
Under review as a conference paper at ICLR 2020

REINFORCED GENETIC ALGORITHM LEARNING FOR
OPTIMIZING COMPUTATION GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a deep reinforcement learning approach to minimizing the execution
cost of neural network computation graphs in an optimizing compiler. Unlike
earlier learning-based works that require training the optimizer on the same graph
to be optimized, we propose a learning approach that trains an optimizer offline
and then generalizes to previously unseen graphs without further training. This
allows our approach to produce high-quality execution decisions on real-world
TensorFlow graphs in seconds instead of hours. We consider two optimization
tasks for computation graphs: minimizing running time and peak memory usage.
In comparison to an extensive set of baselines, our approach achieves significant
improvements over classical and other learning-based methods on these two tasks.

1 INTRODUCTION

Deep Learning frameworks such as MXNet (Chen et al., 2015), PyTorch (Paszke et al., 2017),
and TensorFlow (TensorFlow Authors, 2016a) represent neural network models as computation
graphs. Efficiently executing such graphs requires optimizing discrete decisions about how to map
the computations in a graph onto hardware so as to minimize a relevant cost metric (e.g., running
time, peak memory). Given that execution efficiency is critical for the success of neural networks,
there is growing interest in the use of optimizing static compilers for neural network computation
graphs, such as Glow (Rotem et al., 2018), MLIR (MLIR Authors, 2018), TVM (Chen et al., 2018a),
and XLA (XLA team, 2017).

Here we consider the model parallelism setting where a computation graph can be executed using
multiple devices in parallel. Nodes of the graph are computational tasks, and directed edges denote
dependencies among them. Unlike traditional static compilers which typically optimize each type of
decision variables individually in a separate compiler pass, we focus on jointly optimizing multiple
decision types. Specifically, we aim to jointly optimize placement, i.e., which nodes are executed on
which devices, and schedule, i.e., the node execution order on each device. We consider two different
problems: 1) minimize running time, subject to not exceeding device memory limits, and 2) minimize
peak memory usage. In the optimization literature, such problems are studied under the class of task
scheduling, which is known to be NP-hard in typical settings (Sinnen, 2007; Kwok & Ahmad, 1999).

In a production setting, a general-purpose static compiler needs to 1) produce solutions of acceptable
quality fast, even on large graphs (e.g., thousands of nodes) and decision spaces, and 2) handle diverse
graphs from various types of applications, neural network architectures, and users. In this work
we consider learning an optimizer that satisfies these requirements. Crucially, we aim to learn an
optimizer that generalizes to a broad set of previously unseen computation graphs, without the need
for training on such graphs, thus allowing it to be fast at test time.

Previous works on learning to optimize model parallelism decisions (Mirhoseini et al., 2017; 2018;
Addanki et al., 2018; 2019) have not considered generalization to a broad set of graphs, and joint
optimization of multiple decision types. In (Mirhoseini et al., 2017; 2018), learning is done from
scratch for each computation graph and for placement decisions only, requiring hours (e.g., 12 to 27
hours per graph (Mirhoseini et al., 2017)). This is too slow to be broadly useful in a general-purpose
production compiler. We propose an approach that takes only seconds to optimize similar graphs.
Addanki et al. (2018; 2019) also optimize placement decisions only. In concurrent work to ours,
Addanki et al. (2019) shows generalization to unseen graphs, but they are generated artificially by

1

Under review as a conference paper at ICLR 2020

EvaluationOutputInput BRKGAGraph Neural Net Policy

Placement

Schedule
Mutants

Elites

Elites

crossover copy
Performance

Model

Peak
Memory /
Running

Time

Fig. 1: Overview of our approach. The Biased Random Key Genetic Algorithm (BRKGA) is used to
optimize execution decisions for a computation graph (e.g., placement and scheduling of nodes) with
respect to a cost metric (e.g., running time, peak memory) computed using the performance model.
BRKGA requires proposal distributions for each node in the graph to generate candidate solutions
in its search loop. The default choice is agnostic to the input graph: uniform distribution over [0, 1]
at all nodes. We use a graph neural network policy to predict node-specific non-uniform proposal
distribution choices (parameterized as beta distributions over [0, 1]). BRKGA is then run with those
choices and outputs the best solution found by its iteration limit. By controlling the non-uniformity of
the distributions, the policy directs how BRKGA’s search effort is allocated such that a better solution
can be found with the same search budget.

architecture search for a single learning task and dataset. In contrast, we collect real user-defined
graphs spanning a broad set of tasks, architectures, and datasets.

The key idea of our approach (figure 1) is to learn a neural network that, conditioned on the input
graph to be optimized, directs an existing optimization algorithm’s search such that it finds a better
solution in the same search budget. We choose the Biased Random-Key Genetic Algorithm (BRKGA
(Gonçalves & Resende, 2011)) as the optimization algorithm after an extensive evaluation of several
choices showed that it gives by far the best speed-vs-quality trade-off for our application. BRKGA
produces good solutions in just a few seconds even for real-world TensorFlow graphs with thousands
of nodes, and we use learning to improve the solution quality significantly at similar speed. We
train a graph neural network (Battaglia et al., 2018) to take a computation graph as input and output
node-specific proposal distributions to use in the mutant generation step of BRKGA’s inner loop.
BRKGA is then run to completion with those input-dependent distribution choices, instead of input-
agnostic default choices, to compute execution decisions. The distributions are predicted at each
node, resulting in a high-dimensional prediction problem. There is no explicit supervision available,
so we use the objective value as a reward signal in a contextual bandit approach with REINFORCE
(Williams, 1992). Our approach, “Reinforced Genetic Algorithm Learning” (REGAL), uses the
network’s ability to generalize to new graphs to significantly improve the solution quality of the
genetic algorithm for the same objective evaluation budget.

We follow the static compiler approach of constructing a coarse static cost model to evaluate execution
decisions and optimizing them with respect to it, as done in (Addanki et al., 2018; Jia et al., 2018).
This is in contrast to evaluating the cost by executing the computation graph on hardware (Mirhoseini
et al., 2017; 2018). A computationally cheap cost model enables fast optimization. It is also better
suited for distributed training of RL policies since a cost model is cheap to replicate in parallel actors,
while hardware environments are not. Our cost model corresponds to classical NP-hard scheduling
problems, so optimizing it is difficult. In this paper we focus fully on learning to optimize this cost
model, leaving integration with a compiler for future work.

We structure the neural network’s task as predicting proposal distributions to use in the search
over execution decisions, rather than the decisions themselves directly. Empirically we have found
the direct prediction approach to be too slow at inference time for our application and generalizes
poorly. Our approach potentially allows the network to learn a more abstract policy not directly
tied to detailed decisions that are specific to particular graphs, which may generalize better to new
graphs. It can also make the learning task easier as the search may succeed even with sub-optimal
proposal distribution predictions, thus smoothening the reward function and allowing the network to
incrementally learn better proposals. The node-specific proposal distribution choices provide a rich

2

Under review as a conference paper at ICLR 2020

set of knobs for the network to flexibly direct the search. Combining learning with a search algorithm
has been shown to be successful (e.g., (Silver et al., 2017; 2018)), and our work can be seen as an
instance of the same high-level idea.

This paper makes several contributions:

• We are the first to demonstrate learning a policy for jointly optimizing placement and
scheduling that generalizes to a broad set of real-world TensorFlow graphs. REGAL
significantly outperforms all baseline algorithms on two separate tasks of minimizing
runtime and peak memory usage (section 5.3) on datasets constructed from 372 unique
real-world TensorFlow graphs, the largest dataset of its kind in the literature and at least an
order of magnitude larger than the ones in previous works (Mirhoseini et al., 2017; 2018;
Chen et al., 2018b; Addanki et al., 2018; 2019).

• We use a graph neural network to predict mutant sampling distributions of a genetic algo-
rithm, specifically BRKGA, for the input graph to be optimized. This directs BRKGA’s
search in an input-dependent way, improving solution quality for the same search budget.

• We compare extensively to classical optimization algorithms, such as enumerative search,
local search, genetic search, and other heuristics, and analyze room-for-improvement in the
objective value available to be captured via learning. Both are missing in previous works.

2 RELATED WORK

Learning to optimize computation graphs: AutoTVM (Chen et al., 2018b) applies learning to the very
different problem of optimizing low-level implementations of operators in a tensor program, while
we focus on optimizing higher-level decisions such as placement and scheduling of ops. Mao et al.
(2019) use graph neural nets and RL to learn a scheduling policy for data processing jobs on clusters.
These works are conceptually similar to ours in their use of learning, applied to a different domain.

Learning for combinatorial optimization: Our work is an instance of applying learning for combinato-
rial optimization (Bengio et al., 2018). Previous works on learning graph combinatorial optimization
algorithms (e.g., Li et al. (2018); Khalil et al. (2017)) have focused on problems such as Minimum
Vertex Cover, Maximum Clique, Maximum Independent Set, etc. The task scheduling problem we
consider is significantly different in that the objective value is a more complex function on node-level
decisions. Also, we focus on large-scale, real-world TensorFlow graphs, while e.g., Khalil et al.
(2017) uses small-scale, synthetic graph distributions.

Learning a proposal distribution for stochastic search: Bunel et al. (2017) learns a policy for pre-
dicting instance-dependent proposal distributions to be used in the stochastic optimizer STOKE
(Schkufza et al., 2013) for superoptimizing programs. However, it uses handcrafted instance fea-
tures and shows results on relatively simple, small programs. In contrast, we automatically learn
the instance representations and show results on real-world graphs. An earlier work by Paige &
Wood (2016) similarly learns a neural network to predict input-dependent proposal distributions for
sequential Monte Carlo search for inference in a graphical model.

Optimization without learning: Parallel task scheduling (Sinnen, 2007; Kwok & Ahmad, 1999) is
a classical problem for scheduling ops in a computational graph to minimize runtime. Learning is
not traditionally a part of the approaches proposed in this literature. Jia et al. (2018) develops a
simulation-based optimizer for deep learning computation graphs that uses a larger decision space by
combining data, model, and attribute parallelism. Our approach can potentially be extended to such
larger decisions spaces to achieve even bigger improvements in execution cost.

3 BACKGROUND

Figure 1 shows an overview of our approach. Given an input graph to optimize, instead of applying
BRKGA directly with the default uniform distribution at all nodes, a graph neural network predicts
beta distribution choices at each node. BRKGA is run with these choices to optimize placement and
scheduling decisions with respect to the objective defined by the performance model. We first explain
the performance model and BRKGA in this section, and the learning component in the next.

3

Under review as a conference paper at ICLR 2020

3.1 PERFORMANCE MODEL

A computation graph has a set of ops to run. Each op produces zero or more tensors and requires zero
or more tensors as input. The runtime of each op is known and fixed (e.g., given by a simulator Jia
et al. (2018)). The memory use of each tensor is known (an assumption that holds in static compilers
like XLA). We assume a collection of d homogeneous devices that have separate local memory and
can run at most one op at a time. An op can run only when its input tensors are present in the local
memory. Tensors can be transferred across devices by synchronous (blocking) transfers. Tensors are
freed from local memory after all local consumers have run.

In this setting, we consider the problem of finding an assignment of ops to devices and an overall
schedule such that each op is run once with the objectives of (1) minimizing the peak local memory
use across devices (e.g., to find a feasible way to run a large computation graph), or (2) minimizing
the runtime subject to a constraint on the peak memory used on any device.

The performance model does not consider rematerialization of tensors, fragmentation when computing
memory use, and asynchronous transfers between devices. Despite these simplifications, the model
yields slight variants of problems that are known to be NP-hard (Eyraud-Dubois et al., 2015) and
therefore remains a challenging setting in which to study how to learn an optimizer. See section A.4
for more details of the model.

3.2 BIASED RANDOM-KEY GENETIC ALGORITHM

Biased random-key genetic algorithm (BRKGA) is a meta-heuristic framework that has been success-
ful in a wide array of applications for solving hard combinatorial optimization problems (Gonçalves
& Resende, 2011). In BRKGA, chromosomes in a population are encoded as n-dimensional vectors
with entries in [0, 1] for some fixed n. This random-key encoding decouples the application from the
genetic algorithm, specifically the crossover and mutant generation procedures. The goal of BRKGA
is to find the chromosome that maximizes a given fitness function f : [0, 1]n → R.

Our use of BRKGA is standard (see e.g., Gonçalves & Resende (2011)) except in the following
aspect. BRKGA as defined in the literature samples mutant chromosomes from i.i.d. draws from the
uniform distribution over [0, 1]. We generalize BRKGA for instance-specific learning by sampling
from n independent beta distributions, whose parameters can vary by index. Beta flexibly admits
non-uniform distribution choices and also subsumes the uniform choice.

We apply BRKGA as follows. Let d be the number of devices, o the number of ops, and t the
number of tensors. The chromosome encoding a scheduling solution has three distinct parts: (1)
o× d entries specifying op-to-device affinities; (2) o entries specifying scheduling priorities for each
op; (3) t× d entries specifying tensor-to-device priorities for transfers that may be needed. Given a
chromosome, op placements are picked by maximum affinity. Transfer ops are created as implied
by the placements. We then obtain a schedule by performing a topological sort over the ops given
their tensor dependencies, breaking ties by using the corresponding node priorities. When enforcing
a memory constraint, the fitness of a schedule is encoded such that all memory-feasible schedules
have better fitness than infeasible schedules. An example is provided in section A.5.

4 REGAL

4.1 CONTEXTUAL BANDIT FORMULATION

We train a contextual bandit policy that predicts beta distribution choices for each of the nodes of a
computation graph to be used by BRKGA to optimize it. For each round in the bandit setting, first
the context is observed by drawing a computation graph G as an i.i.d. sample from a distribution
D (e.g., a distribution over TensorFlow graphs). G has a set of nodes V and a set of edges E,
with features associated with the nodes and edges. A policy p(a|G) is applied to make a set of
decisions at each node. These decisions, denoted av for each v ∈ V , across all nodes form one action
a = {av∈V }. One decision in a corresponds to playing one arm of the bandit, and specifying the
entire a corresponds to playing several arms together in a single round. This can be viewed as a
combinatorial multi-armed bandit problem (Chen et al., 2013).

4

Under review as a conference paper at ICLR 2020

The action a specifies all the node-specific beta distributions BRKGA needs to optimize placement
and scheduling decisions for G. To enable a policy over discrete choices, we quantize the mean
and variance parameters of the beta distribution. The environment then runs BRKGA with those
distribution choices with a fixed iteration limit. The final objective value is used to compute the
reward. To make the reward values comparable across different graphs, we divide the objective
value oa(G) achieved on a graph G with action a by the objective value os(G) achieved by standard
BRKGA using uniform distributions. Since we want to minimize the objective (e.g., runtime or peak
memory), we define the reward as r(a, G) = − oa(G)

os(G) . So a reward > −1 corresponds to an action
that achieves a better objective value than standard BRKGA on a graph.

We maximize the expected reward L = EG [
∑

a p(a|G)r(a, G)], where EG is an expectation over
graphs in our training set. Learning is done by REINFORCE (Williams, 1992). We added a scalar
baseline b(G) for reducing the variance of the gradient estimates.

4.2 GRAPH NEURAL NETWORK POLICY

From computation graphs, we derive multigraphs with attributed nodes and directed edges. Denote a
multigraph G = (V,E). In our setup, the nodes V correspond 1:1 to the ops. An edge e ∈ E exists
from u to v for each tensor that op v requires that is produced by op u. As a tensor can be required
by multiple ops, the correspondence from edges to tensors may be many to one. Each node v ∈ V
and edge e ∈ E has an attribute vector xv and xe. The attributes contain respective features, e.g.,
sizes of the tensors.

We learn a model that predicts good mutant sampling distributions for BRKGA given this multigraph.
Each node has d+1 independent beta distributions, corresponding to device affinities and scheduling
priorities, whose parameters are represented as a vector av. These are the model’s actions in RL
terms, and our model specifies a distribution over actions a = {av}v∈V for each graph, p(a|G).
Note the action space is different from graph to graph.

We use Graph Neural Networks (GNNs) (Scarselli et al., 2009; Li et al., 2015; Gilmer et al., 2017;
Battaglia et al., 2018) to learn representations for computation graphs. Given a (multi)graph G, a
GNN computes representation vectors hv for each node through an iterative message passing process
as follows:

h
(0)
v = MLPn(xv), he = MLPe(xe)

m
(t)
e = MLPmsg([h

(t)
es ,h

(t)
et ,he]), m

(t)′

e = MLP′msg([h
(t)
es ,h

(t)
et ,he])

h
(t+1)
v = MLPnode

([
h
(t)
v ,
∑
e:et=v

m
(t)
e +

∑
e:es=v

m
(t)′

e

])
,

(1)

where es is the source node of edge e and et is the target node. In our formulation, MLPn and MLPe
are multilayer perceptrons (MLPs) that encode node and edge attributes, MLPmsg and MLP′msg

compute messages along the edges in the edge direction (m(t)
e) and the opposite direction (m(t)′

e),
MLPnode updates node representations and [.] represents flat vector concatenation. After T rounds
of message passing, the representation for each node hv = h

(T)
v will contain information from the

T -hop neighborhood around v in the graph. Given the hv’s, we produce av’s through conditionally
independent predictions, where the prediction for one node v does not depend on the predictions of
other nodes given the computed representations:

p(a|G) =
∏
v

p(av|G) =
∏
v

p(av|MLPa(hv)). (2)

MLPa is shared across all nodes for predicting the parameters of the output distributions. In our
experiments, we quantize the continuous beta distribution parameters and use a discrete action space.
The outputs are therefore categorical, and we use the MLP to compute the logits of the corresponding
softmax distributions. More details are included in section A.6. The baseline is computed using a
separate GNN, where after we obtained the node representations hv , we aggregate across nodes and
compute b(G) as b(G) = MLPb

(
1
|V |
∑
vMLPg(hv)

)
.

5

Under review as a conference paper at ICLR 2020

5 EXPERIMENTAL RESULTS

5.1 TASKS AND DATASETS

We consider two tasks, one is minimizing peak memory and the other is minimizing running time,
both on two homogeneous devices with 16 GiB of memory each and synchronous tensor transfers
with zero cost (zero latency and infinite bandwidth). We train a separate neural network for each
task-dataset pair for the case of two devices.

We have collected a dataset of 372 topologically-unique real-world TensorFlow graphs by mining
machine learning jobs on a company’s internal compute cluster (see A.1.2). These jobs are from
a wide range of production and research use cases. The dataset is split into {train, valid, test} sets
containing {60%, 20%, 20%} graphs, respectively. These sets are disjoint with respect to graph
topology, so at test time the policy needs to generalize to new topologies.

We augment the dataset by applying multiplicative noise to tensor sizes and op running times to
create several variants per graph. Even though the variants of the same graph share the same topology,
they represent different optimization problem instances. We create separate datasets for minimizing
runtime and peak memory. The TF runtime dataset has 16329 training, 5470 validation, and 5266
test graphs. The TF peak memory dataset has 22400 training, 7400 validation, and 7400 test graphs.

For reproducibility, we have released1 a synthetic dataset of computation graphs with 10000 training,
1000 validation, and 1000 test cases. The graph topologies are generated from several classical random
graph models, and the op running times and tensor sizes are sampled from Gaussian distributions
(see A.1.4). On this dataset we minimize running time without a memory constraint (e.g., on two
homogeneous devices with infinite memory).

5.2 BASELINES

Graph Partitioning + Depth First Search (GP+DFS): Combines a graph partitioning (GP) baseline
for device placement to minimize communication across devies and a Depth-First Search heuristic
similar to the one implemented in XLA TensorFlow Authors (2016b) to compute per-device schedules
given placements. This is representative of the XLA compiler’s solution for model parallelism.

Local Search: The method starts with a random placement and schedule and greedily improve it by
moving an op across devices or changing an op’s order in the current schedule.

Graph-As-Sequence Model (GAS): Like Mirhoseini et al. (2017; 2018), we convert the graph into
a sequence using a topological sort and apply a recurrent neural network to predict node-level
distributions to be used by BRKGA. This comparison measures the usefulness of graph structure for
learning.

BRKGA XK: Run BRKGA for X thousand iterations with uniform sampling distributions using
default hyperparameters consistent with Gonçalves & Resende (2011). This comparison measures
the performance of the default version of BRKGA.

Tuned BRKGA: Apply grid search to BRKGA’s hyperparameters on the training set and pick the best.
This represents how well BRKGA performs by customizing it to the distribution of computation
graphs, but without instance-dependent customization.

Instance-dependent Random Search (IDRS): Same as REGAL, but BRKGA is replaced with random
search. This is done by running BRKGA for only one generation using the proposal distributions
computed by the neural network.

Additionally, we use a Constraint Programming (CP) approach with the CP-SAT solver of Google OR-
tools (Google, 2019) to establish a provably global optimum for each computation graph optimization
problem instance by running for up to 24 hours. As an enumerative algorithm, it is generally not
competitive when run only for seconds.

For a fair comparison, we fix the number of performance model evaluations allowed per graph to
be the same across algorithms. (Except GP+DFS, which does not allow fixing it.) Given typical

1
https://drive.google.com/drive/folders/1lxRl1ocsWu-POwbdEY06Mrzq6Ot99j7N

6

https://drive.google.com/drive/folders/1lxRl1ocsWu-POwbdEY06Mrzq6Ot99j7N

Under review as a conference paper at ICLR 2020

Table 1: Comparison of methods on the TensorFlow and Synthetic test sets. Results are averages
over test set graphs. Higher is better for % Improvement over BRKGA5K, and lower is better for %
Gap from best known. Note: CP-SAT, an enumerative algorithm, is run for up to 24 hours only to
establish provably global optima (if possible) for evaluation purposes.

Algorithm

TF Runtime test set TF Peak Memory test set Synthetic Runtime test set
% Improv. % Gap % Improv. % Gap % Improv. % Gap

over from over from over from
BRKGA 5K best known BRKGA 5K best known BRKGA 5K best known

CP-SAT 24hr 15.85% 1.00% -1.48% 8.06% 19.50% 0.00%

GP + DFS -37.32% 66.98% -6.51% 14.77% -55.8% 93.66%
Local Search -1.66% 22.63% 0.63% 7.24% 0.08% 24.60%
BRKGA 5k 0.00% 20.19% 0.00% 7.98% 0.00% 24.63%

Tuned BRKGA 3.20% 16.40% 0.80% 7.11% 3.11% 20.76%
GAS 3.79% 15.24% 0.16% 7.67% 0.80% 23.48%
IDRS -6.87% 28.60% -3.16% 12.39% -12.12% 39.72%

REGAL 7.09% 11.04% 3.56% 4.44% 4.81% 18.57%

TensorFlow graph sizes and compiler running time constraints, we estimate that a budget of 5,000
evaluations is feasible in practice, so we use that in the experiments.

Learning to directly predict a solution: We have explored two more approaches for training a
graph neural network to predict placement and scheduling solutions directly, without BRKGA. We
used supervised learning to train a network to predict BRKGA’s solutions. The best accuracy was
achieved by predicting the solution autoregressively, one variable at a time conditioned on previously
predicted variables. We also used RL to learn a policy with IMPALA (Espeholt et al., 2018) to
optimize the objective value by incrementally predicting the solution one variable at a time, and once
complete, iteratively improving it with a learned local search policy. The inference cost for both
approaches is quadratic in the number of nodes (the graph net is applied a linear number of times, each
with linear cost), while REGAL’s inference cost is linear, making them orders of magnitude slower
than REGAL at test time. An evaluation on a test set of small graphs showed that neither approach
improves on BRKGA5K. Improving the scalability and the generalization of these approaches is left
as future work, and do not present their results here.

5.3 COMPARISON TO BASELINE ALGORITHMS

We use two metrics to compare algorithms. 1) Average percent improvement over BRKGA 5K: For a
given graph, compute the percent improvement in the objective achieved by an algorithm relative
to BRKGA with evaluation limit set to 5,000. BRKGA 5K is a natural reference for measuring the
effect of learning approaches that predict proposal distributions for it. 2) Average percent gap from
best known solution: Compute the best known objective value among all the algorithms. (This will
be found by CP-SAT if it finishes within the time limit.) Compute the percent difference between
an algorithm’s solution and the best known objective value. We report averages over test set graphs.
Training set results are similar and reported in section A.3.

Table 1 compares REGAL to other algorithms on the two TensorFlow test sets and the synthetic dataset.
REGAL outperforms all the baselines on all three tasks. It gives 1.9× and 4.4× bigger improvements
than the next best algorithm on runtime and peak memory minimization tasks, respectively. The
percent improvement over GP + DFS is 44.4% and 10.1% for runtime and peak memory, respectively.
REGAL reduces the average percent gap from the best known solution by about 1.8× with respect to
BRKGA 5K on both TensorFlow test sets, and by about 6× and 3.3× with respect to GP + DFS on
the TensorFlow Runtime and Peak Memory test sets, respectively. (For an XLA user GP + DFS is
the current, albeit weak, state-of-the-art algorithm.) The synthetic test set shows similar results. The
learned policy successfully generalizes to previously unseen graphs, to the extent that a large fraction
of the estimated room for improvement over BRKGA 5K is captured using the same evaluation limit.

To further test the limits of generalization for the policies learned using REGAL, we evaluate them
on XLA graphs from a production compiler team’s internal performance benchmark. XLA uses a
different set of ops from TensorFlow, and the benchmark graphs on average have about an order of

7

Under review as a conference paper at ICLR 2020

30 20 10 0 10 20 30
Percentage improvement over BRKGA 5K

0.0%

3.8%

7.6%

11.4%

15.2%

19.0%

22.8%

26.6%

30.4%

Pe
rc

en
tag

e o
f t

es
t s

et

20 10 0 10 20 30 40 50 60
Percentage improvement over BRKGA 5K

0%

2%

4%

8%

10%

12%

16%

18%

Pe
rc

en
tag

e o
f t

es
t s

et

Fig. 2: Histogram of percent improvements in objective value on the TensorFlow runtime (left) and
peak memory (right) datasets for test graphs on which REGAL is better (green) and worse (red) than
BRKGA. (Ties are omitted from the figure for clarity but are included in the histogram percentage
calculation.)

magnitude more nodes and edges than the TensorFlow graphs in our training set, so this is a difficult
generalization challenge. REGAL achieves 0.58% average runtime improvement over BRKGA 5K
on 94 graphs, and 3.74% average peak memory improvement on 32 graphs. It is promising that
any improvements are possible at all despite training only on TensorFlow graphs, and points to the
possibility of bigger improvements by training directly on XLA graphs.

Optimizer running times: BRKGA 5K takes on average 0.89 seconds on the TensorFlow Peak
Memory test set to optimize a computation graph, while REGAL takes 1.04 seconds. (The times
are similar on the Runtime test set.) Instead of taking hours to compute a solution per graph (e.g.,
Mirhoseini et al. (2017; 2018)), REGAL produces solutions in orders of magnitude less time, while
still being better than all the baselines.

5.4 COMPARING REGAL VS. BRKGA

Figure 2 shows histograms of percent improvements in runtime (left) and peak memory (right)
achieved by REGAL over BRKGA 5K on the test sets. Green bars correspond to graphs on which
REGAL improved over BRKGA 5K, while red bars correspond to graphs on which REGAL was
worse. (Ties have been omitted for clarity.) REGAL matches or beats BRKGA 5K on 87.4% of the
runtime test set, and 88.9% of the peak memory test set. The highest improvement is 26.0% for run
time and 54.3% for peak memory, while the worst regression is 24.0% for run time and 17.9% for
peak memory.

To assess whether the improvements provided by REGAL’s policy generalize to evaluation limits
other than the one for which it was trained, we varied the evaluation limit used by both BRKGA
and REGAL at test time. The results are shown in figure 3. REGAL’s performance improves with
more evaluations, confirming that the policy generalizes to higher evaluation limits. In other words,
there exist node-level choices for the distributions used in BRKGA that perform well regardless of
the evaluation limit, and REGAL learns to predict those choices. This is particularly useful in cases
where the actual evaluation limit to use will be known only at test time, so that the same policy can
be applied without re-training. Interestingly, even with 50,000 evaluations, BRKGA is not able to
match REGAL’s performance with just 5,000 evaluations!

5.5 GRAPH-DEPENDENT POLICY

The RL agents’ actions are instance dependent. The agent that performs the best on the TF Runtime
dataset has a choice of 16 different node placement actions for each node in a graph. For each graph
in the TF Runtime test set, we compute the entropy of the distribution of the node placement actions
taken by the agent and plot a histogram of these entropies in Figure 4(a). The mean of this distribution
is 1.71 nats which implies that the actions are neither uniform random, nor constant, and vary from
graph to graph.

8

Under review as a conference paper at ICLR 2020

0 10 20 30 40 50 60
Evaluation Limit (× 103)

0

2

4

6

8

10

12

Pe
rc

en
tag

e i
m

pr
ov

em
en

t o
ve

r B
RK

GA
 5

K

BRKGA
REGAL

0 10 20 30 40 50 60
Evaluation Limit (× 103)

0

1

2

3

4

5

6

Pe
rc

en
tag

e i
m

pr
ov

em
en

t o
ve

r B
RK

GA
 5

K

BRKGA
REGAL

Fig. 3: Average percent improvement over BRKGA 5K given by REGAL and BRKGA on the
TensorFlow test set for running time (left) and peak memory (right) as the evaluation limit is
increased.

1.0 1.5 2.0
Entropy (nats)

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

0 2 4 8 16 32
Number of message passing layers

0.940

0.938

0.936

0.934

0.932

0.930

0.928

0.926

0.924

Va
lid

ati
on

 re
wa

rd

(a) (b)
Fig. 4: The agent learns to utilize the graph structure. (a) The TF runtime agent picks a diverse set
of actions. This plot shows the histogram of the entropy of the agent’s actions across graphs in the
dataset. (b) This plot shows the best validation reward achieved within a sweep of hyperparameters
for each number of graph message passing rounds T . The performance gets overall better as T
increases, and models with T > 0 perform better than T = 0, which does not utilize the structure.

Furthermore, the agent’s performance overall gets better with more graph message passing iterations
T . Figure 4(b) shows the peak validation reward reached within a hyperparameter sweep for each T
for the TF runtime optimization task. Models that utilize the GNN with message passing (T > 0)
reach higher performance than T = 0 (i.e., ignoring the graph structure).

6 CONCLUSIONS AND FUTURE WORK

By training a graph neural network policy to predict graph-conditional node-level distributions for
BRKGA, REGAL successfully generalizes to new graphs, significantly outperforms all baselines
in solution quality, and computes solutions in about one second on average per TensorFlow test set
graph. REGAL’s speed and generalization make it a strong choice for use in a production compiler
that needs to handle a diverse set of graphs under a limited time budget.

We foresee several extensions. Integrating REGAL into a neural network compiler would allow us to
evaluate the end-to-end gains due to better placement and scheduling decisions. To further improve
REGAL’s own performance, one could use a Mixture of Experts architecture. Given the diversity
of graphs, a mixture model can train specialized sub-models on different types of graphs (e.g.,
convolutional networks, recurrent networks, etc.). Another is to replace BRKGA with alternatives,
e.g., combining learned neural policies with local search.

9

Under review as a conference paper at ICLR 2020

REFERENCES

Ravichandra Addanki, Shaileshh Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mohammad
Alizadeh. Placeto: Efficient progressive device placement optimization. In Workshop on ML for
Systems at NeurIPS 2018, 2018.

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, and Mo-
hammad Alizadeh. Placeto: Learning generalizable device placement algorithms for distributed
machine learning, 2019.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flo-
res Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Çaglar Gülçehre, Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl,
Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pas-
canu. Relational inductive biases, deep learning, and graph networks. CoRR, 2018. URL
http://arxiv.org/abs/1806.01261.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. CoRR, abs/1811.06128, 2018. URL http://arxiv.org/
abs/1811.06128.

Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, and Pushmeet Kohli. Learning
to superoptimize programs. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=r1rz6U5lg.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan, Haichen
Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm:
An automated end-to-end optimizing compiler for deep learning. In OSDI 2018, 4 2018a. URL
https://arxiv.org/abs/1802.04799.

Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. Learning to optimize tensor programs. In Neural Information
Processing Systems 2018, 5 2018b. URL https://arxiv.org/abs/1805.08166.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In Proceedings of the 30th International Conference on Machine Learning,
volume 28 of Proceedings of Machine Learning Research, pp. 151–159, Atlanta, Georgia, USA,
17–19 Jun 2013. PMLR. URL http://proceedings.mlr.press/v28/chen13a.html.

Paul Erdos and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60, 1960.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In Proceedings of the International Conference
on Machine Learning (ICML), 2018.

Lionel Eyraud-Dubois, Loris Marchal, Oliver Sinnen, and Frédéric Vivien. Parallel scheduling of
task trees with limited memory. ACM Trans. Parallel Comput., 2(2):13:1–13:37, June 2015. ISSN
2329-4949. doi: 10.1145/2779052. URL http://doi.acm.org/10.1145/2779052.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

10

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1811.06128
https://openreview.net/forum?id=r1rz6U5lg
https://arxiv.org/abs/1802.04799
https://arxiv.org/abs/1805.08166
http://proceedings.mlr.press/v28/chen13a.html
http://doi.acm.org/10.1145/2779052

Under review as a conference paper at ICLR 2020

José Fernando Gonçalves and Mauricio G. Resende. Biased random-key genetic algorithms for
combinatorial optimization. Journal of Heuristics, 17(5):487–525, October 2011. ISSN 1381-
1231. doi: 10.1007/s10732-010-9143-1. URL http://dx.doi.org/10.1007/s10732-
010-9143-1.

Google. CP-SAT solver. https://developers.google.com/optimization/cp/
cp_solver, 2019. [Online; accessed 21-January-2019].

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism for deep neural
networks. CoRR, 2018. URL http://arxiv.org/abs/1807.05358.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20(1):359–392, 1998. doi: 10.1137/S1064827595287997.

B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291–307, Feb 1970. ISSN 0005-8580. doi: 10.1002/j.1538-
7305.1970.tb01770.x.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 6348–6358. 2017.

Yu-Kwong Kwok and Ishfaq Ahmad. Static scheduling algorithms for allocating directed task graphs
to multiprocessors. ACM Comput. Surv., 31(4):406–471, December 1999. ISSN 0360-0300.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. arXiv preprint arXiv:1511.05493, 2015.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph con-
volutional networks and guided tree search. In S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Infor-
mation Processing Systems 31, pp. 539–548. Curran Associates, Inc., 2018. URL
http://papers.nips.cc/paper/7335-combinatorial-optimization-with-
graph-convolutional-networks-and-guided-tree-search.pdf.

Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili Meng, and Mohammad
Alizadeh. Learning scheduling algorithms for data processing clusters. In Proceedings of the
ACM Special Interest Group on Data Communication, SIGCOMM ’19, pp. 270–288, New York,
NY, USA, 2019. ACM. ISBN 978-1-4503-5956-6. doi: 10.1145/3341302.3342080. URL
http://doi.acm.org/10.1145/3341302.3342080.

Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen
Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement optimization
with reinforcement learning. In Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 2430–2439, 2017. URL
http://proceedings.mlr.press/v70/mirhoseini17a.html.

Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean. A hierarchi-
cal model for device placement. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=Hkc-TeZ0W.

MLIR Authors. Multi-level intermediate representation. https://github.com/tensorflow/
mlir, 2018. Accessed: 2019-05-22.

Brooks Paige and Frank Wood. Inference networks for sequential monte carlo in graphical models.
In Proceedings of the 33rd International Conference on International Conference on Machine
Learning - Volume 48, 2016.

11

http://dx.doi.org/10.1007/s10732-010-9143-1
http://dx.doi.org/10.1007/s10732-010-9143-1
https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/cp/cp_solver
http://arxiv.org/abs/1807.05358
http://papers.nips.cc/paper/7335-combinatorial-optimization-with-graph-convolutional-networks-and-guided-tree-search.pdf
http://papers.nips.cc/paper/7335-combinatorial-optimization-with-graph-convolutional-networks-and-guided-tree-search.pdf
http://doi.acm.org/10.1145/3341302.3342080
http://proceedings.mlr.press/v70/mirhoseini17a.html
https://openreview.net/forum?id=Hkc-TeZ0W
https://github.com/tensorflow/mlir
https://github.com/tensorflow/mlir

Under review as a conference paper at ICLR 2020

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. In International Conference on Machine Learning, pp. 1310–1318, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Summer Deng, Roman Dzhabarov, James Hegeman,
Roman Levenstein, Bert Maher, Nadathur Satish, Jakob Olesen, Jongsoo Park, Artem Rakhov, and
Misha Smelyanskiy. Glow: Graph lowering compiler techniques for neural networks. CoRR, 2018.
URL http://arxiv.org/abs/1805.00907.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. 2013.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan
Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the
game of go without human knowledge. Nature, 550, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018. ISSN 0036-8075. doi:
10.1126/science.aar6404. URL https://science.sciencemag.org/content/362/
6419/1140.

O. Sinnen. Task Scheduling for Parallel Systems. Wiley Series on Parallel and Distributed Computing.
Wiley, 2007. ISBN 9780470121160.

TensorFlow Authors. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
CoRR, abs/1603.04467, 2016a. URL http://arxiv.org/abs/1603.04467.

TensorFlow Authors. hlo_memory_scheduler. https://github.com/tensorflow/
tensorflow/blob/4bfa2359152e9d106c2c20e9fff67643c8578c81/
tensorflow/compiler/xla/service/hlo_memory_scheduler.h#L53, 2016b.
Accessed: 2019-01-25.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440, 1998.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3-4):229–256, 1992.

XLA team. Xla - tensorflow compiled. post in the google developers
blog. http://web.archive.org/web/20170308172654/https://
developers.googleblog.com/2017/03/xla-tensorflow-compiled.html,
2017.

Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy Davis, Jeff Dean,
Sanjay Ghemawat, Tim Harley, Peter Hawkins, Michael Isard, Manjunath Kudlur, Rajat Monga,
Derek Gordon Murray, and Xiaoqiang Zheng. Dynamic control flow in large-scale machine
learning. CoRR, 2018. URL http://arxiv.org/abs/1805.01772.

12

http://arxiv.org/abs/1805.00907
https://science.sciencemag.org/content/362/6419/1140
https://science.sciencemag.org/content/362/6419/1140
http://arxiv.org/abs/1603.04467
https://github.com/tensorflow/tensorflow/blob/4bfa2359152e9d106c2c20e9fff67643c8578c81/tensorflow/compiler/xla/service/hlo_memory_scheduler.h#L53
https://github.com/tensorflow/tensorflow/blob/4bfa2359152e9d106c2c20e9fff67643c8578c81/tensorflow/compiler/xla/service/hlo_memory_scheduler.h#L53
https://github.com/tensorflow/tensorflow/blob/4bfa2359152e9d106c2c20e9fff67643c8578c81/tensorflow/compiler/xla/service/hlo_memory_scheduler.h#L53
http://web.archive.org/web/20170308172654/https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
http://web.archive.org/web/20170308172654/https://developers.googleblog.com/2017/03/xla-tensorflow-compiled.html
http://arxiv.org/abs/1805.01772

Under review as a conference paper at ICLR 2020

0
5

10
15
20
25

TF
 M

em
or

y

Number of nodes Number of edges

0
5

10
15
20
25

TF
 R

un
tim

e

1 10 100 1000 10000
0
5

10
15
20
25
30
35
40

Sy
nt

he
tic

1 10 100 1000 10000

Fig. 5: Histograms of number of nodes (left) and edges (right) for the different datasets. The y-axis
shows the percentage of graphs.

A APPENDIX

A.1 DATASETS

A.1.1 DATASET STATISTICS

Figure 5 gives statistics for the number of nodes and edges in the datasets. The broad range of graph
sizes indicates the diversity of the datasets.

A.1.2 TENSORFLOW DATASET

We collected a dataset by mining TensorFlow jobs running in a shared production cluster and extract-
ing computation graphs in the MetaGraphDef2 format. As lots of computation graphs were repeated
due to device/machine/job replicas, we deduplicate the dataset by graph topology (specifically node
in-degree sequence). We have not applied any other kind of filtering to restrict the dataset in any way
(e.g., by architecture, input modality, learning task, dataset, etc.). Since the organization from which
the graphs were collected has a large and diverse set of production and research use cases across
input modalities, learning types, and datasets, we strongly believe our dataset is representative of a
broad, real-world distribution of TensorFlow graphs.

Computational costs for these computation graphs are simulated with an in-house simulator (based on
Grappler3) that outputs memory and running time profiled information in the CostGraphDef4 format.
The simulator TensorFlow Op coverage didn’t include custom kernels or complicated control flow Yu
et al. (2018) like cycles (e.g. tf.while_loop).

The train-validation-test set split is made by selecting a set of 5 graphs from a list of graphs sorted by
number of nodes, and splitting them as 3-1-1 across the three sets, respectively. This ensures that the
distribution of the number of nodes is similar for the three sets.

For each graph in the train/validation/test sets, we make 99 copies of it and multiply each tensor size
and each Op running time cost with a uniform sampled number in the interval (0.5, 1.5) (one sample

2https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/
protobuf/meta_graph.proto

3https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/
grappler

4https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/
framework/cost_graph.proto

13

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/meta_graph.proto
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/protobuf/meta_graph.proto
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/grappler
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/grappler
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/cost_graph.proto
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/cost_graph.proto

Under review as a conference paper at ICLR 2020

per tensor size per copy plus one sample per TF Op per copy). The modified copies are added back to
the respective set so that the graph topologies in train/validation/test do not overlap.

Graphs with no relevant cost information or no room for improvement (e.g. a graph with a single
node, a chain in the minimizing running time task) are filtered. This results in two different datasets
for the two objective functions, one for runtime and another for peak memory.

The encoding is described in A.2

A.1.3 XLA DATASET

We also collected a dataset by dumping CostGraphDefs during the XLA compilation of several
benchmark graphs and extracted the greatest-size control-flow-free subgraph.

After deduplication 94 graphs remained.

The encoding is described in A.2

A.1.4 SYNTHETIC DATASET

We sample synthetic graphs from a set of classic random graph models, including the Erdos-Renyi
model Erdos & Rényi (1960), the Barabasi-Albert model Barabási & Albert (1999), the Watts-
Strogatz model Watts & Strogatz (1998) and the stochastic block model Holland et al. (1983). The
parameters we used for each of the random graph models are listed in Table 2.

Model Type Parameters

Erdos-Renyi Edge probability p = 0.05.
Barabasi-Albert Each node connected to m = 2 previous nodes.
Watts-Strogatz Each node connected to k = 4 neighbors initially, with probability

p = 0.3 to swap an edge with a random edge.
Stochastic Block Model Number of blocks k = 4, within block edge probability p = 0.3, cross

block edge probability q = 0.01.

Table 2: Parameters for the random graph models used to generate synthetic graphs.

The number of nodes in a graph is sampled uniformly from range [50, 200]. Note that all the above
random graph models generate undirected graphs. To convert the graphs into directed acyclic graphs,
for each graph we sample a random ordering of nodes π, and then set the direction of all edges (i, j)
such that π(i) < π(j), i.e. node i comes before node j in the ordering π. After setting all the edge
directions, we locate all the head nodes that don’t have any predecessors and all the tail nodes that
don’t have any successors, and then create a source node and a sink node, and create edges from
the source node to all the head nodes, and from all the tail nodes to the sink node. Real TensorFlow
graphs all contain one source and one sink node. Examples of synthetic graphs generated from the 4
random graph models are shown in Figure 6.

Each edge (i, j) in the graph represents either a control dependency (op j can run only when op i
is finished) or a data dependency (op i can run only when some output tensor(s) produced by op
j is available). We assign a probability of 0.1, 0.8 and 0.1 for each op to produce 0, 1 or 2 output
tensors. When op i produces 0 output tensors, any other op j that depends on it can only be through a
control dependency. Otherwise, op j will have a probability of 0.2 to make the dependency a control
dependency, and probability of 0.8 to make this a data dependency, in which case an output tensor is
picked according to an uniform distribution.

We fill in the memory cost for each tensor by sampling from a Gaussian distribution with mean 50
and standard deviation 10. The time cost for each op is computed as the sum of all the input and
output tensor memory costs plus a random noise that is a fraction r of the total memory cost, with r
sampled from a Gaussian with 0 mean and standard deviation 0.1. The source and sink nodes do not
have any memory or time costs.

To make sure the generated synthetic graphs are interesting, we apply an additional filtering step by
running BRKGA 1k and BRKGA 10k, and keeping only the graphs whose runtime improved by at

14

Under review as a conference paper at ICLR 2020

0

1 2

3

8 11 45

7

1216

22 23

26

29 38

39 44

46

9

1018

28

32

34 613

21

48

50 14 24

40

4247

27

17

19

25

51

31 45

15

20

33

3643

35

37

30

41

49

Erdos-Renyi
0

1

2

3

4

5

6

89

11

12

15

16 17

21 32

38 4249

18

25

51

7

19

3447

13

20

10

23

50

37

4048 28

33

14

22

35

41 24 27

36

3944 45

26

30

29

31

46

43

Barabasi-Albert
0

1 2

11

16

48

3

39

49

50

4

5

6

7

9

18

8

10

30

14

24

47

12

28

13

32

15

38

41

51

17

19

40

42

20

21

34

22

23

27

44

25

26

46

29

31

33

35

36

37

43

45

Watts-Strogatz
0

1 2

3

4

5

6

7

11 13

22

27

30 42

121623

46

49

21

3236

15

19

9

20 37

24

8

1728

31

34

48

26

33 10

43

14

39

40

44

45

47

18

25

50

51

29

38 41

35

Stochastic Block Model

Fig. 6: Example synthetic graphs.

15

Under review as a conference paper at ICLR 2020

least 18%. This gives us a dataset of graphs that on average improve runtime by 20% from running
BRKGA 1k to 10k.

The synthetic data in CostGraphDef format is available at https://drive.google.com/
drive/folders/1lxRl1ocsWu-POwbdEY06Mrzq6Ot99j7N.

The encoding is described in A.2

A.2 DATA ENCODING

We consider “control dependencies” as being tensors of size zero.

Each triple (op producer, tensor, op consumer) in the CostGraphDef is encoded as a separate edge
with the size of the tensor as a feature, meaning that the graph neural network input is a directed
graph with parallel edges. (There are alternative encodings like a bipartite graph where both TF ops
and TF tensors are nodes, and edges exist only between ops and tensors when the op consumes or
produces the Tensor.)

There are three sets of node features: memory-based, runtime-based (not used in the peak memory
task) and BRKGA-based (task dependent).

As memory node features, we use the sum of input tensor sizes, the sum of output tensor sizes, the
extra internal memory of the TensorFlow op, and a binary number indicating whether the Op is the
one which the greatest memory needs in the graph (one-hot).

As runtime node features, we use the sum of direct predecessor nodes’ running times, the sum of
direct successor nodes’ running times, the running time cost of the TensorFlow op, and a binary
number indicating whether the op is the one which the greatest runtime cost in the graph (one-hot).

As BRKGA node features, we have a node aggregation (the expectation of the placement per device
and the schedule order for each node) of the chromosomes found by BRKGA (minimizing peak
memory for the peak memory dataset and minimizing runtime for the runtime dataset) running for
400 evaluations with uniform random distributions. To make comparisons fair, REGAL with K
fitness evaluations means 400 evaluations to compute features, and K − 400 fitness evaluations for
BRKGA using the instance-specific distributions.

For each graph, all node or edge features relating to memory size are normalized by the greatest
memory size number in that graph and all features relating to runtime are are normalized by the
greatest op runtime cost.

To break symmetry and reduce a single degree of freedom without loss in performance, we fix the
placement of the node with highest memory for the memory task and runtime for the runtime task to
the first device.

A.3 TRAINING SET RESULTS

Figure 7 shows the reward curves on the training set for the runtime minimization (left) and peak
memory minimization (right). Each point in the curves is the average reward achieved on a minibatch
of training graphs at the corresponding training step. The final average percent improvement over
BRKGA5K on the training set is similar to that of the test set for both tasks: 7.25% on the training
set vs. 7.09% on the test set for runtime minimization, and 4.36% on the training set vs. 3.56% on
the test set for peak memory minimization. The small gap between train and test results shows that
the policy is able to generalize successfully to unseen graphs at test time.

A.4 PERFORMANCE MODEL

The scheduling problem is specified by a set of devices D and a computation graph. The computation
graph has the list of ops j ∈ N and tensors τ ∈ T , the tensors produced by each op I(j) ⊆ T , the
tensors consumed by each op C(j) ⊆ T , the memory used by each tensor mτ , and the execution
time of each op rj . A tensor is produced by exactly one op but can be consumed by many.

Solutions to the scheduling problem are constructed as follows. A placement is an assignment
pl : N → D from ops to devices. Given a placement we define Ñpl as the set of ops N extended

16

https://drive.google.com/drive/folders/1lxRl1ocsWu-POwbdEY06Mrzq6Ot99j7N
https://drive.google.com/drive/folders/1lxRl1ocsWu-POwbdEY06Mrzq6Ot99j7N

Under review as a conference paper at ICLR 2020

0 20000 40000 60000 80000 100000
Number of training steps

1.02

1.00

0.98

0.96

0.94

0.92

0.90

0.88

Av
er

ag
e r

ew
ar

d
on

 tr
ain

in
g

se
t m

in
ib

atc
h

Reward curve for training set computation graphs for runtime minimization

0 200000 400000 600000 800000 1000000
Number of training steps

1.01

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

Av
er

ag
e r

ew
ar

d
on

 tr
ain

in
g

se
t m

in
ib

atc
h

Reward curve for training set computation graphs for peak memory minimization

Fig. 7: Average reward achieved on a minibatch of training graphs during training for runtime
minimization (left) and peak memory minimization (right)

Node-Device Affinities Node Scheduling Priorities Tensor Transfer Priorities

Node 1 Node 2 Node 3
Node 1 Node 2 Node 3

Tensor A Tensor B Tensor C

Dev 1 Dev 2 Dev 1 Dev 2 Dev 1 Dev 2Dev 1 Dev 2 Dev 1 Dev 2 Dev 1 Dev 2

0.7 0.3 0.4 0.45 0.9 1.0 0.1 0.9 0.5 0.0 0.1 0.16 0.2 0.25 0.3

A
B

1

2
3

C

Fig. 8: A computation graph and an example of a chromosome encoding.

with synchronous inter-device transfer operations. A transfer operation consumes a tensor on the
device where it was created and produces it on a device where it is needed.

Given a placement pl, a schedule is a total ordering s : Ñ → {1, 2, . . . , |Ñ |} on ops in Ñpl. We say
that op j runs at simulation time step s(j). We model the schedule execution as follows. At each
simulation time step t ∈ {1, 2, . . . , |Ñ |}, each device d has a list ld,t of tensors currently in memory.
A tensor is added to the list when produced by an op that runs on the device or by a transfer op that
receives the tensor on the device. A tensor is removed immediately after all of its consumers on
the device have run. A schedule is valid if for each op j, all the input tensors are available on the
corresponding device at simulation time step s(j). See Section A.9 for an example schedule.

The memory used on a device at simulation time step t is the sum of the memory used by each tensor
that is in memory, i.e.,

∑
τ∈ld,t mτ . The peak memory of a schedule is the maximum value of the

memory used at any time and on any device.

The runtime of a schedule is computed by stepping through the simulation time steps in order and
accounting for the execution time of each op on each device. Synchronous transfers block until both
the sender and the receiver have completed their preceding tasks, and their execution time depends
on a known bandwidth between devices.

A.5 BRKGA CHROMOSOME ENCODING

Let the input graph G contain o ops and t tensors which must be placed over d devices. Then, the
BRKGA chromosome for this graph is a vector c ∈ [0, 1]o×d+o+t×d composed of the following parts

1. The first o × d entries in c represent the node-device affinities, one value for each (node,
device). Each node is assigned to the device for which it has the highest value in the
chromosome.

2. The next o entries represent the node scheduling priorities. A valid schedule of the computa-
tion graph is obtained by performing a topological sort over the nodes of the graph, breaking
ties using the node scheduling priorities. Nodes with higher priority are scheduled first.

3. The final t × d entries represent the tensor transfer priorities, one entry for each (tensor,
device) pair. These priorities determine the order in which tensors are transferred across
devices.

An example of a chromosome encoding is shown in Figure 8 for a graph with o = 3 nodes, t = 3
tensors and d = 2 devices. As per the example, nodes 1 and 3 are placed on device 1 while node 2 is

17

Under review as a conference paper at ICLR 2020

placed on device 2. The scheduling order over the nodes is 1, 2, 3. Since nodes 1 and 2 are placed
on different devices, tensors A and C must be transferred from device 1, where they are produced,
to their consumer, node 2, which is on device 2. As per the tensor transfer priorities, tensor C is
transferred before tensor A since tensor C has a higher priority to get transferred to device 2.

A.6 ACTION DEQUANTIZATION

Each real number in a BRKGA chromosome is sampled from its own Beta distribution, which is
parameterized by two real numbers α and β. To be more precise, if we denote the chromosome by
c ∈ RL, then ci ∼ D(αi, βi) ∀ 1 ≤ i ≤ L where D(αi, βi) is a Beta distribution with parameters αi
and βi. To be able to run BRKGA, REGAL must propose the values for αi and βi for each i.

As described in A.5, the BRKGA chromosome consists of three parts. In REGAL, we optimize the
RL agents over choices of αi and βi for the first two parts of the chromosome, i.e., the parts of the
chromosome corresponding to the node placement and scheduling decisions. The Beta distribution
parameters for the tensor transfer priorities are fixed to αi = βi = 1 which correspond to the uniform
random distribution. Thus, for a graph with o ops and with d devices, the RL agent must propose
(d+ 1)× 2 values for each of the o ops in the graph.

To make the learning task easier, rather than directly predicting values of α and β, we quantize the
output space of the RL agent’s actions such that each action uniquely maps to a Beta distribution.
This mapping is done as follows:

• For each node in the graph 1 ≤ i ≤ o, and for each entry 1 ≤ j ≤ (d+ 1) correponding to
node i in the BRKGA chromosome, the agent performs the set of actions

ai = {mi,1, vi,1,mi,2, vi,2, . . . ,mi,j , vi,j , . . . ,mi,d+1, vi,d+1}.

• mij and vij ∈ {0, 1, . . . , k − 1} where k is some fixed constant greater than 1, and these
represent the quantized mean µij and variance σ2

ij of the Beta distribution which are related
to each other as follows:

µij =
mij + 1

kij + 1
, σ2

ij = µij × (1− µij) ×
vij + 1

kij + 1

• µij and σ2
ij can be mapped to αij and βij for a Beta distribution as follows:

βij = µij ×
(1− µij)2

σ2
ij

− 1 + µij , αij = βij ∗
µij

1− µij

• The values mij and vij are sampled from a Categorical distribution whose logits are
determined by MLPa(hi)[k ∗ (j − 1) : k ∗ j].

We use a similar quantization strategy for the BRKGA crossover probabilities. For every crossover
probability, we sample an integer c ∈ {0, 1, . . . , k − 1} from a Categorical distribution for some
fixed integer constant k, and the dequantized crossover probability is given by 0.5 ∗

(
1 + c+1

k

)
A.7 EXTRA MODEL DETAILS

MLPs Multi-layer perceptrons, or multi-layer fully connected neural networks are models that
map input vectors to output vectors through layers of linear transformations and nonlinear activation
functions, like the following:

h = MLP(x) = Wlσl−1(...σ2(W2σ1(W1x+ b1) + b2))...) + bl, (3)

where x is an input vector, (Wi, bi) are the parameters for the ith layer, and h is the output vector.
σ is a nonlinear scalar function applied element-wise to the input vectors. Typical choices include
the logistic sigmoid function σ(x) = 1

1+e−x , tanh function σ(x) = ex+e−x

ex−e−x and the ReLU function
σ(x) = max{0, x}.

18

Under review as a conference paper at ICLR 2020

RNNs and LSTMs Recurrent neural networks (RNNs) are good sequence models. Typical RNNs
contains a recurrent memory ct that is updated recursively by taking some input at each step t as the
following:

ct = RNNCell(ct−1,xt), (4)
where xt is the input at step t. The simplest RNN cell has the following form

ct = σ(W [ct−1,xt] + b), (5)

where W , b are the parameters and σ is a nonlinearity.

Long-short term memory (LSTM) models are a type of RNNs that uses explicit gating to control the
access to the memory. LSTMs distinguish the memory ct and the output of the LSTM ht as two sets
of vectors, and compute the update at step t as

i = sigmoid(Wi[ht−1,xt] + bi) (6)
f = sigmoid(Wf [ht−1,xt] + bf) (7)
o = sigmoid(Wo[ht−1,xt] + bo) (8)
g = tanh(Wg[ht−1,xt] + bg) (9)
ct = f � ct−1 + i� g (10)
ht = o� tanh(ct). (11)

Here i,f ,o are the input, forget and output gates and � is element-wise multiplication. The
carefully designed memory access control through gating makes LSTMs better at modeling long-term
dependencies.

A.8 AUTOREGRESSIVE PREDICTION MODELS

We can use an autoregressive model to capture some structure in the outputs. Given the node
representations hv for each of the nodes from the GNN, we can utilize an ordering of the nodes, e.g.
from a topological sort, and treat the node representations as a sequence, and then use an LSTM
Hochreiter & Schmidhuber (1997) to predict the outputs yv sequentially.

We tried this approach but found that using an LSTM on top of the hv’s to predict yv’s did not
perform as well as the conditionally independent model. The reasons for this might be: (1) the
autoregressive approach relies on a sequential ordering of the nodes, and this ordering might not be
reliable nor consistent across graphs; (2) the number of nodes in the computation graphs can be large,
and learning recurrent models on long sequences is known to be challenging Pascanu et al. (2013);
(3) the noisy training signal in our REINFORCE-based training setup makes this model even more
difficult to train.

A.9 PLACEMENT AND SCHEDULING EXAMPLE

Figure 9 illustrates a computation graph, a valid schedule, and how we account for which tensors are
in memory at a given time under the model presented in sec. 3.1.

1

2
3

4

5

A
B

C
D

E

Op In
mem.
(dev.
1)

In
mem.
(dev.
2)

Run 1 A, B ∅
Transfer B A, B B

Run 2 A, C B
Run 3 C B, D
Run 4 C, E D

Transfer D E, D D
Run 5 D, E ∅

Fig. 9: An example computation graph and execution schedule across two devices. Op 3 is assigned
to device 2 while all others are assigned to device 1.

19

Under review as a conference paper at ICLR 2020

Table 3: Average running times for all methods (time cost of running the algorithms, not to be
confused with solution quality).

Algorithm TF Peak Memory test
CP SAT ~2 hours

GP + DFS 144 sec
Local Search 122 sec
BRKGA 5K 0.89 sec

Tuned BRKGA 1.04 sec
GAS 1.04 sec

REGAL 1.04 sec

A.10 BASELINES

Here we provide supplementary information about our baselines.

• CP SAT: The multi-device peak memory minimization problem is formulated for the CP
solver using a model of the operation execution order, tensor lifetimes, and cumulative
constraints to evaluate peak memory usage. The solver is guaranteed to find the globally
optimal solution given sufficient time.

• Graph partition + DFS: The graph partitioning objective is to minimize data transferred
across devices. We use the modified implementation of the Kernighan-Lin algorithm
Kernighan & Lin (1970) used by XLA for device placement in some settings. This im-
plementation is generally slower than heuristics implemented in popular libraries like
METIS Karypis & Kumar (1998) although it tends to find better quality solutions.

• Local Search: The initial schedule is a topological sort order of the ops, and the initial
placement selects devices uniformly randomly. A local move either changes the device
assignment of the op, or changes the op order in the current schedule. The hyperparameters
(e.g., number of random restarts) are set to values that perform the best on a sample of
10,000 graphs in the training set as found by grid search.

• Tuned BRKGA: The following hyperparameters of BRKGA using grid search: the Beta
distribution parameters (two scalars), and the number of chromosomes, elites, mutants, and
populations. The grid search tries 648 hyperparameter settings and picks the best one as
evaluated on 10,000 training set graphs.

• REGAL: The performance of REGAL is stochastic both because the actions are stochastic
and because BRKGA itself depends on random samples for mutation and crossover. We
estimated the standard deviation of the percent improvement statistics with respect to these
sources of randomness as below 0.1%, which is small compared to the differences we
observe. Hence we have omitted the error bars from figures 3.

A.11 RUNNING TIME COMPARISON FOR ALGORITHMS

Table 3 shows the average running times of the various algorithms on the TensorFlow test set and
the XLA dataset, as measured on an Intel Xeon E5-1650 3.60GHz machine. The times are averaged
over the unaugmented graphs in the test set. REGAL provides both fast running time as well as
high solution quality. For a slightly higher running time than BRKGA 5K, REGAL improves the
solution quality significantly. Almost all of the added running time is due to extra cost of sampling
beta distributions by REGAL compared to uniform distributions by BRKGA. This can be seen from
the nearly identical running times of REGAL and Tuned BRKGA, which also uses beta distributions,
but without the neural network policy. The local search heuristic runs slowly because it was not
implemented efficiently, e.g., with incremental evaluations of the objective; we show its timing results
for completeness only.

20

Under review as a conference paper at ICLR 2020

Table 4: Performance of REGAL on peak memory with various subsets of actions.

Placement Scheduling Valid Test
Yes No -0.4% -0.2%
No Yes 4.4% 3.65%
Yes Yes 4.67% 3.56%

A.12 ABLATION ANALYSIS OF AGENT ACTION TYPES

REGAL can train a policy to generate any subset of the following actions for BRKGA: 1) Actions
for node placement priorities, and 2) Actions for node scheduling priorities. We train REGAL with
various subsets of these actions and compare their performance against each other in table 4.

We observe that on the validation set, REGAL performs best when it has to learn actions for both
placement and scheduling compared to just scheduling or placement alone.

A.13 HYPERPARAMETERS OF THE BEST AGENT FOR PEAK MEMORY TF

The graph neural network had a state size of 32 for each node and edge, 16 propagations, all
networks MLPn MLPe MLPnode MLPmsg MLP′msg being two layers of size 32, the aggregation
used was mean pooling. For faster training, the reward of the training set was made with 1000 fitness
evaluations for REGAL and BRKGA (4600 for REGAL and 5000 for BRKGA for the validation and
test sets). Training lasted 100000 gradient steps with each step having a mini-batch of size 4 and with
gradient clipping by L2 norm with value 10 . The baseline mean squared error term’s contribution
to the overall loss was weighted by 0.0001 . The optimizer was Adam with beta1 0.9 beta2 0.999
epsilon 1e− 8 and learning rate 0.0001 . The number of devices (for the memory model) was 2.

A.14 HYPERPARAMETERS OF THE BEST AGENT FOR RUNTIME TF

The graph neural network had a state size of 32 for each node and edge, 16 residual graph propagations,
all networks MLPn MLPe MLPnode MLPmsg MLP′msg being two layers of size 32, the aggregation
used was sum. Training lasted 100000 gradient steps with each step having a mini-batch of size
4 and with gradient clipping by L2 norm with value 10. The baseline mean squared error term’s
contribution to the overall loss was weighted by 0.0001 . The optimizer was Adam with beta1 0.9
beta2 0.999 epsilon 1e − 8 and learning rate 0.0001 . With k = 16 for scheduling and k = 2 for
placement (k being the quantization level defined in A.6).

A.15 HYPERPARAMETERS OF THE BEST AGENT FOR RUNTIME SYNTHETIC

Same as A.14 but with 2 graph propagations and gru node updates and aggregation using mean.

21

	Introduction
	Related work
	Background
	Performance model
	Biased random-key genetic algorithm

	REGAL
	Contextual Bandit Formulation
	Graph neural network policy

	Experimental results
	Tasks and datasets
	Baselines
	Comparison to baseline algorithms
	Comparing REGAL vs. BRKGA
	Graph-dependent policy

	Conclusions and future work
	Appendix
	Datasets
	Dataset statistics
	TensorFlow dataset
	XLA dataset
	Synthetic dataset

	Data encoding
	Training set results
	Performance model
	BRKGA chromosome encoding
	Action dequantization
	Extra model details
	Autoregressive prediction models
	Placement and scheduling example
	Baselines
	Running time comparison for algorithms
	Ablation analysis of agent action types
	Hyperparameters of the best agent for peak memory TF
	Hyperparameters of the best agent for runtime TF
	Hyperparameters of the best agent for runtime Synthetic

