTk JOu+ Hkrv C7U6 o0k +LJz FIaJ Hgk WMwI NlYa um5t EEo e6Vl ir5z Ma0 O36t W9Bd Am8V ekC iu0h u7XI JIk S6gw hGOt +76X miD HyjD C6bw yyD RNMZ ngEe 1bKn BCd ZAvk s/Rl VUi FEtl jzBo of7e yHG ii2x 2MsF mrN e9Qv zP62 cmvg 1yJ tLMU EGWD 8UZ R0ai ogYU MUWJ 4TN LMFH MZkV kjB Umxp ZVsS X461 /eJ J1G3 ffq/ kOj 2nxc 1VGG C7iE a/D hBpp wDy1 oA4 EpPM MrvD m58+ K8O x/L0 ZKz2 jmH P3A+ fwBu npOP </l atex it>

<l atex it s ha1_bas e64= "AON oE7 Wg12 JAHk ONIC J+h 656Y N8=" >AA AB+3 icbV C9Ts MwG PxS/ kr5C 2Vk iWiR mKqk C4yV WBg Loi1 SG0W O47 RWHT uyHU QV9V VYG ECIl Rdh4 21w 2gzQ cpLl 0933 yec LU0a Vdt1 vq7 Kxub W9U9 2t7e 0fH B7Zx /W+E pnE pIcF E/Ih RIow ykl PU83 IQyo JSk JGBu H0uv AHj0 QqK vi9n qXET 9CY 05hi pI0U 2PXm KBQ sUrP EXDk O6L wZ2A 235S 7grB OvJ A0o0 Q3sr 1Ek cJYQ rjFD Sg09 N9V +jqS mmJF 5bZ Qpki I8RW MyNJ Sjh Cg/X 2SfO +dG iZxY SHO4 dhbq 740 cJap IZyY TpC dq1S vE/7 xhpu MrP 6c8z TThe PlQ nDFH C6co womo JFi zmSE IS2q yOn iCJM La1F UzJX irX 14n/ XbLc 1ve bbvR uSvr qMIp nME FeHA JHbi BLv QAwx M8wy u8WX Prx Xq3P pajF avc OYE/ sD5/ APUq lGs =</l atex it>

< la te xi t sh a1 _ ba se 64 =" 1P gO 7 Ya ic z5 OP 1c DF C N/ u8 Ca hf Y= "> A AA B+ Xi cb VD NT g Ix GP wW /x D/ Vj 1 6a QQ TT 2S Xi x5 J 9O AR jS AJ bE i3 W 6C h2 27 aL gn Z8 C Ze PG iM V9 /E m2 9 jF /a g4 CR NJ zP f l0 4n TD jT xv O+ n dL G5 tb 2T nm 3s r d/ cH jk Hp 90 tE w Vo W0 iu VT dE Gv K ma Bt ww yn 3U RR H Ie cP oW Tm 9x /m l Kl mR SP Zp bQ IM Y jw Ya MY GO lg ev W +q Hk kZ 7F 9s pu 57W BW /X q3 gJ on fgF qU KB 1s D9 6k eS p DE Vh nC sd c/ 3E h Nk WB lG OJ 1X +q m mC SY TP KI 9S wW O qQ 6y Rf I5 ur BK h IZ S2 SM MW qi /N z Ic 6z yb nY yx Ge t VL xf /8 3q pG V4 H GR NJ aq gg y4 eG K Ud Go rw GF DF Fi e Ez Sz BR zG ZF ZI w VJ sa WV bE l+ Kt f Xi ed Rt 33 6v 59 o 9p 8K Oo ow xm cw y X4 cA VN uI MW tI H AF J7 hF d6 cz Hl x 3p 2P 5W jJ KX ZO 4 Q+ cz x8 /Z JN w< / la te xi t>

< la te xi t sh a1 _ ba se 64 =" wB He T 2n Yc T0 tl sp Ky G F7 nQ 3T 41 4= "> A AA B+ 3i cb VA 7T 8 Mw GH TK q5 RX KC O LR Yv EV CV dY Kw E A2 NB 9C G1 Ue Q4 T mv Vs SP bQ VR R/ g oL Aw ix 8k fY +D c 4b QZ oO cn y6 e7 7 5P MF Ca NK O8 63 V dn Y3 Nr eq e7 W9 v YP Do /s 43 pf iV R i0 sO CC Tk Mk CK M ct LT VD My TC RB c cD II Jh dF /7 gk U hF BX /Q 84 R4 MZ p wG lG Mt JF 8u 94 c B4 KF ah 6b K7 vx ad7 07 Yb Tc ha A6 8Qt SQ OU 6P r2 1z gU O I0 J1 5g hp Ua uk 2 gv Q1 JT zE he G6 e KJ Aj P0 IS MD OU o Js rL Ft lz eG 6U E EZ Cm sM 1X Ki /N z IU qy Kd mY yR nq p Vr xD /8 0a pj q6 8 jP Ik 1Y Tj 5U NR y qA Ws Cg Ch lQ Sr N nc EI Ql NV kh ni K Js DZ 11 Uw J7 uq X 10 m/ 3X Kd ln vX b nT uy zq q4 BS cg Q vg gk vQ Ab eg C3 o Ag yf wD F7 Bm 5V b L9 a7 9b Ec rV jl z gn 4A +v zB 8W yl E w= </ la te xi t>

<l atex it s ha1_bas e64= "AON oE7 Wg12 JAHk ONIC J+h 656Y N8=" >AA AB+3 icbV C9Ts MwG PxS/ kr5C 2Vk iWiR mKqk C4yV WBg Loi1 SG0W O47 RWHT uyHU QV9V VYG ECIl Rdh4 21w 2gzQ cpLl 0933 yec LU0a Vdt1 vq7 Kxub W9U9 2t7e 0fH B7Zx /W+E pnE pIcF E/Ih RIow ykl PU83 IQyo JSk JGBu H0uv AHj0 QqK vi9n qXET 9CY 05hi pI0U 2PXm KBQ sUrP EXDk O6L wZ2A 235S 7grB OvJ A0o0 Q3sr 1Ek cJYQ rjFD Sg09 N9V +jqS mmJF 5bZ Qpki I8RW MyNJ Sjh Cg/X 2SfO +dG iZxY SHO4 dhbq 740 cJap IZyY TpC dq1S vE/7 xhpu MrP 6c8z TThe PlQ nDFH C6co womo JFi zmSE IS2q yOn iCJM La1F UzJX irX 14n/ XbLc 1ve bbvR uSvr qMIp nME FeHA JHbi BLv QAwx M8wy u8WX Prx Xq3P pajF avc OYE/ sD5/ APUq lGs =</l atex it>

<l atex it s ha1_bas e64= "bzh xOw Cbrb 5VId jLW1 UhT YiPQ ZA=" >AA AB+3 icbV C9Ts MwG PxS/ kr5C 2Vk iWiR mKqk C4yV WBg Loi1 SG0W O47 RWHT uyHU QV9V VYG ECIl Rdh4 21w 2gzQ cpLl 0933 yec LU0a Vdt1 vq7 Kxub W9U9 2t7e 0fH B7Zx /W+E pnE pIcF E/Ih RIow ykl PU83 IQyo JSk JGBu H0uv AHj0 QqK vi9n qXET 9CY 05hi pI0U 2PXm KBQ sUrP EXHk a0H kzsB tuy1 3AWS deS RpQo hvYX 6NI 4Cwh XGOG lBp6 bqr 9HEl NMSP z2i hTJE V4is ZkaC hHC VF+v sg+d 86N Ejmx kOZw 7SzU 3xs 5SlS Rzkw mSE /Uql eI/3 nDTM dXf k55m mnC8 fKh OGOO Fk5R hBNR SbB mM0M QltR kdf AESY S1qa tmSv BWv 7xO+ u2W5 7a8 23aj c1fW UYVT OIM L8OA SOnA DXe gBhi d4hl d4s+ bWi /Vuf SxHK 1a5 cwJ/ YH3+ AAkh lHg =</l atex it>

<l atex it s ha1_bas e64= "DqT /1m BlOf XeDW MTsb Vlo kGQL xg=" >AA AB+3 icbV C9Ts MwG PxS/ kr5C 2Vk iWiR mKqk C4yV WBg Loi1 SE1W O47 RWHT uyHU QV9V VYG ECIl Rdh4 21w 2gzQ cpLl 0933 yec LU0a Vdt1 vq7 Kxub W9U9 2t7e 0fH B7Zx /W+E pnE pIcF E/Ih RIow ykl PU83 IQyo JSk JGBu H0uv AHj0 QqK vi9n qUkS NCY 05hi pI00 sutN PxQ sUrP EXLm f0n lzZD fclr uAs0 68k jSgR Hdkf /mR wFlC uMYM KTX0 3FQ HOZK aYkb mNT 9TJE V4is ZkaC hHC VFBv sg+d 86N Ejmx kOZw 7SzU 3xs 5SlS Rzkw mSE /Uql eI/3 nDTM dXQ U55m mnC8 fKh OGOO Fk5R hBNR SbB mM0M QltR kdf AESY S1qa tmSv BWv 7xO+ u2W5 7a8 23aj c1fW UYVT OIM L8OA SOnA DXe gBhi d4hl d4s+ bWi /Vuf SxHK 1a5 cwJ/ YH3+ AAR4 lHU =</l atex it>

Figure 2: Framework for generalization to unseen actions. (1) Action datasets for all training actions
are used to train a Hierarchical VAE (HVAE) model. (2) The action encoder embeds each dataset to
define the approximate posterior qa(c|D) over action latents c. (3) The instance encoder qs(z|x, c)
encodes each data sample x, while conditioned on the action latent c, into a distribution over instance
latents z. (4) The decoder p(x|z, c) reconstructs the action sample x based on the action embedding
c and sample latent z. (5) The policy π takes current state st and the inferred action embeddings ci
for each of the given actions and produces a categorical distribution to represent the policy. Similar
flow occurs at inference, when new actions and their datasets are given.

which are characteristic of the action a. During training, the agent only has access to a subset
AK ⊂ A of known actions. During evaluation, action set A can even be totally unseen for the agent.

The action set A constitutes the discrete action space of an episodic Markov decision process (MDP).
Formally, {S,A, T , R, γ} defines the set of states, actions, transition probability, reward function,
and discount factor of an MDP. Given a set of available actions A ⊂ A at any time step t, the core
problem is to learn parameters θ of a policy πθ(at|st), which defines a probability distribution over
actions at ∈ A for a state st. Since the available action sets A are stochastically sampled and the
environments are in general stochastic, we primarily consider stochastic policies in this paper. The
performance of πθ is evaluated based on a discounted return R =

∑T−1
t=0 γtr(st, at) where r is the

reward function and T is the episode horizon. The aim is to train a policy which only has access to
the known actions AK and its datasets, but generalizes to maximize reward on unseen actions.

3.2 UNSUPERVISED LEARNING OF ACTION REPRESENTATIONS

We represent the diverse characteristics of an action with a dataset of observed information. To extract
usable information from these action datasets, we propose an unsupervised representation learning
method to learn action embeddings. Our key insight is that the common information underlying
different samples of an action’s dataset best represents the general properties of that action.

Therefore, we aim to learn an action encoder to map each discrete action’s entire dataset to a
continuous representation. For unsupervised learning of this encoder, we can use a variational
autoencoder (VAE) with reconstruction objective (Kingma & Welling, 2014). However, since the
input to VAE is in the form of a dataset, it should capture the information shared across multiple data
samples. Therefore we encode both, the action datasets and the sample within each action’s dataset
into a hierarchy of connected latent spaces.

Such a hierarchical VAE (HVAE) architecture has been explored by Edwards & Storkey (2017) for
few-shot classification and clustering of datasets. We use it for the purpose of encoding action datasets
and using them for generalization (Figure 2). HVAE is composed of an action VAE over datasets
and an instance VAE over samples. The encoders and decoders of the instance VAE are conditioned
on its parent action latent vector. For each action a and its associated dataset D = {x1, . . . ,xL},
the action encoder qa(c|D) is used to sample an action latent c, while regularized by an action prior
pa(c). For each action sample x ∈ D, the instance encoder qs(z|x, c) is used to sample a latent z
encoding the sample instance x, while conditioned on c. The prior distribution ps(z|c) as well as the
decoder p(x|z, c) are also conditioned on the action latent. For each action dataset, ELBO comprises
of reconstruction over data samples and the two KL divergence terms (Edwards & Storkey, 2017):

4

Under review as a conference paper at ICLR 2020

LD = Ec∼qa(.|D)

[∑
x∈D

Ez∼qs(.|x,c)[log p(x|z, c)]−D[qs(z|x, c)||ps(z|c)]

]
−D[qa(c|D)||pa(c)]

(1)

We further extend this framework to incorporate sequential data like state trajectories and videos,
as that is more suitable to express behaviors of actions. For a dataset of trajectories τ , we use a
Bi-LSTM encoder for qa(c|D), and LSTM decoder p(τ |z, c, s) which also takes the initial state s of
τ and reconstructs the rest of it (Schuster & Paliwal, 1997; Wang et al., 2017; Co-Reyes et al., 2018).
For the case of video datasets, we also incorporated temporal skip connections (Ebert et al., 2017)
from s by predicting an extra mask channel, to weigh contributions from the predicted frame and the
first frame s.

For getting representations of any action a ∈ A (seen or unseen) through a trained HVAE, we use
the action dataset encoder qa(c|Da) output’s mean as the representation ca (Figure 2). This choice
of using mean as representation follows prior work like Higgins et al.; Steenbrugge et al. (2018),
but one could also use sampling from the output distribution as representation, as done in Locatello
et al. (2019). The generalizability of these representations to unseen actions depends on whether
the action’s behaviors lie in the distribution of behaviors of known actions. Hence, the hierarchy in
HVAE makes it an expressive encoder for actions, since even seemingly new discrete actions can
have characteristics which belong to the distribution of previously seen effects.

3.3 LEARNING POLICIES OVER ACTION REPRESENTATIONS

While solving tasks with new actions, humans first form a general interpretation of the behaviors
of actions, and then utilize it to take appropriate actions. Similarly, once our agent learns actions
representations based on observed datasets (section 3.2), it should learn to utilize them for solving
tasks. This involves not only extracting the task-specific information from the representations, but
also doing so in a generalizable manner so that it can utilize previously unseen action representations.

Here we assume access to an embedder φ, and hence the associated action representations ca = φ(Da)
for each a ∈ A. Our aim is to learn a policy πθ(a|s,A, φ) which maximizes the expected reward
under any set of available actions A ⊂ A. We propose to utilize the action representations ca as
inputs to the policy, which acts as a function approximator over action representations and states.
Specifically, our policy consists of a utility function fθ : S × Rd → R, which maps a d-dimensional
action embedding and a state to its utility. The probability distribution over actions is simply defined
as the Softmax over the utilities of each available action a′ ∈ A.

πθ(a|s,A) =
efθ(s,ca)∑

a′∈A e
fθ(s,ca′)

(2)

We can train the parameters θ using policy gradient methods on π.

3.4 ENABLING GENERALIZATION TO UNSEEN ACTIONS

The primary objective is to find parameters θ of a policy which maximizes rewards on unseen action
sets A ⊂ A. We formulate this generalization problem with statistical learning theory (Vapnik, 1998;
2013), and propose regularization objectives which aim to satisfy its assumptions. The theory mainly
deals with generalization in supervised learning problems with an assumption on training examples
to be independent and identically distributed (i.i.d. sampled). In a reinforcement learning setup with
action representations ca, the objective becomes minimizing the theoretical risk of the policy:

min
θ

Risk(πθ) = min
θ

Es,ca [L(fθ(s, ca), y∗)] = max
θ

EA∼A,a∼πθ(.|s,A)[Rπθ (s, ca)] (3)

Here L is a real-valued loss function which measures the optimality of policy hypothesis πθ (equiva-
lently the utility function fθ) with respect to the output y∗ of an optimal stochastic policy π∗ at state
s. While L, π∗ or y∗ cannot be defined in closed form, the definition of optimal policy (Sutton &
Barto, 2018; Sutton et al., 2000) makes this objective equivalent to maximizing the cumulative reward
R, given an unseen action space A and their action representations ca. Note that the expectation in
Eq. 3 is also over states s drawn from environment, but dropped for readability.

5

Under review as a conference paper at ICLR 2020

During training, the agent only has access to a limited set of known actions AK ⊂ A. The standard
reward maximization objective in RL with training set of actions, AK is equivalent to Empirical Risk
Minimization (ERM) of the hypothesis πθ (Vapnik, 1992). Hence, the ERM training objective is:

max
θ

Ea∼πθ(.|s,AK)[Rπθ (s, ca)] (4)

However, a policy trained with ERM is prone to overfitting to data seen during training, just like in
supervised learning. This problem becomes more severe for on-policy RL because the distribution
of input data, (s, ca) used for training πθ is governed by the actions taken by πθ itself. This means
that the policy can bias its own training data distribution towards a small subset of actions, while
ignoring other actions, which could actually be more informative about the actions available at test
time. Since there is no prior information on the distribution over action space A ⊂ A at test time, it
is assumed to be uniform. Therefore, this discrepancy between training and evaluation due to the
non-stationarity of RL training, breaks the identical distribution (in i.i.d.) assumption in statistical
learning theory (Bousquet et al., 2003). To address this non-uniformity in training data, the following
regularizing techniques are proposed to augment the ERM objective in Eq. 4:

(1) Maximum entropy regularization: Maximum entropy objective (Ziebart et al., 2008) augments
Eq. 4 with the stochastic policy’s entropy H[πθ(a|s)] with weight β, as in Eq. 5. This makes the
policy maximize environment reward, under the constraint of taking diverse actions. This helps
generalization in two ways: (a) the input data distribution used for training the policy becomes more
uniform over action representations, and (b) the policy outputs maximum entropy distributions which
make the least assumptions about the possibly unseen set of available actions A ⊂ A, and hence by
the principle of maximum entropy (Jaynes, 1957; Guiasu & Shenitzer, 1985) overfits the least.

max
θ

Ea∼πθ(.|s,AK)[R(s, ca) + βH[πθ(a|s)]] (5)

(2) Changing action spaces: The training data distribution can be made more uniform by sampling
a set of available actions A ⊂ AK , uniformly in every episode. This blocks certain actions, making
the policy select appropriate actions only from the available set A. Hence, the experience collected
by the policy is uniformly spread over the known actions AK , making the training data distribution
more identical to the assumed uniform distribution at test time. Eq. 6 shows this training objective:

max
θ

EA⊂AK ,a∼πθ(.|s,A)[R(s, ca) + βH[πθ(a|s)]] (6)

(3) Clustering similar actions: The known action space AK can contain several groups of similar
actions (e.g. various knives for cutting), and a randomly sampled action space A may contain actions
from each group. This can be exploited by the reward-maximizing policy during training to overfit to
actions from particular groups, but it will fail to generalize if similar actions are unavailable while
testing. To avoid this, we propose to utilize the pre-learned action representations (section 3.2) to
partitionAK into a set of k groups GK = {g1 . . . gk}, where k is a hyperparameter. For every episode
during training, an action set AG is built by sampling a subset of groups, G ⊂ GK and then sampling
actions from G only. Two-step sampling ensures that certain groups of actions are blocked every
episode, encouraging the policy to utilize underused action groups as well, making training data more
uniform over the action representation space. We use equal-sized variant of k-means for clustering.
The overall objective is formalized in Eq. 7 below:

max
θ

Ea∼πθ(.|s,AG)[R(s, ca) + βH[πθ(a|s)]], where AG ⊂ {a|a ∈ g, g ∈ G} and G ⊂ GK (7)

In experiments (Section 5), we perform model selection based on a validation set of actions. We
further ablate each regularization techniques and analyze their contribution in different environments.

4 ENVIRONMENTS

4.1 GRID WORLD

In GRID WORLD environment (Chevalier-Boisvert et al., 2018), an agent navigates a 2D 9x9 maze to
reach a goal cell for a sparse reward. A column of lava is randomly placed in every episode, touching
which ends the episode. The discrete action space consists of all 5-step macro actions, where each

6

Under review as a conference paper at ICLR 2020

macro-action is defined by a 5-length sequence of left, right, up or down movement. The entire action
space of size 45 = 1024 actions is randomly split into a train and test set of 512 actions. The action
datasets are collected on an empty grid where the agent is initialized at random locations. Two kinds
of data types are used to represent the state sequence of agent - one-hot vectors and continuous (x,y)
grid coordinates.

4.2 RECOMMENDER SYSTEM

The RECOMMENDER SYSTEM environment (Rohde et al., 2018) simulates how users may respond
to product recommendations. Every episode, the agent must recommend items to a new user with
the objective of maximizing the click through rate (CTR) for the recommendations. This simulated
environment uses randomly initialized embeddings for recommendations (actions), and we use the
same to demonstrate policy generalization to new actions. Action space of size 10,000 is randomly
split equally into train and test actions.

4.3 CHAIN REACTION TOOL ENVIRONMENT (CREATE)

CREATE is a physics-based puzzle where the goal is to make a specified ball reach a goal position
(blue), inspired by the popular video game The Incredible Machine. The agent must place tools in
real time to manipulate the path of the ball to reach the goal position. The environment presents
a challenging multi-step task, requiring the agent to select the tool to place as well as its position
(x, y) on the screen. The agent has access to a subset of diverse tools such as trampolines, see-saws,
cannons, funnels, and conveyor belts (Appendix C.2). The position aspect makes this a parameterized
action space Hausknecht & Stone (2015) with both discrete and continuous components. Our policy
architecture consists of another head to output this continuous vector and it is trained jointly with
the discrete action. We solve 3 different CREATE tasks: Push, Navigate and Obstacle. The tools
evaluated at test time are completely unseen tool types from those seen during training.

4.4 SHAPE STACKING

In SHAPE STACKING the agent must drop blocks on a table to build the highest standing tower. Our
objective is different from prior works (Groth et al., 2018; Lerer et al., 2016) in that we maximize the
tower height in an RL setting, whereas the prior work predicts the stability of the tower. Similarly
to CREATE, the action space in Object Stacking, consists of (x, y) coordinates of where the object
should be dropped above the table. This environment is shows our ability to generalize problem
solving ability to a new action space in a complex 3D task. The action dataset here are images of
the objects from various angles (or viewpoints). In this case the visual appearance of the object is
sufficient to infer its functionality.

5 EXPERIMENTS

5.1 BASELINES & ABLATIONS

Baselines: We compare against two policy architectures which can utilize action representations
for generalization to unseen action sets. We also compare against a VAE-based non-hierarchical
embedding learning method, to learn action representations from unstructured action data (see Fig. 3).

• Nearest Neighbor: During training, a policy is learned over all known actions. Given unseen
actions, the policy’s output is used to select the nearest available action in embedding space.

• Distance Based: Based on Dulac-Arnold et al. (2015), a continuous action-space policy outputs in
the action embedding space and the closest available action to this output is selected.

• Non hierarchical VAE: A shared VAE is trained over the samples across all action datasets. An
action’s embedding is then computed as the mean over the embeddings of samples in its dataset.

Ablations: We individually ablate each of the three proposed regularization metrics in our method.

• Ours: no entropy: Trained without entropy regularization by setting entropy coefficient to zero.
• Ours: no changing: Trained over the entire set of known actions without any action space sampling.
• Ours: no clustering: Training action-space is uniformly sampled (Eq. 6), no k-means clustering.

Alternate embeddings: We compare how the embedding learning method (HVAE) applies to various
forms of unstructured data (Fig. 3). In CREATE, action datasets comprise of state trajectories for

7

Under review as a conference paper at ICLR 2020

0

10

20

30

40

50

Su
cc

es
s R

at
e

(%
)

CREATE Push

0

5

10

15

20

25

30

35

40

Su
cc

es
s R

at
e

(%
)

CREATE Obstacle

0

5

10

15

20

25

30

35

Su
cc

es
s R

at
e

(%
)

CREATE Navigate

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
wa

rd

Shape Stacking

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Recommender

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
wa

rd

Grid World

Figure 3: Quantitative results: displayed are 3 of the CREATE tasks, the Block Stacking task, the
Recommender task and the Grid World task. The performance displayed is measured on generalization
to the test set of actions across 3,200 episodes. All results are averaged across 6 seeds. The legend
describes ablations of our method (shades of red), embedding baselines (shades of blue), policy
architecture baselines (shades of green), and alternate modalities in learning embeddings (yellow).

tool behavior, except Ours (video) where video datasets are used instead. In Grid World, action
datasets contain trajectories of states in one-hot representation, except in Ours (state) where states
are real-valued 2D coordinates. Ours (Ground Truth) representations are not learned, but instead uses
manually engineered representations for the actions. Detailed descriptions are present in Appendix C.

5.2 QUANTITATIVE RESULTS

The generalization performance of the policy to unseen actions across all environments and method
variations is shown in 3. As seen from the results our method or ablations all of our methods have
the strongest ability to generalize to unseen actions across a variety of environments. The difference
among our ablations is smaller in simpler environments like Grid World, Recommender systems
and Shape Stacking, where the unseen action spaces are very similar to training actions. The effect
of clustering-based sampling and entropy regularization can be seen for Obstacle and Navigate
environments, which require solving the task with quite different tools at testing. CREATE Push is
solvable with a wide variety of tools, and hence the no-entropy policy trains to a higher reward, and
is able to generalize as well as many unseen tools can solve the task easily. The performance of our
method against its variant with non-hierarchical VAE embeddings shows the importance of hierarchy
in latent space to represent actions.

We test the generalizability of our embedder and policy for the task of zero-shot generalization to
unseen actions. Specifically, our primary experiments across all four environments, discussed in
section 4, train a policy on a fixed set of actions, tune hyperparameters on a separate evaluation
set, and then test the ability to generalize to a new set of actions. We further provide qualitative
analysis on cases where this generalization succeeds and fails. Finally, we evaluate how our method’s
generalizability varies with the degree of difference between seen and unseen.

5.3 FURTHER ANALYSIS

Qualitative results of the policy test performance are shown in 5. The left and middle column contain
success cases. In the left column for CREATE we seen the policy, despite never having used on of
the tools before, still be able to solve the task. Likewise, for shape stacking we see the policy able to
use novel shapes to build a tall and stable pile to maximize the height. We also show cases of failure

8

Under review as a conference paper at ICLR 2020

4 6 8 10 12 14
Angle Difference (degrees)

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

(%
)

Angle Generalization

0 1 2 3 4 5
Embedding Distance

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
e

(%
)

Embedding Generalization

0 10 20 30 40 50 60 70 80
Unseen Action (%)

0.5

0.6

0.7

0.8

0.9

Su
cc

es
s R

at
e

(%
)

Effect of Unseen Actions

Figure 4: Varying difficulty of test action space: (i) Each test action is at least a specific angle apart
from all actions seen during training (ii) Each test action is at least a specific distance in embedding
space apart from all actions seen during training (iii) Test set contains seen/unseen ratio

to generalize in the right most column. In both cases the policy chooses the right types of actions and
barely misses the objective.

We also analyze the conditions needed for generalization to unseen actions. We perform all analyses
on CREATE Push task because of the large diversity of tool functionalities. We show generalization
across changing physical tool parameters with angle and the embeddings the policy is trained and
tested on. Finally, we show the effect of unseen versus seen actions on performance.

Figure 5: Qualitative analysis: shown are two success cases and one failure case for CREATE and
Object Stacking. In CREATE the trace of the ball trajectory is outlined. All of the tools or objects in
these results the policy is generalizing to select and was not trained over these actions.

6 CONCLUSION

Generalization to novel circumstances is an important ability to have, for robust and widely applicable
artificial agents. In this paper we propose the problem of generalization of reinforcement learning
policies to unseen spaces of actions, with the use of action representations learned in an unsupervised
manner. Our two-phase framework demonstrates how representation learning can be combined with
the downstream task of reinforcement learning, specifically to represent actions. We demonstrate the
efficacy of our methods on four challenging environments, and discuss which variants work when.
The key takeaway is that when unseen actions are quite different from known actions, then more
regularization helps to train generalizable policies.

REFERENCES

Alessandro Achille, Giovanni Paolini, Glen Mbeng, and Stefano Soatto. The information complexity
of learning tasks, their structure and their distance. arXiv preprint arXiv:1904.03292, 2019.

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. In International Conference on Machine Learning, pp. 166–175, 2017.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

9

Under review as a conference paper at ICLR 2020

Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory.
In Summer School on Machine Learning, pp. 169–207. Springer, 2003.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip S Thomas. Learning
action representations for reinforcement learning. arXiv preprint arXiv:1902.00183, 2019.

Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid, 2018.

John Co-Reyes, YuXuan Liu, Abhishek Gupta, Benjamin Eysenbach, Pieter Abbeel, and Sergey
Levine. Self-consistent trajectory autoencoder: Hierarchical reinforcement learning with trajectory
embeddings. In International Conference on Machine Learning, pp. 1008–1017, 2018.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. arXiv preprint arXiv:1812.02341, 2018.

Emily L Denton et al. Unsupervised learning of disentangled representations from video. In Advances
in neural information processing systems, pp. 4414–4423, 2017.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan
Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement
learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. In Conference on Robot Learning, pp. 344–356, 2017.

Harrison Edwards and Amos Storkey. Towards a neural statistician. In International Confer-
ence on Learning Representations, 2017. URL https://openreview.net/forum?id=
HJDBUF5le.

Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov, Viraj Mehta, Li Fei-Fei, and Silvio Savarese.
Learning task-oriented grasping for tool manipulation from simulated self-supervision. arXiv
preprint arXiv:1806.09266, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, pp. 1126–1135, 2017.

Oliver Groth, Fabian B Fuchs, Ingmar Posner, and Andrea Vedaldi. Shapestacks: Learning vision-
based physical intuition for generalised object stacking. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 702–717, 2018.

Silviu Guiasu and Abe Shenitzer. The principle of maximum entropy. The mathematical intelligencer,
7(1):42–48, 1985.

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rk07ZXZRb.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. arXiv preprint arXiv:1511.04636,
2015.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot transfer in
reinforcement learning. In International Conference on Machine Learning, pp. 1480–1490, 2017.

Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620, 1957.

10

https://github.com/maximecb/gym-minigrid
https://openreview.net/forum?id=HJDBUF5le
https://openreview.net/forum?id=HJDBUF5le
https://openreview.net/forum?id=rk07ZXZRb

Under review as a conference paper at ICLR 2020

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. EMI:
Exploration with mutual information. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pp. 3360–3369, Long Beach, California, USA, 09–15 Jun 2019.
PMLR. URL http://proceedings.mlr.press/v97/kim19a.html.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. 2014.

Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. https://github.
com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.

Adrien Laversanne-Finot, Alexandre Pere, and Pierre-Yves Oudeyer. Curiosity driven explo-
ration of learned disentangled goal spaces. In Aude Billard, Anca Dragan, Jan Peters, and
Jun Morimoto (eds.), Proceedings of The 2nd Conference on Robot Learning, volume 87 of
Proceedings of Machine Learning Research, pp. 487–504. PMLR, 29–31 Oct 2018. URL
http://proceedings.mlr.press/v87/laversanne-finot18a.html.

Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block towers by example.
In International Conference on Machine Learning, pp. 430–438, 2016.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2015.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
and Olivier Bachem. Challenging common assumptions in the unsupervised learning of dis-
entangled representations. In International Conference on Machine Learning, pp. 4114–4124,
2019.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. arXiv preprint arXiv:1903.01973, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pp. 1928–1937, 2016.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. In Advances in Neural Information Processing
Systems, pp. 9191–9200, 2018.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Junhyuk Oh, Satinder Singh, Honglak Lee, and Pushmeet Kohli. Zero-shot task generalization with
multi-task deep reinforcement learning. In International Conference on Machine Learning, pp.
2661–2670, 2017.

German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. arXiv preprint arXiv:1802.07569, 2018.

Deepak Pathak, Chris Lu, Trevor Darrell, Phillip Isola, and Alexei A. Efros. Learning to control
self-assembling morphologies: A study of generalization via modularity. In arXiv preprint
arXiv:1902.05546, 2019.

11

http://proceedings.mlr.press/v97/kim19a.html
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
http://proceedings.mlr.press/v87/laversanne-finot18a.html

Under review as a conference paper at ICLR 2020

David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros Karatzoglou. Recogym:
A reinforcement learning environment for the problem of product recommendation in online
advertising. arXiv preprint arXiv:1808.00720, 2018.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, 45(11):2673–2681, 1997.

Xander Steenbrugge, Sam Leroux, Tim Verbelen, and Bart Dhoedt. Improving generalization for ab-
stract reasoning tasks using disentangled feature representations. arXiv preprint arXiv:1811.04784,
2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in neural information
processing systems, pp. 1057–1063, 2000.

Guy Tennenholtz and Shie Mannor. The natural language of actions. arXiv preprint arXiv:1902.01119,
2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Hado Van Hasselt and Marco A Wiering. Using continuous action spaces to solve discrete problems.
In 2009 International Joint Conference on Neural Networks, pp. 1149–1156. IEEE, 2009.

Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural
information processing systems, pp. 831–838, 1992.

Vladimir Vapnik. Statistical learning theory, 1998.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
graph neural networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=S1sqHMZCb.

Ziyu Wang, Josh S Merel, Scott E Reed, Nando de Freitas, Gregory Wayne, and Nicolas Heess.
Robust imitation of diverse behaviors. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 30, pp. 5320–5329. Curran Associates, Inc., 2017. URL http://papers.nips.cc/
paper/7116-robust-imitation-of-diverse-behaviors.pdf.

Annie Xie, Frederik Ebert, Sergey Levine, and Chelsea Finn. Improvisation through physical
understanding: Using novel objects as tools with visual foresight, 2019.

Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese. Neural
task programming: Learning to generalize across hierarchical tasks. In International Conference
on Robotics and Automation, 2017.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. 2008.

12

https://openreview.net/forum?id=S1sqHMZCb
http://papers.nips.cc/paper/7116-robust-imitation-of-diverse-behaviors.pdf
http://papers.nips.cc/paper/7116-robust-imitation-of-diverse-behaviors.pdf

Under review as a conference paper at ICLR 2020

A ALGORITHM

Algorithm 1 Training
Require: Set of known actions AK = {a1, . . . aN} , associated action datasets {D1, . . . DN},

number of clusters k and number of clusters to sample from S
Initialize HVAE model parameters
for epoch = 1, 2, . . . do

Sample ai ∼ AK
Compute loss in Eq. 1 for Di

Update HVAE model with gradient of Eq. 1
end for
Initialize empty set CK = {}
Infer action representations cai = qµa (c|Di),∀ai ∈ AK {µ denotes mean of distribution}
Store action representations CK ← {cai . . . caN }
Initialize policy parameters θ
Compute k-means clustering on CK : Gk ← {g1, . . . , gk}

t← 0
Receive initial state s0 from ENV and initialize replay buffer
while not done do

for step in rollout buffer do
Sample clusters G ⊂ GK
Sample action set Ag from clusters G as in Eq. 7
Compute fθ(st, caj),∀aj ∈ Ag
Sample action at ∼ πθ(s) using Eq. 2
st+1, rt ← ENV(st, at)
Store experience (st, at, st+1, rt) in replay buffer
t← t+ 1

end for
Update θ based with PPO using rollout buffer

end while

Algorithm 2 Testing
Require: Set of test actions AT = {aN+1, . . . aN+M} and action datasets {DN+1, . . . DN+M}

Infer action representations cai = qµa (c|Di),∀ai ∈ AT
while not done do

Compute fθ(st, cai),∀ai ∈ AT
Sample action at ∼ πθ(s) using Eq. 2
st+1, rt ← ENV(st, at)
t← t+ 1

end while

HVAE implementation is based on the PyTorch implementation of Neural Stastician (Edwards &
Storkey, 2017), and we use RAdam optimizer (Liu et al., 2019). For training our policy, we use
PPO (Schulman et al., 2017; Kostrikov, 2018) with Adam optimizer (Kingma & Ba, 2015).

13

Under review as a conference paper at ICLR 2020

B ANALYSIS OF TRAINING PROCEDURE AND MODELS

B.1 VISUALIZATION OF HIERARCHICAL EMBEDDING SPACES

(a) CREATE

Figure 6: T-SNE Visualization of learned embedding space for CREATE environment. Tools in
CREATE are labeled by their properties which define them to be floor, trampolines, high-frictional,
etc. The action embeddings clearly group similar actions together.

(a) GRID WORLD

Figure 7: T-SNE Visualization of learned embedding space for Grid World environment.

14

Under review as a conference paper at ICLR 2020

(a) SHAPE STACKING

Figure 8: T-SNE Visualization of learned embedding space for Shape-stacking environment.

B.2 PERFORMANCE CURVES FOR ABLATIONS

0M 8M 16M 24M 32M 40M
Environment Steps

0

10

20

30

40

Su
cc

es
s (

%
)

CREATE Push
Ours
RS
NE
FX

0M 10M 20M 30M 40M 50M
Environment Steps

0

10

20

30

40

Su
cc

es
s (

%
)

CREATE Obstacle
Ours
NE
RS
FX

0M 8M 16M 24M 32M 40M
Environment Steps

0

10

20

30

Su
cc

es
s (

%
)

CREATE Navigate
Ours
NE
RS
FX

Figure 9: Success rate curves comparing the learning of the primary method Ours versus ablations.
The success rate shown is being evaluated on the validation action set. Note that performance
decreasing on the validation set indicates overfitting to the training set of actions.

B.3 FINE-TUNING COMPARISON

0M 1M 2M 3M 4M 5M
Environment Steps

0

20

40

60

80

Su
cc

es
s (

%
)

CREATE Push

0M 1M 2M 3M 4M 5M
Environment Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s (

%
)

CREATE Obstacle

0M 1M 2M 3M 4M 5M
Environment Steps

0

20

40

60

80

Su
cc

es
s (

%
)

CREATE Navigate

Figure 10: Fine-tuning the policy to adapt to a new action space by re-initializing the final layer.
Performance is computed across 5 seeds trained from the same model.

One possible way to adapt a policy to an unseen set of actions is to spend time fine-tuning the learned
policy for the new action space. This process keeps the earlier layers of the policy but fine-tunes the
actual action selection in the final layer by re-initializing the output layer. This process is able to
adapt to an unseen action set of any size. However, this fine-tuning process can be time consuming
which is why we try to achieve generalization in this paper. In Figure 10, we show the performance

15

Under review as a conference paper at ICLR 2020

of such fine tuning on the three CREATE tasks. As seen from the figure, it takes millions of steps to
fine-tune, proving prohibitive for adaptive policies. On the other hand our framework generalizes to
the new action space without the need for expensive RL retraining.

C ENVIRONMENT DETAILS

C.1 GRID WORLD

GRID WORLD environment consists of an agent and a lava wall with an opening as shown in figure 11.
The lava wall can be either horizontal or vertical. The agent is spawned in a random position and can
move in 4 directions (up, down, left, and right). The objective of the agent is to reach the goal in the
bottom-right corner while avoiding lava.

Observation

Observation

Put trampoline Put trampoline

Put ramps Put trampoline Put bump ramp Put bump ramp

Action

Action

Observation

Action RDDDDD DRRUUU UUUDDR RRDDDD

Observation

Action LLUUUU DRRDLL LLDDRR RDDRRL

Figure 11: GRID WORLD environment. The agent is the red triangle and the goal is the green cell.
The environment contains one row or column lava wall with a single opening. Each action consists of
6 consecutive moves in 4 directions.

Observations: The observation space is 9x9x3 where three channels represent (1) object id (agent,
wall, goal, lava), (2) color of an object, and (3) zero in each cell. The agent gets a flattened vector of
this 9x9x3 matrix.

Actions: An action of the agent is 5 consecutive moves in 4 directions. Hence, 45 = 1, 024 actions
are possible in total. Once the agent selects an action, it executes 5 sequential moves step-by-step.
During an action execution, if the agent hits the boundary, it will stay in the current cell. If the agent
steps on lava, the game will be terminated. The whole action set is divided into 8:1:1 split of train,
validation and test action sets.

Rewards: GRID WORLD provides a sparse reward, 1− 0.9× (step/max_step), only when the agent
reaches the goal. The reward is discounted based on the number of actions taken to encourage a
shorter path to the goal.

Termination: Each game is terminated when the agent takes max_steps (64) actions or the agent
reaches the goal or the lava wall.

Action Datasets: The action datasets are observations of an agent performing actions in a 80x80 grid
with no obstacles. The observations constitute the trajectory of states the agent sees during application
of a macro-action, starting from randomized initial states. A dataset of 1024 such trajectories is used
to represent a single macro-action, and is encoded by the HVAE to an action representation which
identifies the underlying action behavior. We consider three kinds of embeddings in our experiments:

• One-hot (default): State is represented by two 80-dimensional one-hot vectors of x and
y coordinates of the agent’s locations on the 80x80 grid. Autoencoder reconstruction is
based on a softmax cross-entropy loss over the states in the trajectory. The learned action
embeddings are 16-dimensional.

16

Under review as a conference paper at ICLR 2020

• State: Two-dimensional continuous vector of x and y coordinates of the agent in the 80x80
grid. Reconstruction loss is computed based on Gaussian log-likelihood over the states in
the trajectory. The learned action embeddings are 16-dimensional.

• Ground-truth: These are 5-dimensional embeddings containing the true knowledge of the
five moves (up, down, left, right) that constitute a macro-action.

C.2 CHAIN REACTION TOOL ENVIRONMENT (CREATE)

CHAIN REACTION TOOL ENVIRONMENT (CREATE) is a physics-based puzzle where the objective
is to make a target ball reach a goal position by placing variety of tools, inspired by the popular
video game “The Incredible Machine”. The environment contains two movable objects, a marker
ball (green) and a target ball (red). When a game starts, the marker ball is falling off from the top of
the screen and an agent requires to place tools to redirect the kinetic energy of the marker ball to the
target ball so that the target ball reaches the goal position (blue) as illustrated in Figure C.2.

Observation

Observation

1

3

2

4

22
1

Put trampoline Put trampoline

Put ramps Put trampoline Put bump ramp Put bump ramp

Action

Action

Figure 12: CREATE environment. In CREATE, the green ball is falling into the scene, which must
push the red target ball into the blue goal location. The top and bottom rows show actual evaluation
results when our model is tested on CREATE UP and CREATE DOWN, respectively.

Observations: An observation for each time-step is an 84x84x3 image of a game screen and we use
3 frame stack to provide information about velocity and acceleration of the balls. Initially, the game
contains 3 balls in the observation: marker ball (green), target ball (red), and goal ball (blue).

Actions: CREATE contains 1,737 tools of type: ramps, trampolines, walls, balls, floor, conveyor
belts, funnel, polygons of different shapes, cannons, fans and buckets. We also have an action for
No-Operation. The whole tool set is divided into train (939), validation (400) and test sets (400).
Every time-step, the agent outputs a parameterized action, i.e. a discrete-continuous action which has
three values (tool, x, y), where tool specifies which tool to place and (x, y) represents the position of
the tool in the screen.

Rewards: The agent gets +1 reward when the marker ball hits the target ball, and +10 reward when
the target ball passes the goal. In addition to reward for success, the environment provides some
intermediate rewards. For every time-step, +0.01 reward is given to encourage the agent to keep
balls inside the screen. At the same time, an invalid action is penalized by giving -0.01 reward (e.g.,
placing a tool outside of the screen or placing a tool on top of other tools).

Termination: Each game is terminated when the agent takes 20 actions, or the marker ball goes out
of the screen before it hits the target ball, or the target ball goes out of the screen before it passes the
goal.

Action Dataset: The action dataset is constructed by testing the properties of each tool through
scripted interactions with a probe ball. A ball is launched at a given tool from various angles and
speeds and then interacts with the tool. The properties of the tool will determine the deflection path
of the ball. Testing interaction from various angles and speeds helps to build a better understanding of
the tool. The collected datasets consist of 1024 trajectories of length 10 of the ball’s interaction with
the tool. Each trajectory consists of observations in the form of either environment state (default) or
48x48 gray-scale images (Ours (image) in Fig. 3). We consider three kinds of embeddings in our
experiments:

• State trajectory (default): Each environment state in a trajectory is represented by 2D coordi-
nates and 2D velocity of the probe ball, concatenated with 2D tool’s location. Autoencoder
reconstruction is based on Gaussian log-likelihood over the states in the trajectory. The
learned action embeddings are 128-dimensional.

17

Under review as a conference paper at ICLR 2020

• Video: Each state in a trajectory is represented by 48x48 gray-scale image, which makes the
trajectory a video of probe ball’s interaction with the tool. Autoencoder reconstruction is
based on Gaussian log-likelihood over the images in the input video. The learned action
embeddings are 128-dimensional.
• Ground-truth: These are 32-dimensional embeddings containing the true knowledge of the

tool in the form of a one-hot encoding of the tool type along with its properties such as
angle, length, elasticity, etc.

C.3 SHAPE STACKING

SHAPE STACKING is a mujoco simulation environment (Todorov et al., 2012) where the agent is
given a set of objects of different shapes of varying sizes, for instance, cubes, rectangles, spheres,
round cylinders, archs, etc. The objective is to stack a tower as high as possible by choose the
appropriate objects given in a particular episode.

Observations: An observation for each time-step is an 84x84x3 image of the shapes laying on the
table.

Actions: In total there are 900 distinct shapes in the environment. 675 are used for learning the
policy. The remaining 225 are used for evaluating performance on unseen actions. The same types of
polygons do not appear in both train and test. Like CREATE the action space includes making a
discrete selection over the shape to drop and the x, y coordinates to drop the shape above the scene.

Rewards: The agent receives a reward for the positive difference in height of the tower. A penalty of
−0.25 is given for every repeated shape.

Termination: The game is terminated either after the tower of shapes exceeds 3 in height or after 10
shape placements.

Action Dataset: In Shape Stacking the functionality of each action is characterized by the physical
appearance of the shape. For this reason, the action dataset consists of images of the shape from
various angles and heights (viewpoints). 1,024 images of resolution 84x84 constitute the dataset to
represent a single shape.

18

	Introduction
	Related Work
	Generalization to unseen actions
	Preliminaries
	Unsupervised learning of action representations
	Learning policies over action representations
	Enabling generalization to unseen actions

	Environments
	Grid World
	Recommender System
	Chain REAction Tool Environment (CREATE)
	Shape Stacking

	Experiments
	Baselines & Ablations
	Quantitative Results
	Further Analysis

	Conclusion
	Algorithm
	Analysis of Training Procedure and Models
	Visualization of Hierarchical Embedding Spaces
	Performance Curves for Ablations
	Fine-Tuning Comparison

	Environment Details
	Grid World
	Chain REAction Tool Environment (CREATE)
	Shape Stacking

