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ABSTRACT

Despite the rapid development of adversarial attacks for machine learning models,
many types of new adversarial examples still remain unknown. Uncovered types
of adversarial attacks pose serious concern for the safety of the models, which
raise the question about the effectiveness of current adversarial robustness evalua-
tion. Semantic segmentation is one of the most impactful applications of machine
learning; however, their robustness under adversarial attack is not well studied.
In this paper, we focus on generating unrestricted adversarial examples for se-
mantic segmentation models. We demonstrate a simple yet effective method to
generate unrestricted adversarial examples using conditional generative adversar-
ial networks (CGAN) without any hand-crafted metric. The naı̈ve implementation
of CGAN, however, yields inferior image quality and low attack success rate. In-
stead, we leverage the SPADE (Spatially-adaptive denormalization) structure with
an additional loss item, which is able to generate effective adversarial attacks in a
single step. We validate our approach on the well studied Cityscapes and ADE20K
datasets, and demonstrate that our synthetic adversarial examples are not only re-
alistic, but also improves the attack success rate by up to 41.0% compared with
the state of the art adversarial attack methods including PGD attack.

1 INTRODUCTION

Despite their impressive accuracy and wide adaption, machine learning models remain fragile to
adversarial attacks (Szegedy et al. (2013); Carlini & Wagner (2017); Papernot et al. (2016a)), which
raises serious concerns for deploying them into real-world applications, especially in safety and
security-critical systems. Extensive efforts have been made to combat these adversarial attacks: ro-
bust models are trained such that they are not easily evaded by adversarial examples (Goodfellow
et al. (2015); Papernot et al. (2016b); Madry et al. (2018)). Although these defense methods im-
prove the models’ robustness, they are mostly limited to addressing norm bounded attacks such as
PGD (Madry et al. (2018)). Realistic adversarial attacks beyond norm bound thus remain a major
concern to those robust models, which spur extensive efforts to explore stronger and realistic ad-
versarial attacks, e.g., using Wasserstein bound measurement (Wong et al. (2019)), realistic image
transformations (Engstrom et al. (2017)) etc. In particular, Song et al. (2018) propose unrestricted
adversarial attacks using conditional GAN for the image classification models, which is a big step
toward realistic attacks beyond human crafted constrains. However, due to their model design, they
are mostly restricted to low-resolution images—for high resolution, the generated images are not
very realistic.

The problem of achieving realistic adversarial attacks and defenses aggravate further for more dif-
ficult visual recognition tasks such as semantic segmentation, where one needs to attack order of
magnitude more pixels while achieving a consistent perception by human. It is essential to make the
segmentation models robust against adversarial attacks, especially due to their applicabilities in au-
tonomous driving (Ess et al. (2009)), medical imaging Ronneberger et al. (2015); Shen et al. (2018),
and computer-aided diagnose system (Milletari et al. (2016)). Unfortunately, we show that existing
attack methods that are primarily designed for simple classification tasks do not generalize well to
semantic segmentation. For instance, following the work of Arnab et al. (2018), we show that the
norm-bound perturbation becomes human visible since larger bounds are required for launching a
successful attack. The unrestricted adversarial attack, on the other hand, is not constrained by the
norm bounded budget, which can expose more vulnerabilities of a given machine learning model.
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Figure 1: Illustrating the effectiveness of AdvSPADE generated unrestricted adversarial example com-
pared to norm bounded attacks. The first column shows a real image from Cityscapes dataset and its pre-
diction result of DRN-105 segmentation network. The 2nd column shows the result of applying PGD to real
images. The 3rd column shows the result of applying PGD to a synthesized image generated by SPADE, while
the 4th column shows an unrestricted adversarial image created by AdvSPADE which completely fools DRN-
105. Note that, while the image in the 4th column is clean, there are conspicuous noises in the 2nd and 3rd
column images. Also, the segmentation results are still good for the first three columns. Notice that the objects
critical for a driving system like street lamps, cars, buildings are all well preserved in our generated image
(fourth column); the only differences are in their colors and textures, which does not affect the semantics for a
human driver. However, the prediction of the segmentation model is totally wrong in the fourth column, which
demonstrates the effectiveness of our unrestricted adversarial attacks for segmentation models.
However, the quality and resolution of the unrestricted adversarial images generated by those meth-
ods are low and limited to simple images like the handwritten digits.

In this paper, we present the first realistic unrestricted adversarial attack, AdvSPADE, for semantic
segmentation models. Figure 1 illustrates the effectiveness of our proposed method. To generate
realistic images for the semantic segmentation models, we use SPADE (Park et al. (2019)), a state-
of-the-art conditional generative model to generate high-resolution images (up to 1 million pixels).
We further add an additional adversarial loss term on the original SPADE architecture to fool the
target model. Such a simple yet effective method, AdvSPADE, helps us to create a wide variety of
adversarial examples from a single image in a single step. Empirical results show that successful ad-
versarial attacks vary in different styles (e.g., different lighting condition, texture, etc.), suggesting a
large volume of vulnerabilities exist for semantic segmentation models that are beyond hand-crafted
perturbations. We further show that augmenting the training data with such realistic adversarial
examples have the potential to improve the models’ robustness.

To this end, our main contribution is: (1) We propose a new realistic attack for semantic segmen-
tation which surpasses the existing state-of-the-art robust models. We demonstrate the existence
of rich varieties of unrestricted adversarial examples besides the previously known ones. (2) We
demonstrate that augmenting the training dataset with our new adversarial examples have the po-
tential of improving the robustness of existing models. (3) We present an empirical evaluation of
our approach using two popular semantic segmentation dataset. First, we evaluate the quality of our
generated adversarial examples using Amazon Mturk and prove that our samples are indistinguish-
able to natural images for humans. Using these adversarial images, we further show that the attack
success rate can be improved by up to 41%.

2 RELATED WORK

Semantic Segmentation. It is one of the most critical tasks in the computer vision field, which can
be considered as a multi-output classification task that provides more fine-granular information in
the prediction (Barrow & Tenenbaum (1981)). Plenty of network architectures have been proposed
to address semantic segmentation task efficiently (Ronneberger et al. (2015); Long et al. (2015);
Chen et al. (2017a); Badrinarayanan et al. (2017)). Generally, a segmentation network contains two
parts: an encoder E and a decoder D. Encoder is for the feature extraction and decoder is for the
dimension restoration. Although the structure design of segmentation networks have been well-
studied, very few studies (Arnab et al. (2018); Xie et al. (2017)) look into the robustness of this class
of networks against adversarial examples.

Adversarial Attacks. The attacks are examples that carefully crafted to mislead the prediction of
machine learning models, while still perceived the same by the human. In recent years, researchers
have proposed multiple methods for generating adversarial examples for the image classification
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task (Goodfellow et al. (2015); Kurakin et al. (2016); Carlini & Wagner (2017); Madry et al. (2018)),
where the target model is fooled by the adversarial images. Hand-crafted metrics, such as Lp norm
bound (Madry et al. (2018); Feinman et al. (2017)) and Wesstrasien distance (Wong et al. (2019)),
are applied to the generation process to preserve the semantic meaning of the adversarial examples
to human. Recently, (Song et al. (2018)) proposes to use generative adversarial network to generate
unrestricted adversarial attacks for image classification. By leveraging Auxiliary Classifier Gener-
ative Adversarial Network (AC-GAN ) (Odena et al. (2016)), the model was able to generate low
quality adversarial examples from scratch and beyond any norm bound. (Wang et al. (2019)) pro-
posed a new generative model called (AT -GAN ) to learn a transformation between a pre-trained
GAN and a adversarial GAN which can generate adversarial examples for the target classifier. The
work generating adversarial examples using GAN (Song et al. (2018); Wang et al. (2019)) adopt two
step procedures which involves many steps of gradient descent on the second part. In contrast, our
adversarial examples are generated in a single step which is more efficient.

A few studies focused on the adversarial attack on modern semantic segmentation networks. Arnab
et al. (2018) conducted the first systematic analysis about the effect of multiple adversarial attack
methods on different modern semantic segmentation network architectures across two large-scale
datasets. (Xie et al. (2017)) propose a new attack method called Dense Adversary Generation
(DAG), which generates a group of adversarial examples for a bunch of state-of-the-art segmen-
tation and detection deep networks. However, all of the attack methods rely on norm-bounded
perturbations, which only cover a small fraction of all the feasible adversarial examples.

Defense Methods. Adversarial training is the state-of-the-art method for training robust classifiers.
(Goodfellow et al. (2015); Lyu et al. (2015); Shaham et al. (2018); Szegedy et al. (2013); Hinton
et al. (2015); Papernot & McDaniel (2017); Xu et al. (2018); Madry et al. (2018)). Besides, Other
defense methods like the input transformation, including rescaling, JPEG compression, Gaussian
blur, HSV jitter, grayscale against adversarial attack on semantic segmentation networks are eval-
uated by (Arnab et al. (2018)). These input transformation methods, however, were shown to rely
on obfuscated gradients and give a false sense of robustness (Athalye et al. (2018)). On the other
hand, (Athalye et al. (2018)) endorsed the robustness of the model trained with adversarial training,
which is the state-of-the-art adversarial robust model available. In this paper, we demonstrate the
robustness of our attack method by bypassing the adversarial training instead of evaluating on the
defense method relies on obfuscated gradients.

3 GENERATING ADVERSARIAL EXAMPLES

In this section, we introduce our methodology, AdvSPADE, for generating unrestricted adversarial
examples for semantic segmentation. For this purpose, we leverage a conditional Generative Ad-
versarial Networks, SPADE. The main goal of a standard conditional GAN is to synthesize realistic
images that will fool the discriminator. The generation of adversarial attack, however, also requires
to fool the segmentation model under attack. AdvSPADE thus adds an additional loss function to
fool both the discriminator and the segmentation model. Figure 2 shows the overall workflow. The
rest of the section describes the relevant terminologies and the new loss function in details.

Unrestricted Adversarial Examples. Consider I as a set of images and C be the set of all possible
categories for I. Suppose o : O ⊆ I → C is an oracle that can map any image from its domain O
to C correctly. A classification model F : I → C can also provide a class prediction for any given
images in I. Under the assumption that F 6= o, an unrestricted adversarial example x is any image
which meets following requirements (Song et al. (2018)): x ⊆ O, o(x) 6= F(x).
Conditional Generative Adversarial Networks. A Conditional Generative Adversarial Network
(Mirza & Osindero (2014)) consists of a generator G and a discriminator D and they are both con-
ditioned on auxiliary information y. Combining random noise z and extra information y as input,
G is able to map it to a realistic image. The discriminator aims to distinguish the real images and
synthetic images from the Generator. G and D correspond to a minimax two-player game and can be
formalized as minGmaxD V (G,D) = Ex∼Pdata(x)[logD(x|y)] +Ez∼Pz(z)[log(1−D(G(z|y)))]
Unrestricted Adversarial Loss. We design an adversarial loss term for the unrestricted adversarial
examples generation. We mainly focus on the untargeted attack in this paper though our approach is
general and can be simply applied on targeted attack. Intuitively, the SPADE generator is trained to
mislead the prediction of target segmentation network. The synthetic images are not only required
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Figure 2: Illustration of proposed AdvSPADE Architecture for generating unrestricted adversarial ex-
amples. Image encoder E takes real images x as input to compute mean and variance vectors (µ(x), σ(x)) and
apply reparameterization trick to generate random noise z. SPADE generatorG considers z and semantic labels
s and generates synthetic images x′. Next, x′s are fed into a fixed pre-trained target segmentation network S
and encouraged to mislead S’s predictions by maximizing adversarial loss between predictions and semantic
labels. Meanwhile, x′, as SPADE discriminator D’s input, also aims to fool D. D is trained to reliably dis-
tinguish between generated (x′) and real images (x). Random sampled ε brings randomness into the model
so that G can generate various adversarial examples. Notice that, due to the adversarial loss item, prediction
results at the top left corner of the figure are completely mis-segmented.

to fool the discriminator for the conditional GAN but also need to be mis-segmented by the target
segmentation network. To achieve this goal, we introduce the target segmentation network into the
training phase and aim to maximize the loss of the segmentation model while keeping the quality
and semantic meaning of the synthetic images. We denote the target segmentation network by S,
SPADE generator by G , input semantic label by y, and the input random vector by z. We define the
untargeted version of Unrestricted Adversarial Loss as follows:

LATK = −Ez∼Pz(z) log f(S(G(z|y)), y) (1)

We select Dice Loss Sudre et al. (2017) as the objective function f . An image encoder E processes
a real image I and generates a mean vector µE(I) and a variance vector σE(I) and then compute the
noise input z according to reparameterization trick Kingma & Welling (2013).

z = µE(I) + σE(I) · ε, ε ∼ N (0, I) (2)

The complete objective function of AdvSPADE then can be written as:

min
G,E

(( max
D1,D2,D3

∑
k=1,2,3

LGAN (G,Dk)) + λ0
∑

k=1,2,3

LFM (G,Dk))

+λ1LV GG(G) + λ2LKLD(E) + λ3LATK(S,G)) (3)

More details about remaining loss terms in Eq 3 can be found in (Park et al. (2019); Wang et al.
(2018)). To speed up the generation process as well as the quality of synthesized images, we follow
Spatially-adaptive denormalization, as proposed by Park et al. (2019).

Spatially-adaptive denormalization. Our model uses SPADE architecture (Park et al. (2019)) as
the conditional GAN model, where the Batch Normalization (Ioffe & Szegedy (2015)) is replaced
with Spatially-adaptive denormalization. This method is proved to maintain the semantic segmenta-
tion information which will get lost during the subsampling. Please refer to Appendix A for details.

4 EXPERIMENTAL SET-UP

Datasets. We evaluate our method on two large-scale image segmentation datasets: Citsycapes
(Cordts et al. (2016)) and ADE20K (Zhou et al. (2016)). Cityscapes contains street view images
from 50 German cities and 19 semantic classes, and it consists of 3000 training and 500 validation
images. ADE20K covers 150 semantic classes in multiple real world scenes, where the training and
validation set contains 20100 and 2000 images respectively.
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Training Details. Following Park et al. (2019), we apply the Spectral Norm (Miyato et al. (2018))
in all layers for both generator and discriminator. We train our model with 50 epochs on Cityscapes.
However, due to the large size of ADE20K and computation limits, we only run 100 epochs on
ADE20K rather than 200 epochs reported in (Park et al. (2019)). We set the learning rate of the
generator and discriminator both equal to 0.0002 and start to decay learning rate linearly from 50-th
epoch when trained on ADE20K. We employ the ADAM (Kingma & Ba (2014)) with β1 = 0.5,
β2 = 0.999. In Equation 3, we set λ0 = 10, λ1 = 10, λ2 = 0.05 for both Cityscapes and ADE20K
and λ3 = 10 for Cityscapes, λ3 = 70 for ADE20K respectively. All experiments are done on a
single NVIDIA TITAN Xp GPU.

Baseline Models. We compare AdvSPADE generated attacks with traditional norm-bounded attacks
in two settings: real images with perturbation and generated clean images with perturbation. For the
second setting, we use vanilla SPADE to generate clean images first, and then, add norm-bounded
perturbation over the synthetic images. For a better comparison, we choose the same segmentation
networks as target networks for each dataset as (Park et al. (2019)) mentioned: DRN-D-105 (Yu
et al. (2017)) for Cityscapes, Uppernet-101 for ADE20K (Xiao et al. (2018)). Besides, we also
select several state-of-the-art open source segmentation networks to evaluate the transferability of
our unrestricted adversarial examples as a black box setting: DRN-38, DRN-22 (Yu et al. (2017);
Yu & Koltun (2016)), DeepLab-V3 (Chen et al. (2017b)), PSPNet-34-8s (Zhao et al. (2017)) for
Cityscapes, PPM-18, MobilenetV2, Uppernet-50, PPM-101 (Zhou et al. (2018)) for ADE20K.

Evaluation metric. Due to the dense output property of the semantic segmentation task, the eval-
uation of the attack success rate is different from that of the classification (Song et al. (2018)). Let
IH×W×C be a set of RGB images with height H and width W and channel C. Let LH×W be the
set of semantic labels for the corresponding images from I. Suppose o : O ⊆ I → L is an oracle
that can map any images from its domain O which presents all images that look realistic to humans
to L correctly. A segmentation model S : I → L can provide pixel-wise predictions for any given
images in I. With this setting, we evaluate the following two categories of adversarial examples: 1)
Given a constant ε > 0 and a hand-craft norm ‖·‖, a restricted adversarial example x is an image

that meets the following conditions: x ⊆ O, ∃x′ ⊆ O ‖x− x′‖ < ε,
∑

i,j(oi,j(x) 6=Si,j(x))
H·W > θ.

(2) An unrestricted adversarial example x is an image that meets following requirement: x ⊆ O,∑
i,j(oi,j(x)6=Si,j(x))

H·W > θ. Here, oi,j(x),Si,j(x) stand for the prediction given by oracle o and seg-
mentation network S at pixel x(i, j) respectively. θ ∈ [0, 1] is a hyperparameter. In this paper, we
set θ = 0.95.

Given the nature of semantic segmentation task, misclassifying a single pixel does not lead an image
fall into the class of adversarial examples. A legitimate adversarial example should have the property
that the majority of pixels in it are misclassified (measured by mIoU score), and the adversarial
image still looks realistic to humans (measured by FID score) with the same semantic meaning as
the original images (measured by Amazon Turk). In particular, we use following three measures:
1. Mean Intersection-over-Union (mIoU). For measuring the effect of different attack methods
on the target networks, we measure the drop in recognition accuracy using mIoU score which is
widely used in semantic segmentation tasks (Cordts et al. (2016); Zhou et al. (2016))—lower mIoU
score means better adversarial example. 2. Fréchet Inception Distance (FID). We use FID (Heusel
et al. (2017)) to compute the distance between the distribution of our adversarial examples and the
distribution of the real images; small FID stands for the high quality of generated images. 3. Amazon
Mechanical Turk (AMT). AMT is used to verify the success of our unrestricted adversarial attack.
Here, we randomly select 250 generated adversarial images under two experimental settings from
each dataset to generate AMT assignments. Each assignment is answered by 3 different workers
and each worker has 3 minutes to make decision. We use the result of a majority vote as each
assignment’s final answer.

5 EXPERIMENT RESULT

5.1 EVALUATING GENERATED ADVERSARIAL IMAGES

Here, we compare the adversarial images generated by AdvSPADE with the original real images and
the clean synthetic images created by vanilla SPADE using mIoU and FID scores. Table 1 shows
that compared to vanilla SPADE, AdvSPADE generated images under whitebox attack can lead to
a giant decline on mIoU score (from 0.62 to 0.01 for DRN-105, from 0.403 to 0.011 for Uppernet-
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Table 1: The effectiveness of our proposed attack on Cityscapes and ADE20K dataset under mIoU
metric under both whitebox and transfer based blackbox attacks. We show the mIoU score of real images,
standard SPADE synthesis images, and our generated attack images under different segmentation models. The
bold shows results under whitebox attack and the non-bold numbers are mIoU achieved by transferring the
adversarial examples generated with the bold network architecture to the non-bold ones. As we can see, our
proposed method successfully mislead the segmentation models, while both the real and synthesis images are
predicted correctly by the models.

Datasets Seg Model Real Images SPADE AdvSPADE (Ours) Datasets Seg Model Real Images SPADE AdvSPADE (Ours)

Cityscapes

DRN-105 0.756 0.620 0.010

ADE20K

Uppernet-101 0.420 0.403 0.011
DRN-38 0.714 0.551 0.407 MobilenetV2 0.348 0.317 0.110
DRN-22 0.68 0.526 0.387 PPM-18 0.340 0.362 0.102
DeepLab-V3 0.68 0.54 0.425 Uppernet-50 0.404 0.395 0.096
PSPNet-34-8s 0.691 0.529 0.441 PPM-101 0.422 0.409 0.078

Table 2: FID Comparison between AdvSPADE and state-of-art semantic image synthesis models. The
results show that AdvSPADE outperforms Pix2PixHD and CRN and achieve comparable FID with vanilla
SPADE on Cityscapes.

Dataset
Model Vanilla SPADE Pix2PixHD CRN AdvSPADE (Ours)

Cityscapes 62.939 95.0 104.7 67.302
ADE20K 33.9 81.8 73.3 53.49

101). On different network architectures, our adversarial examples can also decrease of mIoU to a
certain extent (around 20% on Cityscapes, 30% on ADE20K) showing strong transferability of our
examples across models.

Compare to vanilla SPADE, the FID of our adversarial examples increases slightly (62.939 to 67.302
on Cityscapes, 33.9 to 53.49 on ADE20K, as shown in Table 2) which means our samples have
comparable quality and variety . Note that we only train AdvSPADE half epochs as reported in Park
et al. (2019) and achieve 53.49 FID on ADE20K, which is still smaller than other leading semantic
image synthesis models such as Pix2PixHD (Wang et al. (2018)), SIMS (Qi et al. (2018)), CRN
(Chen & Koltun (2017)). Qualitative results are shown in Figure 3. Moreover, by introducing an
image encoder and KL Divergence loss, we can generate multi-modal stylized adversarial examples
which are shown in the appendix.

Figure 3: Visual Results on ADE20K. As we can see, the semantic meaning of the generated adversarial
examples are well aligned to the original image, but are different in the style and mis-predicted by the seg-
mentation model. For example, the color and strip on bed in the first two columns are changed, but human
still perceive them as bed while the segmentation model predict the wrong label. The results demonstrate the
effectiveness of our method for generating realistic adversarial examples that mislead the target model.

5.2 NORM-BOUNDED ADVERSARIAL ATTACKS

We compare the attack success rate of AdvSPADE with the state-of-the-art norm bounded adver-
sarial attacks, including FGSM and PGD (Goodfellow et al. (2015); Madry et al. (2018)), for two
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Table 3: Attack Success Rate under white-box setting. We present AdvSPADE and traditional norm-
bounded attacks (FGSM,PGD) with different bound sizes (0.25, 1, 8, 32). The results show that PGD and
FGSM attacks can barely attack target networks with small bound size (ε = 0.25, 1, 8). For instance, FGSM
attack with bound size ε = 1 on real and vanilla SPADE generated images achieve 0% attack success rate on
DRN-105 network on Cityscapes. In contrast, AdvSPADE achieves high attack success rate (84.4% and 57.7%
on DRN-105 and Uppernet-101, respectively).

DRN-105 Uppernet-101

Bound Size Real Images Vanilla SPADE Bound Size Real Images Vanilla SPADE
Method (ε) +Perturbation +Perturbation Method (ε) +Perturbation +Perturbation

FGSM

0.25 0% 0%

FGSM

0.25 0.4% 0.9%
1 0% 0% 1 0.9% 1.8%
8 0% 0% 8 2.6% 2.6%

32 15.6% 16.4% 32 6.1% 8.0%

PGD

0.25 0% 0%

PGD

0.25 0.4% 0.9%
1 0% 0% 1 0.8% 2.8%
8 22.2% 43.4% 8 11.5% 24.2%

32 33.8% 47.2% 32 39.0% 44.1%

AdvSPADE (Ours) 84.4% AdvSPADE (Ours) 57.7%

Table 4: Quantitative comparison of adversarial images generated by different attack methods under
white-box setting. We show the mIoU score of AdvSPADE generated examples and norm-bounded attacks
on both real and standard SPADE generated images with multiple bound sizes (0.25, 1, 8, 32) for DRN-105
(Cityscapes) and Uppernet-101 (ADE20K). Digits in the parentheses show the corresponding FID scores. The
results indicate that to achieve similar mIoU as AdvSPADE, traditional norm-bounded attacks need large size
perturbation which is easily detectable by the human. However, our unrestricted adversarial examples remain
invisible to human, which reveals the effectiveness of our proposed method.

DRN-105 Uppernet-101

Bound Size Real Images Vanilla SPADE Bound Size Real Images Vanilla SPADE
Method (ε) +Perturbation +Perturbation Method (ε) +Perturbation +Perturbation

FGSM

0.25 0.557 0.431(63.354)

FGSM

0.25 0.346 0.286(33.821)
1 0.408 0.355(64.455) 1 0.278 0.221(35.254)
8 0.196 0.152(82.144) 8 0.178 0.152(60.563)

32 0.009 0.009(248.175) 32 0.070 0.048(166.724)

PGD

0.25 0.557 0.431(63.354)

PGD

0.25 0.346 0.286((33.821)
1 0.339 0.287(63.971) 1 0.276 0.181(34.876)
8 0.036 0.022(69.162) 8 0.070 0.022(62.289)

32 0.013 0.009(89.998) 32 0.013 0.007(113.553)

AdvSPADE (Ours) 0.01(67.302) AdvSPADE (Ours) 0.011(53.49)

datasets. We set the l∞ norm bound size ε to {0.25, 1, 8, 32} for both FGSM and PGD. For PGD,
we follow the (Kurakin et al. (2016); Arnab et al. (2018)) and set number of attack iterations to
min{ε + 4, d1.25εe}. We apply FGSM and PGD on both real images and synthetic images by
vanilla SPADE, and compare their mIoU scores and FID with ours. Overall, AdvSPADE achieves
higher attack success rates on both datasets (84.4% on Cityscapes, 57.7% on ADE20K) than tradi-
tional norm-bounded attack approaches, as shown in Table 3.

Table 4 further reveals that for both FGSM and PGD attack, to decrease the mIoU to the same level
as AdvSPADE (mIoU = 0.01), the generated perturbation becomes conspicuous (ε = 32) so that
human can easily distinguish adversarial examples from clean images. FID also reflects the decline
of adversarial images’ quality. Secondly, adversarial examples generated by FGSM and PGD attack
can not make mIoU drop down to the same level as AdvSPADE if it is required to maintain the
quality of the samples. Consider the adversarial samples on Cityscapes generated by vanilla SPADE
and add perturbation with ε = 1, their FID (64.455) is comparable with our samples, but mIoU
(0.355) is much larger than ours (0.01). Figure 4 illustrates the difference between AdvSPADE
samples and norm-bounded samples on the same level of mIoU score. We can easily see the noise
pattern in norm-bounded samples rather than in our examples.

5.3 HUMAN EVALUATION

Using Amazon Mechanical Turk (AMT), we evaluate how a human perceives AdvSPADE generated
adversarial images. A detailed result is presented in the Appendix. This is done in two settings:

(1) Semantic Consistency Test: Here, we aim to validate that semantic meanings of our adversarial
examples are consistent with their respective ground truth labels. If it is true, humans will segment
our adversarial examples correctly. However, asking workers to segment every pixel in an image is
time-consuming and inefficient. Instead, we give AMT workers a pair of images: a generated adver-
sarial image and a semantic label (half of the images pairs are matched, and rest are mismatched)
and ask them if the semantic meaning of given synthetic image is consistent with the given semantic
label. We notice that users can identify the semantic meaning of our adversarial examples precisely
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Figure 4: Comparison of norm-bounded samples and AdvSPADE generated unrestricted adversarial
examples at the same mIoU level on ADE20K. We Apply different attack methods to descend mIoU score
to the same level (around 0.01) and show the visual comparison. First and second columns are adversarial
examples generated by FGSM and PGD with ε = 32 on real images, and third and fourth columns are the same
on vanilla SPADE synthesis images. The last column is examples generated by AdvSPADE. We can clearly see
the noise pattern in norm-bounded adversarial images rather than in our examples showing that our examples
can attack target networks successfully, yet keep undetectable to human.

(94.4% for Cityscapes, 98.0% for ADE20K). In other words, the segmentation network’s reaction
toward our adversarial examples is inconsistent with human, which proves the success of our attack.

(2) Fidelity AB Test: We compare the visual fidelity of AdvSPADE with vanilla SPADE. Here we
give workers the semantic ground truth label and two generated images by AdvSPADE and vanilla
SPADE respectively and ask them to select the more appropriate image corresponding to the ground
truth label. 68.4% and 75.2% users favor our examples over vanilla SPADE for Cityscapes and
ADE20K dataset respectively, which indicates competitive visual fidelity of our adversarial images.

5.4 ROBUSTNESS EVALUATION

In this section, we first show that robust training with norm-bounded adversarial images can defend
restricted adversarial attacks successfully where perturbation can be added either on real images or
synthesis images. Then, we show that our unrestricted adversarial examples can still attack these
robust models successfully (Goodfellow et al. (2015)). Finally, we present the results of our exper-
iment to build a more robust segmentation model based on our unrestricted examples. We follow
the training setting introduced by (Madry et al. (2018)): we select PGD as the attack method and set
the adversarial training epoch = 100 on Cityscapes, 50 on ADE20K, norm-bound size ε = 8, attack
iteration = 10, step size = 1. After the training phase, we use PGD with the same setting to generate
norm-bounded perturbation and add it on both real images and synthesis images by vanilla SPADE.

It turns out that real and synthesized images with perturbation can only make mIoU decrease to
0.325 and 0.225 on robust DRN-105, 0.239 and 0.197 on robust Uppernet-101, respectively. In
contrast, our adversarial examples can achieve 0.033 mIoU score on robust DRN-105, and 0.024
on robust Uppernet-101 which shows that our unrestricted adversarial examples can successfully
surpass the robust models trained with norm-bounded adversarial examples. Next, we train a model
with our unrestricted adversarial examples on the Cityscapes dataset and then apply PGD to attack.
The result shows that PGD attack can only achieve 1.8% attack success rate on DRN-105. Since l∞
norm-bound examples are unknown for the robust model defended by our samples, the low success
rate reflects models gain stronger robustness from adversarial training with AdvSPADE examples.

6 CONCLUSION

In this paper, we explore the existence of adversarial examples beyond norm-bounded metric on the
state-of-the-art semantic segmentation neural networks. By modifying the loss function of SPADE
architecture, we are able to generate high quality unrestricted realistic adversarial examples beyond
any lp norms, which mislead segmentation networks’ behavior. We demonstrate the effectiveness
and robustness of our method by comparing ours with traditional norm-bounded attack methods.
We also show that our generated adversarial examples can easily surpass the state-of-the-art defense
method, which raises new concerns about the security of segmentation neural networks.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTS DETAILS

Background on SPADE Model SPADE normalizes the activation of each layer in a neural network
in a channel-wise manner and adjusts it by scale γ and bias β which are learned dynamically from
two simple two-layer CNNs respectively. Let m, a denote the input semantic label and adjusted
activation map. hin,c,y,x stands for the i-th layer’s original activation value of n-th sample at location
(c, x, y). (c, x, y means the channel, width and height of the activation map respectively)

a = γic,y,x(m)
hin,c,y,x − µic

σic
+ βic,y,x(m) (4)

where µic and σic are calculated by:

µic =
1

NHiW i

∑
n,y,x

hin,c,y,x (5)

σic =

√
1

NHiW i
σn,y,x(hin,c,y,x)

2 − (µic)
2 (6)

N is the number of samples in a batch. H,W are the height and width of the activation map in the
corresponding layer.

SPADE Network Architectures In order to achieve the comparative quality of synthetic images,we
basically follow the generator and discriminator architecture settings in (Park et al. (2019)). Due to
SPADE module, encoder part is unnecessary for the generator. The simplified lightweight network
takes semantic label and random vector as input, after going through alternate SPADE modules and
upsampling layers, it can generate high-quality realistic images. For the discriminator structure, we
also follow the guideline of SPADE which uses the multi-scale discriminator (Wang et al. (2018))
and loss function with the hinge loss term (Park et al. (2019)). SPADE inherits the property of
BicycleGAN (Zhu et al. (2017)) and provides an easier and more straightforward way to synthesize
multi-modal realistic images. Our AdvSPADE is based on the multi-modal version SPADE for
generating various adversarial examples to increase the coverage of real-world adversarial examples.
The implementation details of generator, discriminator and image encoder are shown in Fig 5 and
Fig 6 .

AdvSPADE Training Re-normalization Normalization is an essential step in the pre-processing
phase. We notice that in SPADE implementation, author leverages z-score normalization with µ =
[0.5, 0.5, 0.5] , σ = [0.5, 0.5, 0.5] , α = [255, 255, 255] to map input RGB images x into the range
of [−1, 1]:

xnorm =
(x/α)− µ

σ
(7)

After passing through SPADE generator, the generated image x′ we gain has the same range with
normalized input image xnorm: [−1, 1]. In our AdvSPADE, we need to feed generated image
x′ into the target segmentation network S. However, there will be a value range shifting. Since
main semantic segmentation networks do not use the same normalization parameters (µ, σ) with
SPADE. Currently, people use to compute corresponding mean vector ((µ)) and variance vector
((σ)) for a given dataset or directly use mean and variance vectors of Imagenet (Krizhevsky et al.
(2012)) dataset: µ = [0.485, 0.456, 0.406], σ = [0.229, 0.224, 0.225]. We need to guarantee that
generated adversarial example fed into the target network has the same range in training phase and
testing phase. Let µ′, σ′ be the mean and variance vector for semantic segmentation task. Before
feeding generated adversarial examples into target segmentation network S, we need to do a re-
normalization:

x′norm =
σ

σ′
· x′+ µ− µ′

σ′
(8)
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Figure 5: Generator,discriminator and encoder architectures

Figure 6: SPADE ResBlock Architecture

Otherwise, even though generated unrestricted adversarial example can mislead the target network
while training, it will still fail in the testing phase due to a large value shifting. We provide a simple
quantitative computation to prove our statement.

Let µ′ = [0.485, 0.456, 0.406] , σ′ = [0.229, 0.224, 0.225], µ = [0.5, 0.5, 0.5] , σ = [0.5, 0.5, 0.5]
and the value at i-th,j-th position in x′: x′(i, j) = [0.1, 0.1, 0.1]. After saving x′ into a
jpg file as an adversarial example, it will be map to xRGB(i, j) = α · [x′(i, j) · σ + µ] =
[255, 255, 255] · [[0.1, 0.1, 0.1] · [0.5, 0.5, 0.5] + [0.5, 0.5, 0.5]] = [140.25, 140.25, 140.25]. In
the attack phase, xRGB(i, j) will be normalize to xnorm(i, j) = [(xRGB(i, j)/α) − µ′] σ′ =
[[[140.25, 140.25, 140.25]/[255, 255, 255]] − [0.485, 0.456, 0.406]]/[0.229, 0.224, 0.225] =
[0.28, 0.42, 0.64]. Notice that a valid adversarial pixel [0.1, 0.1, 0.1] is mapped to a complete
different value [0.28, 0.42, 0.64] while attacking. There is no guarantee that xnorm(i, j) can still
mislead the target network which shows that the necessity of re-normalization while training
AdvSPADE.

Robust training details We provide more detail settings about the robust training with AdvSPADE
examples experiment described in Section 4. Note that the target network S is fixed while training
AdvSPADE. In other words, we consider the gradient flow of target segmentation network S but
do not update it in the whole training phase. We are able to gain effective unrestricted adversarial
example after training model dozens epochs. However, the training time cost is non-negligible
(around 48 hours on Cityscapes, 200 hours on ADE20K with single NVIDIA TITAN Xp GPU).
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Algorithm 1 Adversarial Training with AdvSPADE
Input: initialized networks E,G,D, pre-trained network S, dataset d
Output: Updated S.

for number of training epochs do
for number of iterations in each epoch do

Sample minibatch of n images {x(1), x(2), ..., x(n)} from d.
Sample minibatch of corresponding n semantic labels {l(1), l(2), ..., l(n)} from d.
Update the generator by descending its stochastic gradient:

∇θg
1

n

n∑
i=1

[
∑

k=1,2,3

LGAN (G,Dk)) + λ0
∑

k=1,2,3

LFM (G,Dk)

+λ1LV GG(G) + λ3LATK(S,G)]

Update the discriminator by ascending its stochastic gradient:

∇θd
1

n

n∑
i=1

[
∑

k=1,2,3

LGAN (G,Dk) + λ0
∑

k=1,2,3

LFM (G,Dk)]

if epoch % k == 0 then
Update the target segmentation network by ascending its stochastic gradient:

∇θs
1

n

n∑
i=1

[λ3LATK(S,G))]

end if
end for

end for
return S

According to the definition from Madry et al. (2018); Goodfellow et al. (2015), in each training
epoch, we apply certain attack method (PGD, iFGSM,etc) to generate adversarial examples and
augment dataset with above examples, then using augmented dataset to fine-tune the target network.
If we directly replace previously attack methods to our attack method, we need to train AdvSPADE
dozens epochs in every adversarial training epoch when target network is updated which means the
time cost will rise linearly related to the number of adversarial training epoch. In order to decrease
the enormous time cost, we adopt a compromise adversarial training strategy with our unrestricted
adversarial examples and achieve promising results. Instead of fixing S during training stage, we
also optimize parameters of S each k epoch and encourage it to segment generated adversarial
examples correctly. We combine robust training into the AdvSPADE training stage and reduce the
time cost to a acceptable level (around 50 hours on Cityscapes with single NVIDIA TITAN Xp
GPU). Algorithm is shown in 1. In this paper, we set k = 1. As we report in the 4, after adversarial
training with AdvSPADE generated adversarial examples, the PGD atack can only achieve 1.8%
attack success rate on the robust segmentation network.

(a) Semantic Consistence Test (b) Fidelity AB Test

Figure 7: User Interfaces for AMT Workers.
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Table 5: Results of AMT study: We present the AMT evaluation results on Cityscapes and ADE20K
datasets. Users are asked to answer two questions: (1)Semantic Consistence Test: Given an unre-
stricted generated adversarial image-label pair, is our example consistent with the semantic label?
Note that true positive(TP ) indicates the situation that the adversarial example and label is matched
and user selects the meaning of this pair is consistent. TN ,FP ,FN describe the similar situations.
respectively. (2)Fidelity AB Test: Given the synthetic images by AdvSPADE and standard SPADE
from same input image and its semantic label, which image is more appropriate for the groudtruth
label? We can see that in the semantic consistence test, AMT workers get 94.4% and 98% accuracy
on test set sampled from Cityscapes and ADE20K. It proves that the semantic meaning of our unre-
stricted adversarial images are consistent with their labels from human perspective. In fidelity AB
test, users prefer our generated images than vanilla SPADE generated images (68.4% on Cityscapes,
75.2% on ADE20k) which shows the fidelity of our generated adversarial examples.

Datasets True Positive True Negative False Positive False Negative Accuracy Ours Vs. Vanilla SPADE

Cityscapes 124 112 1 13 94.4% 68.4%
ADE20K 125 120 0 5 98.0% 75.2%

A.2 ADDITIONAL QUALITATIVE RESUTLS

Table 5 shows the AMT evaluation results and Figure 7 presents the user interfaces we design for the
two experiments. Figure 8 and Figure 9 show the variety of our unrestricted adversarial examples
on two datasets. Figure 10 compares l∞ norm-bounded samples and our unrestricted adversarial
examples under the condition that making the mIoU of target network drop to the same level (0.01)
on Cityscapes. Figure 11 visualizes the relationship between bound size and mIoU decline on two
datasets. The conclusion is that norm-bounded adversarial examples can achieve the same attack
effect with our examples only with large bound size. Note that our examples do not contain any
bound restriction, drawing it with other norm-bound examples in the same coordinate axis is for
the convenience of comparison. Figure 12 and 13 compare the quality and attack effect of norm-
bounded examples with multiple bound sizes and our examples. Figure 14 and 15 shows more
unrestricted adversarial examples generated by AdvSPADE on two datasets.

Figure 8: Variety of Our Unrestricted Adversarial Examples On Cityscapes: Our model is able to
generate various unrestricted adversarial examples which can mislead the state-of-the-art semantic
segmentation networks. First column is the real images from Cityscapes dataset. Second and third
columns are our stylized unrestricted adversarial examples, the fourth column is the groudtruth label
and the final column shows the prediction of our examples on target segmentation network.
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Figure 9: Variety of Our Unrestricted Adversarial Examples On ADE20K: Our model is able to gen-
erate various unrestricted adversarial examples which can mislead the state-of-the-art semantic seg-
mentation networks. First column is the real images from ADE20K dataset. Second and third
columns are our stylized unrestricted adversarial examples, the fourth column is the groudtruth label
and the final column shows the prediction of our examples on target segmentation network.

Figure 10: Comparison of norm-bounded samples and unrestricted adversarial examples on same mIoU
level: First and second columns are adversarial examples generated by FGSM and PGD with ε = 32
on real images. Third and fourth columns are adversarial examples generated by FGSM and PGD
with ε = 32 on vanilla SPADE synthesis images. Last column is unrestricted adversarial examples
generated by AdvSPADE.
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(a) Cityscapes (b) ADE20K

Figure 11: Relationship between l∞ norm bound size and mIoU decline.

Figure 12: Visual Comparison on Cityscapes: We show the visual comparison between our unrestricted
adversarial examples and norm-bounded adversarial examples with multiple settings on target segmentation
network (DRN-105) on Cityscapes. From left to right, the first and second row show the adversarial exam-
ples generated by adding different bound size (ε = 0, 8, 32) perturbation on real images with different attack
methods (FGSM, PGD) and their corresponding semantic predictions from DRN-105. The third and fourth row
follows the same setting except the norm perturbation is added on standard SPADE generated images. The last
row shows our unrestricted adversarial example and its prediction.

17



Under review as a conference paper at ICLR 2020

Figure 13: Visual Comparison between our unrestricted adversarial examples and norm-bounded ad-
versarial examples on ADE20K

Figure 14: Visual Results on Cityscapes: First row is the real images in Cityscapes validation set. Sec-
ond row is the corresponding groundtruth labels. Third row is our unrestricted adversarial examples
and last row is the corresponding segmentation results.
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Figure 15: Visual Results on ADE20K: First row is the real images in Cityscapes validation set. Sec-
ond row is the corresponding groundtruth labels. Third row is our unrestricted adversarial examples
and last row is the corresponding segmentation results.
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