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ABSTRACT

We propose an interactive classification approach for natural language queries.
Instead of classifying given the natural language query only, we ask the user for
additional information using a sequence of binary and multiple-choice questions.
At each turn, we use a policy controller to decide if to present a question or pro-
vide the user the final answer, and select the best question to ask by maximizing
the system information gain. Our formulation enables bootstrapping the system
without any interaction data, instead relying on non-interactive crowdsourcing an-
notation tasks. Our evaluation shows the interaction helps the system increase its
accuracy and handle ambiguous queries, while our approach effectively balances
the number of questions and the final accuracy.1

1 INTRODUCTION

Responding to natural language queries through simple classification has been studied extensively,
including for question answering (Rajpurkar et al., 2016; Chen et al., 2017; Yang et al.) and infor-
mation retrieval (Balcan et al., 2008; Ailon & Mohri, 2007). The common approach is to return a
response given the input query only. This strategy misses the opportunity to interact with the user
to improve the system behavior. For example, a user may provide an underspecified request due
to partial understanding of the domain or the system, or the system may fail to fully interpret the
nuances of the natural language input. In both cases, given the query alone, the system will likely
return a low quality response, which could have been improved by obtaining additional information.

In this paper, we propose to recover from such failures through a simple but effective interaction,
where the system asks the user for additional information using a sequence of binary and multiple-
choice questions. We design a simple method that combines the benefits of such interaction, but
avoids much of the complexity and challenges involved in supporting unrestricted natural language
interaction. Figure 1 illustrates the type of interaction our method enables in our two evaluation
domains. We study an interaction class that supports obtaining the required information from the
user, but avoids much of the challenges of full fledged dialogue. Such an interaction begins with a
natural language query from a user. The system then decides if to return the classification output
label, or pose a question to obtain more information. Given the user response, the system decides if
to ask another question, or conclude the interaction and return a response to the user.

We emphasize two aspects in our approach: interaction efficiency and simple system building. To
make the interaction efficient, we maintain a posterior distribution over classification labels that we
update during the interaction. We select the next question to ask at each turn by computing the
information gain about this distribution from observing the answer to each available question, and
train a policy controller to decide if to ask a question or return a prediction. In building our system,
we emphasize avoiding collecting expensive interaction data, which is often done by tuning an auto-
mated system (Wu et al., 2018; Hu et al., 2018; Lee et al., 2018; Rao & Daumé III, 2018) or Wizard
of Oz studies (Kelley, 1984; Wen et al., 2016). We propose a simple approach to crowdsource initial
natural language queries and question-answer pairs for each classification label. This data enables
training the system without any human interaction data.

We evaluate our method on two public datasets, FAQ document suggestion (Shah et al., 2018) and
bird species identification using the text data of the CUB-200 dataset (Wah et al., 2011). Our exper-

1Our code, data, and experiment setup will be made publicly available.
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FAQ Suggestion Bird Identification

FAQ Document
What data limits apply when roaming interna-
tionally?

How do I sign up for Sprint Global Roaming?

How do I purchase a High Speed Data Roaming
Pass?

. . .

Bird Species Type

American
Redstart

American
Crow

. . .
User Interaction

U: Travelling out of country.
S: Do you need to activate global roaming

service?
U: Yes.
S: Do you want high speed data roming?
U: No.
S: Please read:

How do I sign up for Sprint Global Roaming?

User Interaction
U: Saw a little black bird with black eyes.
S: What is the bill length of the bird:

shorter, similar, or longer than head?
U: Shorter than head
S: Is the bird underpart orange?
U: Yes
S: The identified bird is:

American Redstart

Figure 1: Example interactions in the FAQ (left) and Birds (right) domains. The top boxes show
example classification output labels: FAQ documents or bird species. The lower boxes show a user
(U) interacting with the system (S). The user starts with an initial natural language query. At each
step, the system asks a clarification question. The interaction ends with the system returning an
output labels. The images are for illustration only. Our model does not consider images.

iments shows that interaction increases the classification accuracy. With one clarification question,
our system gains a relative accuracy boost of 40% and 65% for FAQ suggestion and bird identi-
fication compared to no-interaction baselines on simulator evaluation. Given at most five turns of
interaction, our approach improves accuracy by over 100% on both tasks for both simulator and
human evaluation.

2 TECHNICAL OVERVIEW

Task Our goal is to classify a natural language user query to one of a set of labels through an
interaction. Let Y be a set of N labels

{
y(1), . . . , y(N)

}
. In the FAQ domain, each y is an FAQ

document, and in the Birds domain, each y is a bird specie. To simplify our notation, we consider
the label as the text representation of the underlying object: the FAQ text or the bird name. A
classification interaction x is a tuple (x0, 〈(q1, r1), . . . , (qT , rT )〉, y), where x0 is the initial natural
language query, 〈(q1, r1), . . . , (qT , rT )〉 is a sequence of questions qi and user responses ri, and
y is the final classification output returned to the user. There are two types of questions: binary
and multiple choice. The predfined set of possible answers for a question q is R(q). The possible
answers for binary questions are “yes” and “no”, and for multiple choice questions a predefined set of
question-specific values. We denote an interaction up to time t as xt = (x0, 〈(q1, r1), . . . , (qt, rt)〉).
Figure 1 shows interactions in our two evaluation domains.

Model The aim of the interaction is to improve the system accuracy over using only the initial
query for classification. We model the probability of a label y ∈ Y at time t in the interaction
using the parameterized distribution p(y |xt−1), where xt−1 is the interaction until and including
step t − 1. We use information gain over this probability distribution to select the next question
to ask qt, and a policy controller to decide between returning the current most likely label y∗ =
arg maxy p(y |xt−1) or present the next question to the user. If the policy decides to present the
question qt, we use the user answer rt to compute p(y |xt). Section 4 describes our model.

Learning We assume access to a dataset {(y(i), X(i), {(qj , rj)}M
(i)

j=1 )}Ni=1, where each label y(i)

is annotated with a set of initial queries X(i) and a set of M (i) question-answer pairs {(qj , rj)}M
(i)

j=1 .

The pairs in the set {(qj , rj)}M
(i)

j=1 are independent from each other, and do not form an interaction.
We crowdsource this data by presenting workers with a target label y and asking for initial queries
and text tags describing y. We use the initial queries as is, and deterministically process the tags to
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create question-answer pairs. For a question q, we denote its source tag as q̄. We describe the data
collection in Section 5. We use this data to train our model (Section 4.3), create a user simulator
(Section 4.4), and to train the policy controller using policy gradient (Section 4.5). The policy is
trained to minimize the number of interaction turns while achieving high classification accuracy.

Evaluation We evaluate classification accuracy, and study the trade-off between accuracy and the
number of the turns the system takes. We use both human evaluation and our simulator. For human
evaluation, we additionally collect qualitative ratings of the quality of the interaction.

3 RELATED WORK

Interactive Learning A number of recent studies have leveraged human feedback to train ma-
chine learning systems, including for dialogue learning (Li et al., 2016), semantic parsing (Artzi &
Zettlemoyer, 2011; Wang et al., 2016; Iyer et al., 2017), text classification (Hancock et al., 2018),
and SQL generation (Gur et al., 2018). We study the benefit of interaction for classification. In
contrast to this line of work, we train our system without access to full interactions. This makes
our training data less costly to obtain, as it does not require building a working system (Wu et al.,
2018; Hu et al., 2018; Lee et al., 2018; Rao & Daumé III, 2018) or conducting Wizard of Oz ex-
periments (Kelley, 1984; Wen et al., 2016). Rich full interaction annotation was also used in other
interactive systems, including for visual question answering (De Vries et al., 2016; Lee et al., 2018;
Chattopadhyay et al., 2017; Das et al., 2017) and multi-turn text-based question answering (Rao &
Daumé III, 2018; Reddy et al., 2019; Choi et al., 2018). Collecting this data is usually done by build-
ing an interactive multi-worker system on a crowdsourcing platform, a similar approach to Wizard
of Oz studies.

Recently, Chung et al. (2018) proposed a system for interactive spoken content retrieval, focusing
on learning a user simulator given access to the target documents as training signal. In contrast, our
aim is to learn a complete system for interacting with real users. The simulator building methods
they present are orthogonal to ours, and provide a more costly way to build a stronger simulator
for our learning approach. Our classification problem can be viewed as an instance of the popular
20-question game (20Q), which has been studied recently using a celebrity knowledgebase (Chen
et al., 2018; Hu et al., 2018). Our setup differs in that our interactions begin with an initial natural
language query, and the interaction goal is to refine the system response to it (i.e., return the right
classification label). In addition, we do not assume access to a structured knowledgebase, instead
relying only a collection of text documents.

Matching-based Classification Classification methods by matching the input text and the label
text have been extensively studied and used in various natural language processing applications, such
as few-shot classification (Yu et al., 2018), forum-based question answering (dos Santos et al., 2015;
Lei et al., 2015; Rao & Daumé III, 2018), and dialogue response selection (Lowe et al., 2015; Zhou
et al., 2016; Wu et al., 2017; Zhou et al., 2018). While previous works mostly focus on improving
the model components for better non-interactive text matching (Wang & Manning, 2010; Heilman
& Smith, 2010; Dilek et al., 2018; Rajpurkar et al., 2016), we propose a different modeling and
learning method to proactively inquire information from the users, which can be combined with
previous methods to improve the overall performance.

4 METHOD
We maintain a probability distribution p(y |xt) over the set of labels Y . At each interaction step,
we first update this belief, select a question to ask using information gain, and decide if to ask the
question or return the classification output using a policy controller.

4.1 BELIEF PROBABILITY DECOMPOSITION

We decompose the distribution p(y |xt) using Bayes rule and assuming independence between turns
in the interaction xt = (x0, 〈q1, r1〉, . . . , 〈qt, rt〉):

p(y |xt) = p(y |xt−1, qt, rt)
∝ p(rt, qt, y |xt−1)

= p(rt | qt, y, xt−1) · p(qt |y, xt−1) · p(y |xt−1) .

(1)

We use a deterministic process to select the next question q∗t given the history of the interaction
xt−1. In Section 4.2, we describe how we implement this process using information gain. Because
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of the independence assumption between turns, we can write p(rt | qt, y, xt−1) = p(rt | qt, y). This
allows to create an incremental update rule:

p(y |xt) ∝ p(rt | qt, y) · p(y |xt−1) · 1[qt = q∗t ] = p(y |x0)

t∏
j=1

p(rj | qj , y) , (2)

where 1[·] is an indicator function and p(y |x0) is the label distribution given the initial query only.
This factorization allows us to leverage separate annotations to train p(y |x0) and p(r | q, y) directly,
which alleviates the need for collecting costly user interactions.

4.2 QUESTION SELECTION USING INFORMATION GAIN

The system selects the question q∗t to ask at turn t by maximizing its information gain. To efficiently
compute the information gain, we decompose it to two quantities that we incrementally update dur-
ing the interaction: p(rt |xt−1, qt) and p(y |xt−1, qt, rt). Given xt−1, we compute the information
gain for the target label random variable Y by observing the answer to question qt:

IG(Y ; qt |xt−1) = H(Y |xt−1)−H(Y |xt−1, qt) ,

where H(· | ·) denotes the conditional entropy. Because the first entropy term H(Y |xt−1) is a
constant regardless of the choice of qt, the selection of q∗t is equivalent to:

q∗t = arg min
qt

H(Y |xt−1, qt) = arg min
qt

∑
rt∈R(qt)

p(rt |xt−1, qt) ·H(Y |xt−1, qt, rt) ,

where R(qt) is the set of answers for question qt. Because of the independence between turns and
the deterministic selection of qt given xt−1:

p(rt |xt−1, qt) =
∑
y∈Y

p(rt, y |xt−1, qt) =
∑
y∈Y

p(rt | qt, y) · p(y |xt−1) ,

and

H(Y |xt−1, qt, rt) =
∑
y∈Y

p(y |xt−1, qt, rt) · log p(y |xt−1, qt, rt) .

Both p(rt |xt−1, qt) and p(y |xt−1, qt, rt) can be efficiently updated as the interaction progresses
using Equations 1 and 2.

4.3 MODELING THE DISTRIBUTIONS

We model p(y |x0) and p(r | q, y) using a simple recurrent neural network (SRU; Lei et al., 2018)
encoder enc(·) with parameters ψ. We use the same encoder to encode all texts. Both probability
distributions are computed using the scoring function S(u, v) = enc(u)>enc(v), where u and v
are two pieces of text that are scored.

The probability of predicting the label y given an initial query x0 is:

p(y |x0) =
exp(S(y, x0))∑

y′∈Y exp(S(y′, x0))
.

The probability of an answer r given a question q and label y is a linear combination of the observed
empirical distribution p̂(r | q, y) and a parameterized estimate p̃(r | q, y):

p(r | q, y) = λ · p̂(r | q, y) + (1− λ) · p̃(r | q, y) ,

where λ ∈ [0, 1] is a hyper-parameter. We use the question-answer annotations for each label y to
calculate the empirical distributions to estimate p̂(r | q, y). For example, in the FAQ task, we collect
multiple user responses for each label and question pair, and average across annotator answers to
estimate p̂ (Section 5). The second term p̃(r | q, y) is:

p̃(r | q, y) =
exp(w · S(q̄#r, y) + b)∑

r′∈R(q) exp(w · S(q̄#r′, y) + b)
,
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where w, b ∈ R are scalar parameters and q̄#r is a concatenation of the tag of the question q
and the r. Because we do not collect sufficient annotations to cover every label-question pair, the
combination of the two terms provides a smoothing of the observed counts that leverages the learned
encoder through the function S(·).

The parameters w and b are randomly initialized and estimated using reinforcement learning while
training the policy controller (Section 4.5). We estimate the enc(·) parameters ψ by pre-training
using a dataset, {(y(i), X(i), {(qj , rj)}M

(i)

j=1 )}Ni=1, where each target label y(i) is paired with a set of

annotated initial queries X(i) and question-answer pairs {(qj , rj)}M
(i)

j=1 . We use this data to create a
set of text pairs (u, v) to train the scoring function S(·). For each label y(i), we create pairs (x0, y

(i))
with all its initial queries x0 ∈ X(i). We also create (q̄#r, y(i)) for each question-answer pair (q, r)
associated with the label y(i). We perform gradient descent to minimize the cross-entropy loss:

L(ψ) = −S(u, v) + log
∑
v′

exp(S(u, v′)) .

The second term requires summarition over all v-s, which are all the labels in Y . We approximate
this sum using negative sampling that replaces the full set Y with a sampled subset in each training
batch.

4.4 USER SIMULATOR

The user simulator provides initial queries to the system and emulates user responses to the sys-
tem initiated clarification questions. The simulator is based on two distributions p′(x0 |y) and
p′(r | q, y), where x0 is an initial query, y is a target label, q is a system question, and r is a
user response. We estimate the two distributions using smoothed empirical counts from held-out
set {(y(i), X(i), {(qj , rj)}M

(i)

j=1 )}N ′

i=1 of tuples of goal y(i), set of initial queries X(i), and question-
answer pairs (qj , rj). While this data is identical in structure to our training data, we keep it separate
from the data used to estimate the scoring function S(·) (Section 4.3).

At the beginning of an interaction, the simulator selects a target label y, and samples from the
associated query set a query x0 to start the interaction. Given a system clarification question qt at
turn t, the simulator responds with an answer rt ∈ R(qt) by sampling from a belief probability
p′(rt | qt, y). Sampling provides natural noise to the interaction, and our model has no knowledge
of p̃. The interaction ends when the system returns a target. This setup is flexible in that the user
simulator can be easily replaced or extended by real human, and the system can be further trained
with the human-in-the-loop setup.

4.5 POLICY CONTROLLER

The policy controller decides at each turn t to either select another question to query the user or
to conclude the interaction. This provides a trade-off between exploration by asking questions and
exploitation by returning the highest probability classification label. The policy controller f(·, ·; θ)
is a feed-forward network parameterized by θ that takes the top-k probability values and current turn
t as input state. It generates two possible actions, STOP or ASK. When the action is ASK, a question
is selected to maximize the information gain, and when the action is STOP, the highest probability
label y is returned using arg maxy∈Y p(y |xt).

We tune the policy controller using the user simulator (Section 4.4). Algorithm 1 describes the
training process. During learning, we use a reward function that provides a positive reward for
predicting the correct target at the end of the interaction, a negative reward for predicting the wrong
target, and a small negative reward for every question asked. We learn the policy controller f(·, ·; θ),
and fine-tune p(r | q, y;ψ) by back-propagating through the policy gradient. We keep the enc(·)
parameters fixed during this process.
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Algorithm 1: Full model training
Initialize text encoder, model for p(y |x0), and user simulator SIM
for episode = 1 .. M do

Sample (x0, ŷ) from dataset
for t = 1 .. T do

Compute p(y |xt−1) (Equation 2)
action = f(p(y |xt−1), t− 1; θ)
if action is STOP then

break
else if action is ASK then

qt = argmaxqt∈Q IG(Y ; qt |xt−1)
rt = SIM(qt, ŷ)

end
y = argmaxy p(y |xt)
reward = SIM(y, ŷ)
Update w, b, θ using policy gradient

end

5 DATA COLLECTION

We design a crowdsourcing process that does not require collecting interaction data, and use it to
collect data for the FAQ domain using Amazon Mechanical Turk2. For the Birds domain, we re-
purpose an existing dataset. We collect initial queries and tags for each FAQ document.

Initial Query Collection We ask workers to consider the scenario of searching for an FAQ sup-
porting document using an interactive system. Given a target FAQ, we ask for an initial query they
would provide such a system. The set of initial queries collected for each document y(i) is X(i). We
encourage workers to provide incomplete information intentionally. This results in natural diverse
utterances that enable learning a robust system. For example, given a target FAQ “How do I sign up
for Sprint Global Roaming?”, a worker may write “Travelling out of country”. The workers do not
engage in a multi-round interactive process. This allows for cheap and scalable collection.

Tag Collection We collect natural language tag annotations for the FAQ documents. First, we
use domain experts to define the set of possible free-form tags. The tags are not restricted to a pre-
defined ontology and can be a phrase or a single word. The tags describe the topic of the document.
We heuristically remove duplicate tags to finalize the set. We use a small set of deterministic,
heuristically designed templates to convert tags into questions. For example, tag “international
roaming” will be converted into question “Is it about international roaming?”. As part of the post-
processing steps, an experts puts each tag into one of the binary or mutli-choice category, based on
the nature of it template-generated question. We then use non-experts to associate relevant tags to
the FAQ documents. For binary tags, we show the workers a list of ten tags for a given target as well
as an “none of the above” option. Annotating all target-tag combinations is excessively expensive
and most pairings are negative. We rank the tags based on the relevance against the target using S(·)
and show only top-50 to the workers. For multi-choice tags, we show the workers a list of possible
answers to a tag generated question for a given FAQ. The workers need to choose one answer that
they think best applies. They also have the option of choosing “not applicable”. We provide more
data collection statistics in Appendix A.1.

6 EXPERIMENTAL SETUP

Task I: FAQ Suggestion We use the FAQ dataset from Shah et al. (2018). The dataset contains
517 troubleshooting documents crawled from Sprint technical website. In addition, we collect 3, 831
initial queries and 118, 640 tag annotations using the setup described in Section 5. We split the data
into 310/103/104 documents as training, development, and test sets. Only the queries and tag
annotations of the 310 training documents are used for pre-training and policy learning. We use

2https://www.mturk.com/
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the queries and tag annotations of the development and test documents for evaluation only. The
classification targets contain all 517 documents during evaluation3.

Task II: Bird Identification Our second set of experiments use the Caltech-UCSD Birds (CUB-
200) dataset Wah et al. (2011). The dataset contains 11, 788 bird images for 200 different bird
species. Each bird image is annotated with a subset of 27 visual attributes and 312 attribute val-
ues pertaining to the color or shape of a particular part of the bird. We take attributes with value
count less than 5 as categorical tag (8 categorical questions) and the rest as binary tag (279 binary
questions). In addition, each image is annotated with 10 image captions describing the bird in the
image Reed et al. (2016). Since each image often contains only only partial information about the
bird species, the data is naturally noisy and provides challenging user scenarios. In our experiments,
we use the image captions as user initial queries and bird class names as targets. We do not use the
images of the dataset for modeling, and only as the user scenarios during human evaluation.

Baselines We compare our full model (OURS) against the following baseline methods to isolate
and evaluate of our model components: (a). NO INTERACT: The best classification target is pre-
dicted using only the initial query, according to belief distribution p(y |x0). We consider two possi-
ble implementations. The first one is BM25, a common keyword based scoring model for retrieval
methods Robertson & Zaragoza (2009). The second implementation is our neural model described
in Section 4.3. (b). RANDOM INTERACT: At each turn, a random question is chosen and presented
to the user. After T turns the best target is chosen according to the final belief p(y |xT ). (c) STATIC
INTERACT: Use the same maximum information criterion to pick questions but without conditioning
on the initial query, similar to (Utgoff, 1989; Ling et al., 2004)

We also consider several variants of our full model. The first two variants replace the policy con-
troller with two termination strategies using either a threshold on p(y |xt) or interact only up to a
predefined number of turns T . The third variant disables the parameterized estimator p̂(r | q, y) by
setting λ as 1.

Evaluation Given the user simulator, we evaluate the classification performance of our model and
all baselines using Accuracy@k, which is the percentage of time the correct target appears among
the top-k predictions of the model. In addition, we conduct human evaluation by asking annotators
to interact with our model or baseline methods through a Web based interactive interface. Each
interaction session starts with presenting the annotator an user scenario (e.g a bird image or an issue
with your phone). Once the system returns the final target, the annotator is asked to provide a few
ratings of the interaction, such as rationality – do you feel being understood by the system?. We
present more details of the human evaluation in Appendix A.4.

Implementation Details The policy controller receives three different rewards – a positive reward
for correctly returning the correct target (rp = 20), a negative reward for providing the wrong target
(rn = −10) and a small negative reward for each turn used (ra = −1, . . . ,−5). We report the
averaged results over 3 independent runs for each model and baseline. More details about the model
implementation and training procedure can be found in Appendix A.2.

FAQ Suggestion Bird Identification

Acc@1 Acc@3 Acc@1 Acc@3

NO INTERACT (BM25) 26% 31% N.A. N.A.
NO INTERACT (neural) 38% 61% 23% 41%
RANDOM INTERACT 39% 62% 25% 44%
STATIC INTERACT 46% 66% 29% 50%
OURS 79% 86% 49% 69%

Threshold 72% 82% 40% 59%
Fixed Turn 71% 81% 39% 56%
with λ = 1 66% 71% 40% 60%

Table 1: Performance of our system against various baselines, which are evaluated using Accu-
racy@{1, 3}. For all interacting baselines, 5 clarification questions are used.

3The target classes from development and test sets are hidden to the model during training. This split is set
up to ensure the model to generalize to newly added or unseen FAQs.
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Figure 2: Accuracy@1 (y-axis) against turns of interactions (x-axis) for FAQ suggestion (left) and
Bird identification (right) tasks

FAQ Suggestion Bird Identification

Count Acc@1 rationality Count Acc@1 rationality

OURS 60 59% 0.81 60 45% 0.95
OURS (Fixed Turn) 55 56% 0.45 55 37% 0.55
STATIC INTERACT 55 45% 0.41 55 28% 0.85

Table 2: Human evaluation results. Count is the total number of interaction examples. The system
is evaluated with Accuracy@1 and the rationality score ranging from −2 (strongly disagree) to 2
(strongly agree).

7 RESULTS

Simulator Evaluation Table 1 shows the performance of our model against the baselines on both
tasks while evaluating against user simulator. The NO INTERACT (neural) baseline achieves a Ac-
curacy@1 of 36% and 23% on FAQ and Birds domains, respectively. The NO INTERACT (BM25)
baseline performs worst. The RANDOM INTERACT baseline and the STATIC INTERACT baseline
barely improves the performance from interactions, illustrating the challenge of building an effec-
tive interactive model. In contrast, our model and its variants obtain substantial gain in accuracy
given a few number of interactions. Our full model achieves a Accuracy@1 of 78% and 49% using
less than 5 turns, on FAQ and Birds respectively, outperforming the NO INTERACT (neural) baseline
by an absolute number of 40% and 26%. The two baselines with alternative termination strategies
underperform the full model, indicating the effectiveness of policy controller trained with reinforce-
ment learning. The model variant with λ = 1, which has fewer probability components leveraging
natural language than our full model, achieves much worse Accuracy@1. This result, together with
the fact that our model outperforms the STATIC INTERACT baseline, confirms the importance of
modeling natural language for efficient interaction.

Figure 2 shows how model accuracy with different values of the turn penalty in the reward. For
the threshold model baseline, we show performance for different thresholds, and for the fixed-turn
baseline we show performance for different number of turns. Interactions with our full model with
either the policy controller or threshold strategy vary in length (i.e., number of turns) depending on
the interaction progress. We report an averaged number of turns across multiple runs for these two
models. With one clarification question, we achieve a relative accuracy boost of 40% and 65% for
FAQ suggestion and bird identification over no-interaction baselines, indicating the value of human
feedback in classification tasks.

Human Evaluation Table 2 shows the human evaluation results of our full model and two base-
lines on the FAQ and Birds tasks. Each of the model variants uses 3 interaction turns on average, and
all three models improve the classification result after the interaction. Our full model obtains the best
performance, achieving 64% and 64% for Accuracy@1 on FAQ suggestion and bird identification
tasks. In addition, users rate our full as more rational. The human evaluation demonstrates that our
model handles interaction with real users effectively and that the interaction improves classification
accuracy, despite training with only non-interactive data. Appendix A.4 includes additional details
of the human evaluation and example interactions.
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8 CONCLUSION

We propose an approach for interactive classification, where users can provide under-specified nat-
ural language queries and the system can inquire missing information through a sequence of simple
binary questions. Our method uses information theory to select the best question at every turn, and
a lightweight policy to efficiently control the interaction. We show how we can bootstrap the system
without any interaction data. We demonstrate the effectiveness of our approach on two tasks with
different characteristics. Our results show that our approach outperforms multiple baselines by large
margin. In addition, we provide a new annotated dataset for future work on bootstrapping interactive
classification systems.
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A APPENDICES

A.1 DATA COLLECTION

Query collection qualification One main challenge for the collection process lies within famil-
iarizing the workers with the set of target documents. To make sure we get good quality annotation,
we set up a two-step qualification task. The first one is to write paraphrase with complete informa-
tion. After that, we reduce the number of workers down to 50. These workers then generate 19, 728
paraphrase queries. During the process, the workers familiarize themselves with the set of docu-
ments. We then post the second task (two rounds), where the workers try to provide initial queries
with possibly insufficient information. We select 25 workers after the second qualification task and
collect 3, 831 initial queries for the second task.

Attribute Collection Qualification To ensure the quality of target-tag annotation, we use the pre-
trained model to rank-order the tags and pick out the highest ranked tags (as positives) and the lowest
ranked tags (as negatives) for each target. The worker sees in total ten tags without knowing which
ones are the negatives. To pass the qualifier, the workers need to complete annotation on three targets
without selecting any of the negative tags.

Tag Ranks
1-10 11-20 21-30 31-40 41-50

Mean # of tags 3.31 1.45 0.98 0.61 0.48
N.A. (%) 1.9 30.7 43.6 62.1 65.2
Mean κ 0.62 0.54 0.53 0.61 0.61

Table A.1: Target-tag annotation statistics. We show five sets of tags to the annotators. The higher
ranked ones are more likely to be related to the given target. The row mean # tags is the mean
number of tags that are annotated to a target, N.A. is the percentage of the tasks are annotated as
”none of the above”, and mean κ is the mean pairwise Cohen’s κ score.
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Figure A.1: Accumulated number of tags assigned to the targets (y-axis) by AMT against tag ranking
(x-axis). The ranking indicates the relevance of the target-tag pairs from the pre-trained model. The
curve plateaued at rank 50 suggests that the lower ranked tags are less likely to be assigned to the
target by the crowdsourcing workers.

A.2 IMPLEMENTATION DETAILS

Learning Components Here we describe the detailed implementation of the text encoder and the
policy controller network. We use a single-layer bidirectional Simple Recurrent Unit (SRU) as the
encoder for the FAQ suggestion task and two layer bidirectional SRU for bird identification task.
The encoder uses pre-trained fastText Bojanowski et al. (2016) word embedding of size 300 (fixed
during training), hidden size 150, batch size 200, and dropout rate 0.1. The policy controller is a
two layer feed-forward network with hidden layer size of 32 and ReLU activation function. We
use Noam learning rate scheduler with initial learning rate 1e − 3, warm-up step 4, 000 and Noam
scaling factor 2.0. The policy controller is a 2 layer feed-forward network with a hidden layer of 32
dimensions and ReLU activation. The network takes the current step and the top-k values of belief
probabilities as input. We choose k = 20 and allow a maximum of 10 interaction turns.

A.3 ANALYSIS

Text Encoder Training We use initial queries as well as paraphrase queries to train the encoder,
which has around 16K target-query examples. The breakdown analysis is shown in Table A.2. To
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Text Input Init Query Init Query + Tags Init + Paraphrase Query Full Model
init query tags Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3 Acc@1 Acc@3

3 7 0.28 0.47 0.32 0.51 0.35 0.60 0.38 0.61
7 3 0.31 0.50 0.57 0.79 0.56 0.74 0.70 0.87
3 3 0.36 0.58 0.55 0.79 0.63 0.81 0.76 0.91

Table A.2: Comparison of the suggestion modules trained with different training data. Each model
is evaluated on three different tasks. First, use initial queries to predict targets. Second, use all
attributes tags to predict targets; third, use both initial queries and tags as text input to predict targets.
Each model is evaluated on Accuracy@{1, 3}.

see the effectiveness of the tag in addition to initial query, we generate pseudo-queries by combining
existing queries with sampled subset of tags from the targets. This augmentation strategy is shown
to be useful to improve the classification performance.

Policy Controller Learning Finally, Figure A.2 shows the learning curves of our model with the
policy controller trained with different turn penalty ra ∈ {−0.5,−1,−3}. We observe interesting
exploration behaviors during the first 1, 000 training episodes, shown in the middle and right plots
of Figure A.2. The models achieve relatively stable recall numbers after the early exploration stage.
As expected, the three runs converge to using different number of expected turns due to the choice
of different ra values.

0 1000 2000 3000 4000
0

2

4

6

8

Accumulative Reward

0 1000 2000 3000 4000
0

2

4

6

8

Average Turns

0 1000 2000 3000 4000

0.3
0.4
0.5
0.6
0.7
0.8

Recall@1

ra=-0.5
ra=-1
ra=-3

Figure A.2: Learning curves of our full model. We show accumulative reward (left), interaction
turns (middle), and Accuracy@1 (right) on the test set, where x-axis is the number of episodes run
(400 trials per episode). The results are compared on different turn penalty ra.

A.4 HUMAN EVALUATION

Each interaction session starts with presenting the annotator an user scenario (e.g a bird image or
an issue with your phone). The annotator inputs an initial query accordingly and then answers
follow-up questions selected by the system.

FAQ Suggestion We evaluate prediction accuracy, system rationality, and the number of counts by
letting the system interact with human judges. We design user scenario for each target to present to
the worker. At the end of each interaction, the predicted FAQ and the ground truth will be presented
to the user as shown in the top right panel in Figure A.3. The user needs to answer the following
questions: “How natural is the interaction?” and “Do you feel understood by the system during
the interactions?” on the scale of −2 (strongly disagree) to 2 (strongly agree), which we record as
naturalness and rationality in Table A.4. Our full model performs best on Accuracy@1, naturalness,
and rationality. We show human evaluation examples in Table A.3.

Bird Identification The interface for bird identification task is similar to the FAQ suggestion task.
Instead of presenting a scenario, we show a bird image to the user. The user needs to describe the
bird to find out its category, which is analogous to writing an initial query. We allow the user to
reply “not visible” if part of the bird is hidden or occluded. With such reply, the system stops asking
attributes from the same label group. At the end of the interaction, the predicted and ground-truth
bird images along with their categories are presented to the user as shown in the bottom right panel
in Figure A.3. Again, the user needs to fill out a similar questionnaire as in FAQ suggestion task. The
bird identification task is very challenging due to its fine-grained categories, where many bird images
look almost identical while belonging to different classes. Our full system improves Accuracy@1
from 20% to 45% against non-interactive baselines after less than 4 turns of interaction. Besides
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U: How can I text my friends house phone?
S: Text message to landline?
U: Yes.
S: Do you want to send or receive text?
U: Yes.
S: Please read: How do I send a text message to landline?

U: I’m in sprint’s one up and want to upgrade my phone.
S: Do you want annual upgrade option?
U: Yes.
S: Do you want to exercise an option?
U: Yes.
S: Please read: I am enrolled in Sprint One Up. How do I exercise my annual upgrade option?

U: How does hotspot affect battery.
S: Are you using mobile hotspot?
U: Yes.
S: Please read: Does using my phone as a mobile Wi-Fi hotspot drain my battery?

Table A.3: Examples of user interactions for FAQ suggestion human evaluation.

Dataset Models Count Initial Acc@1 Final Acc@1 Naturalness Rationality

FAQ
OURS 142 30% 64% 0.4 0.25

OURS(Fixed Turn) 43 30% 54% -0.17 -0.14
STATIC INTERACT 29 28% 35% 0.03 -0.03

CUB
OURS 48 21% 45% 0.21 0.60

OURS(Fixed Turn) 24 13% 26% -0.50 -0.60
STATIC INTERACT 29 25% 29% 0.1 0 -0.20

Table A.4: Human evaluation results on FAQ and CUB dataset on our proposed model and several
baslines. The three FAQ systems ask 2.8, 3 and 3 turns of questions, respectively. The three CUB
systems ask 3.3, 4 and 4 turns of questions. The system is evaluated with both on performance and
user experience. Performance include the initial and final Accuracy@1. The user experience score
include both naturalness and rationality for both task. We also add human rated correctness for bird
identification task.

Accuracy@1, we also study cases where human judges consider the predicted image to be almost
identical to the true image even if the predicted class is incorrect. For this human rated Accuracy@1
(correctness), our system reaches to 75%. To better understand the task and the model behavior, we
show the confusion matrix of the final model prediction after interaction in Figure A.4. In the 200
bird classes, there are 21 different kinds of sparrows and 25 different warbler. Those fine-grained
bird classes identification induces most model errors. Figure A.5 show how the confusion matrix
change, adding the interactions. The model makes improvement in distinct and also similar bird
types.
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Groundtruth 

This is a little 

Groundtruth 

Figure A.3: User interface for FAQ suggestion task (top) and bird identification (bottom) tasks. Left
panel shows the interface at the beginning of the interaction and the right panel shows the inter face
at the end of the interaction
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harris sparrow 
brewer sparrow 

fox sparrow 
savannah sparrow 

nelson sharp tailed sparrow 
field sparrow 

black throated sparrow 
chipping sparrow 

white crowned sparrow 
white throated sparrow 

seaside sparrow 
baird sparrow 

house sparrow 
le conte sparrow 
henslow sparrow 

vesper sparrow 
tree sparrow 

clay colored sparrow 
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lincoln sparrow 
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cape may warbler 
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yellow warbler 
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chestnut sided warbler 
bay breasted warbler 
palm warbler 
myrtle warbler 
cerulean warbler 
orange crowned warbler 
prairie warbler 
prothonotary warbler 
black and white warbler 
black throated blue warbler 
kentucky warbler 
nashville warbler 
worm eating warbler 
canada warbler 
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swainson warbler 
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tennessee warbler 
blue winged warbler

Figure A.4: Confusion matrix of our final output for bird identification task.
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Figure A.5: Confusion matrix difference between the initial query with and without the interactions.
We desire high value in the diagonal part and low value elsewhere.
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