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ABSTRACT

Current work on neural code synthesis consists of increasingly sophisticated archi-
tectures being trained on highly simplified domain-specific languages, using uni-
form sampling across program space of those languages for training. By compari-
son, program space for a C-like language is vast, and extremely sparsely populated
in terms of ‘useful’ functionalities; this requires a far more intelligent approach to
corpus generation for effective training. We use a genetic programming approach
using an iteratively retrained discriminator to produce a population suitable as la-
belled training data for a neural code synthesis architecture. We demonstrate that
use of a discriminator-based training corpus generator, trained using only unla-
belled problem specifications in classic Programming-by-Example format, greatly
improves network performance compared to current uniform sampling techniques.

1 INTRODUCTION

Automated code synthesis is increasingly being studied as a way to lower the entry bar for non-
experts to create computer software, and to aid in generally taming the complexity of large-scale
systems by allowing engineers to specify their intentions at a higher level of abstraction. The ap-
proach of neural code synthesis in particular has recently gained a lot of attention, applying advances
in neural networks to the problem of automated synthesis.

We specifically study the approach of programming by example, in which a small set of input-output
examples are presented to the system to serve as a guide to the desired functionality of a program.
Based on an analysis of these examples the synthesis system returns a source-code program able to
replicate that functionality. Recent research in this field demonstrates promising results, including
DeepCoder Balog et al. (2017) and Zohar & Wolf (2018). However, research to date is limited to
using domain-specific languages and often linear sequential programs without conditions or loops.

We also take a neural-network-based approach to this problem in an attempt to gain inter-program
inference across the training examples given to our system, potentially allowing the system to learn
general aspects of programming to help synthesize new programs from unseen input/output exam-
ples. Unlike existing recent work, however, we target a general-purpose low-level programming
language for code synthesis with a much larger search space of possible programs. This presents a
major challenge in generating a training corpus for the neural network. Where related research has
used uniform sampling methods through program search space (Sun et al. (2018)Chen et al. (2017)),
or even enumerative approaches(Balog et al. (2017)), such approaches are wholly inadequate over
larger search volumes – with sparse sampling producing very poor inference results.

To solve this training corpus generation problem we propose a novel discriminator-based system,
in which new sub-corpora are iteratively created, continually measuring their functional properties
against those of the problems it is attempting to solve. This process works by learning how similar
the I/O mappings of generated programs are to I/O problems requested by users; by selecting pro-
grams which result in increasingly similar I/O mappings we simultaneously choose programs with
similar underlying source code features, until we are able to solve I/O problems requested by users.
We demonstrate that the resultant training corpus is greatly superior to a conventionally generated
corpus via uniform sampling, when using a more generalised programming language for synthesis.

We measure the performance of our approach by comparing against similar research on neural
code synthesis which uses uniform or enumerative sampling for training, demonstrating that our
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discriminator-informed corpus generation approach far exceeds uniform sampling, by a factor of 2,
in terms of find-rates. We also compare against a general baseline using genetic programming (GP);
this baseline produces a surprising result that GP has a broader range of programs found, although
its probability of resolving any given user-provided problem is worse.

Our approach offers an effective way to generate a training corpus for a high-dimensional program
search space, capable of finding a wide range of unseen useful programs based only on input/output
examples, without any labelled training data. At a high level our research also demonstrates that
the structure of the training corpus provided to a neural network greatly affects its performance on
general purpose code generation tasks, and we argue that it should therefore represent a core focus of
the code synthesis community’s efforts alongside work on neural network and language structures.

In the remainder of this paper we firstly assess the literature in the field, focusing on neural code
synthesis and specifically its corpus generation techniques. In Sec. 3 we then present the method-
ology we use to build our system, based on both a synthesis network and a discriminator network
for corpus generation. We then evaluate our approach in Sec. 4 by comparing it against traditional
training corpus generation approaches for neural code synthesis.

[code to reproduce our results will be made open-source should this paper be accepted, and
this line will be changed to the link to the repository]

2 BACKGROUND

Program synthesis has been studied for nearly as long as machine learning has been considered,
having been proposed in 1950 by Alan Turing Turing (1950).

Three main subfields exist: logic-based solvers Feng et al. (2017; 2018); Feser et al. (2015a;b);
Solar-Lezama et al. (2006); stochastic-search-based Genetic Programming (GP) Koza (2010); Har-
aldsson & Woodward (2014); and neural network based approaches Kant (2018). While solvers are
excellent for restricted domains, they have limited applicability in programs containing loops due to
their reliance on predicate logic. Genetic programming has been used to good effect in specific do-
mains, but lacks the cross-program inference power that neural networks offer. We hold neural code
synthesis to be an interesting area of study following the results of DeepCoder (Balog et al. (2017)),
which suggests that neural network can identify higher level features of program outputs (sorted-
ness, evenness, offset from zero mean...); combined with this is the opportunity of inter-program
inference within the representational model of the neural network.

Within the subfield of neural synthesis, we focus on programming by example Gulwani & Jain
(2017), which takes a set of inputs and outputs which demonstrate a desired functionality.

One of the core works in this field is DeepCoder Balog et al. (2017), a system able to recognise sub-
functions within a larger program consisting of up to 5 of these sub-functions called sequentially.
This was significantly improved in subsequent work Zohar & Wolf (2018), which used a novel
partial program execution model with results fed back into the synthesis neural network, to enhance
search speed and increase the length of programs that can be found up to 14. Both approaches
operated in the same Domain Specific Language, which focused on arrays of integers. In terms of
corpus generation, DeepCoder uses a simple enumerative strategy, as its DSL creates a small enough
program space to list all possible programs, while Zohar & Wolf (2018) use random sampling.

Two other major domains exist in the field of neural code synthesis; In both of these, we see that
synthetic training sets are predominantly generated by uniform sampling ( Sun et al. (2018); Chen
et al. (2017); Devlin et al. (2017)).

The first of these two domains is string-manipulation functions Gulwani (2011); Raza & Gulwani
(2017), as these have immediate and obvious usefulness to non-expert users. While these tasks can
be handled by solvers, there are good applications for neural synthesis systems, such as RobustFill
Devlin et al. (2017), or neurally-augmented solver systems Vijayakumar et al. (2018).

The second domain is deduction of the behavioural algorithm of an agent in an environment, with the
examples being sequences of actions taken by the agent in a grid environment. This has been studied
both in terms of trained neural networks recognising behavioural patterns Sun et al. (2018)Bunel
et al. (2018) or in reinforcement learning based approaches to program generation Chen et al. (2017).
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Our work differs from these domains’ use of random uniform sampling for training sets, as well
as from the unscalable enumerative strategy of DeepCoder, in that we introduce a strategy for gen-
erating a targeted training corpus without requirement for human-provided labelled data, and we
investigate how this generation strategy significantly boosts inference performance.

Finally, the most similar work to our own is Shin et al. (2019), which investigate the effects of inputs
to programs in terms of the produced I/O examples’ effect on training success. This differs from
our work in that they explore which inputs to feed into sampled programs, while we are presenting
a new program sampling technique. This approach may well be complementary to our own if using
as part of our training corpus generation pipeline.

3 METHODOLOGY

Our overall approach to code synthesis is to feed in a set of ten input/output (I/O) examples to a
neural network, and have the output layers of that neural network select the most likely operation
for each line of code for a function of a given upper length limit (where the number of output layers
is equivalent to the maximum number of lines of code in the function, each neuron in an output
layer is equivalent to selecting one particular operator for that line, and each line of code can be set
to ‘no-op’). The probabilistic nature of a neural network’s output allows us to gain a set of possible
programs to search through up to a given search depth; this basic approach is similar in spirit to
DeepCoder Balog et al. (2017) in that it is attempting to guess the probability of each ‘feature’ of a
program – except in our case these features are relatively low-level instructions.

Neural networks for code synthesis are usually trained on a uniformly sampled set of programs from
the total space of all possible programs; while this is viable for simple domain-specific languages, it
becomes intractable for more general purpose languages. With the aim of achieving code synthesis
using a much more general programming language, our methodology focuses on how training data
can be effectively drawn from a much larger search space without human input.

Our approach to this uses a novel hybrid solution inspired by genetic programming but using a
neural network as a fitness function. We term this neural network a discriminator, as it attempts to
discriminate between the algorithms the genetic programming element is currently generating, and
the likely features needed by requested I/O examples for human-useful functions.

3.1 LANGUAGE USED

We reuse the programming language used in Wild & Porter (2019), a simplified C-like language,
which can be compiled out to C or Java source code. The language features variable assignments,
conditional operators, and loop operators. These allow complex flow-control operations, allowing
us to study algorithms which go beyond linear concatenation of functions often used in the literature.

We enhance the problem complexity considered by Wild & Porter (2019) by removing the restric-
tions on array length, instead implementing an operation which instantiates empty arrays of given
length. We also implement operations to allow array length to be determined, and the ability for a
function to call itself, to allow recursive functions. Our methodology also avoids using any human-
provided hints about the likely features of source code for problem solutions, instead relying only
on a set of I/O examples for unsolved problems.

The full set of language operators available and restrictions used is included as an appendix 6.1.

3.2 HUMAN USEFUL CORPUS

Our human useful corpus is a set of I/O mappings for 40 unique functions, each of which takes one
array input parameter (of any length) and one variable, and returns an array of any length. The set of
problems includes reversing arrays, appending arrays with new values, and summing the values in an
array (a full list is given in appendix 6.4). We assume that these I/O mappings have been requested
by human users, but that none have yet been solved. We further assume that each function has been
requested at least five times, with different I/O mappings for each. This gives a total corpus of 200
I/O examples as a guide to the kinds of input-to-output transformations that are considered ‘useful’.
We stress that at no point is the system ever provided with any source code for these examples.
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During early experimentation we found it beneficial to apply some conventions around these I/O
examples, specifically for the first three examples in the set of ten for a given problem. The first I/O
example for any problem is such that the content of each input array cell is the index of that cell,
starting from 0, and the input variable has a random value. The second I/O example has the same
properties but the second array cell is randomised to a new value between 8 and 8, inclusive. The
third I/O example for every problem is the same as the first example except that the input variable
is also randomised to the same range. The remaining seven I/O examples can be anything, and are
randomly generated in our corpus.

Our synthesis pipeline has the challenge of starting from this corpus of unsolved problems, specified
by I/O examples, and solving as many of them as possible by synthesising the correct source code
which correctly maps the given input to the given output for each problem.

3.3 NEURAL NETWORK ARCHITECTURE AND SEARCH PROCESS

Two neural network architectures are used in our synthesis pipeline, a synthesiser and a discrimina-
tor. The discriminator is discussed later, and is used in generating corpora on which the synthesiser
is trained. The synthesiser network is that which receives I/O examples and attempts to build a
source code program to match the required functionality.

This neural network has an input layer which accepts both the input and output values of each pair
of 10 examples for a given problem, such that each input neuron takes a single bit of each integer.
Internally we use of a set of 8 layers of 256 neurons, each connected to all previous layers, with selu
activation, a simplified version of the net used in Zohar & Wolf (2018). For output, we have one
output layer per line of the program to synthesise. Each output layer has one neuron for each way
in which a line can be written (all valid operations), including no-op. A labelled program would
be represented as an array of one-hot vectors, with the non-zero value mapping to the way that
particular line should be written. We use crossentropy training loss on each line.

When reading a program out, the activities of all output layers’ neurons are taken and ranked, giving
a confidence for each option for each line. We then search over the top 1,000,000 programs the
network returns as ‘most confident’, using a beam search technique (detailed in appendix 6.2).

3.4 INITIAL SUB-CORPUS GENERATION

Our synthesiser neural network requires a training corpus comprised of the source code of example
programs together with the I/O pairs for each program. Based on this training it is then able to solve
some of the problems in our set of human useful I/O examples.

To generate this training corpus we use an iterative process of genetic programming and discrim-
inator training to create a series of increasingly relevant corpora. At the start of this process, we
generate an initial corpus of 1,000 functionally unique programs sampled at random from the total
space of all possible programs (where we quantify a program as unique if at least one output value is
different from any other program when given the same five randomly-generated input parameters).

Corpora other than this starting corpus are created by using a parent corpus from the set of accepted
corpora (creation process detailed below). A child corpus is accepted if it finds an implementation
for a human-useful IO mapping which was not found by an existing accepted lower-ancestry corpus,
otherwise it is discarded and cannot be used as a parent. A corpus’ ancestry is the number of parent-
child relationships it is removed from the initial corpus.

When creating a new child corpus, a parent corpus is selected by roulette selection from
all currently accepted potential parents, with each potential parent’s weighting being (0.1 +
number of successful children)/(0.1 + number of children).

3.5 DISCRIMINATOR TRAINING AND USAGE IN SUB-CORPUS INHERITANCE

After the first corpus, further corpora are generated based on the use of our discriminator. This is
a neural network designed to classify input/output pairs generated by programs in our generated
corpus as being closer to / further away from, those of I/O pairs in the human-useful set from users.

A new corpus is created by selecting programs from a parent corpus which are measured to be
most similar to human-useful programs in their input/output mappings (specifically the form of
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their outputs, and how these outputs seem to relate to corresponding inputs). By doing this, we
hypothesise that the kinds of source code features found in these programs will similarly move
closer to those needed to synthesise programs solving the human-useful I/O examples.

Our discriminator neural network then works as follows. Architecturally, it consists of 2 dense layers
of 16 nodes, with a single output. The featurisation of programs is identical to our synthesis neural
network (as described above). We train this network by providing all of our I/O examples for all
unfound human-useful target programs, and generate I/O examples for each of the 1,000 programs
in the parent corpus. We train the discriminator network as a classifier to determine which of the
I/O examples are from our human-useful set, and which are from the generated set. This training
continues until a threshold Tk is reached. Tk is the proportion of programs which would be retained
by the discriminator (as described below), if run on the parent corpus. Tk is a randomly set value
between 0.1 and 1, set asmax(0.1, r2) where r is a random real value uniformly distributed between
0 and 1. We use a random value here to increase the diversity in corpora formed, some being highly
similar to the parent and some being fairly different, in a bid to maximise coverage.

This trained discriminator therefore returns an estimate Fd for how human-like a program is, ranging
between 0 and 1. A program is said to pass the discriminator if it has an estimate of Fd > 0.1. This
second threshold was chosen based on preliminary experiments, particularly based on analysis of the
distribution of estimates, which was found to be highly biased towards either end of the spectrum.

These selected programs form the basis of a new child corpus. This child corpus is then expanded
to have 1,000 functionally unique programs of its own, by using roulette wheel selection in which
we take one of the existing programs in the corpus and mutate it, then accept or reject that mutated
program as an additional member of the corpus based on a fitness function Fq . This value Fq is
simply how much it exceeded the discrimination threshold (Fd−0.1). During development, roulette
selection was found to produce far superior results than tournament selection if the discriminator
values are offset by 0.1, due to bias away from programs which only just passed the threshold.

We continue to create new child corpora in this way up to a desired total number. We emphasise
that, during this process, we have no access to the human-useful programs, only the I/O examples
that users have requested be generated. After multiple rounds of generating self-training data in the
above fashion, to reach source code features that are increasingly likely to be involved in solving
the requested I/O examples, we then begin to be able to successfully synthesise solutions to the I/O
examples of programs requested by users.

3.6 EVALUATION OF OVERALL SYSTEM

Our synthesis pipeline returns a collection of solutions to I/O problems in the human useful set,
and also returns a set of generated training corpora which were used in finding these solutions. We
keep all generated corpora, and their corresponding trained synthesiser networks, which we ‘kept’
in the above iterative process as either a parent or final child. Note that we keep the intermediate
parents along the way because a child corpus is sometimes unable to solve some of the problems of
its parent, even though it can solve new problems that its parent could not.

These trained neural networks can then be re-used when given new I/O problems not present in the
initial human useful set; each individual trained synthesiser network processes an I/O problem in
∼ 0.25 seconds. We can also collate all corpora into a single combined corpus on which to train a
combined synthesiser neural network. We report the results of both alternatives (the set of individual
experts and the combined expert) in the following section.

4 RESULTS

Our evaluation compares our approach to training corpus generation against competitive baselines.
For all experiments we generate a total of 200 sub-corpora using our approach, with each experiment
repeated 20 times. The HU corpus was fixed for all experiments, and the I/O examples did not
vary, including in baselines, to allow consistent testing and repeatability. Noise between repeated
experiments therefore derives only from the different systems’ internal stochasticity.

To evaluate our system we compare it against two baselines: one without using our discriminator,
instead using randomly-generated corpora, and one using genetic programming on the same problem
set. We then compare our approach to one using uniformly-sampled training data, as is used in
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Table 1: Find rates for our human-useful problem set by approach type. The set consists of 200 I/O
examples, derived from 40 ground-truth programs

Approach I/O examples solved Unique functionalities found

Discriminated sub-corpora 81.5(σ = 8.28) 20.3(σ = 2.08)
Random sub-corpora 43.5(σ = 4.29) 11.8(σ = 1.20)
Genetic Programming 64.6(σ = 3.37) 22.5(σ = 1.86)

related research for simpler domain-specific languages, and lastly we explore the the effects of
decisions made by our discriminator in more detail.

4.1 PERFORMANCE COMPARED TO BASELINES

In this experiment we compare the find rates of programs against two baselines. For the first baseline
we use an identical system to our own but with the discriminator removed as a fitness function, such
that successive training corpora are generated only using randomly selected parents and mutations.
The remainder of our pipeline is kept the same for this baseline.

For our second baseline, we use genetic programming due to the inability to re-use baselines from
other work in the literature, as for example seen in the DeepCoder framework, caused by the relative
generality of our programming language for synthesis. Our genetic programming technique was
designed to require roughly the same total computational time as the full sub-corpus generation
pass, to fairly compare the options for user IO mapping resolution. It uses a population size of
1,000, and a maximum generation count of 10,000. It uses tournament selection, with a tournament
size of 6 and a probability of mutation of 0.15. The fitness function is a function of the Euclidean
distance between the desired output and the target output, unless the outputs differ in length, in
which case it is set to an extremely negative penalty value.

Our results are shown in Table 1, demonstrating that the set of networks produced by discriminated
sub-corpus generation between them produced the highest resolution rate for the 200 human-useful
I/O mappings, returning an average of 81.5(σ = 8.3).

Interestingly, the genetic programming technique found more unique functionalities. Of the 40
unique ground truth programs, the GP baseline found 22.7, while the sub-corpora found 20.3. This
means that while the sub-corpus technique had a higher probability of finding a program to match
a user-supplied IO mapping, there existed a stronger inequality between the find rates than the GP
algorithm, which was more consistent in its probability of finding any given program.

It is highly likely that this is a phenomenon produced by the nature of the discriminator itself, driving
the system towards producing certain types of algorithms predominantly. It seems likely that certain
properties of certain programs would be more recognisable by a neural network, and so emphasised
by the discriminator’s fitness function; this is a key avenue of future work.

4.2 COMPARISON WITH UNIFORMLY GENERATED TRAINING DATA

In this set of experiments we evaluate the performance of our iteratively-produced training corpus
against a baseline randomly-generated training corpus. To do this we take a subset of 5 of the sub-
corpora produced, attempting to maximise the number of separate I/O examples found by the set of
networks. The collated corpus then discards any duplicated functionalities, giving a training corpus
of approximately 4,200 examples. For each of these, we write out a set of training examples, with 5
randomly generated inputs into each function being used to generate the feature I/O examples. We
then train the same synthesis neural network on these as before.

For the comparative baseline training data we simply sample 5,000 programs uniformly at random
from the space of all possible programs, and again generate 5 training I/O examples using each of
these programs. In both cases the corpora are then divided between training and validation in a
0.9:0.1 split, with validation programs being functionally distinct from those in the training set; the
training data is then fed into our synthesis neural network and tested.

As can be seen in Table 2, the collated corpus produced by the discriminated sub-corpus generation
process more than doubles the performance of the randomly generated training corpus. The discrim-
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Table 2:
Approach I/O examples solved Unique functionalities found

Collated discriminated corpus 44.5(σ = 7.5) 11.3(σ = 2)
Random corpus 16.1(σ = 2.5) 3.85(σ = 0.59)

inator has driven program generation towards a set of programs which is far more representative of
the types of behaviour present within the human-useful programs.

Inspection of the programs within the corpora matches this expectation: there is no drive for a
randomly generated program to, say, contain a loop, and if they do there is no drive towards writing
to all/most cells in the output array. While the behaviour of each training program is thus distinct,
this is not necessarily in a ‘useful’ way, relative to the types of problems the user wishes to solve.

The discriminator, however, can drive towards useful training programs, by emphasising programs
which write relatively uniformly to output arrays, using loops and with values remaining within
sensible ranges; as well as generating programs with outputs dependent on the inputs, rather than
fixed-output programs. Without ever receiving training labels or information about the nature of
useful features, the discriminator learns to maximise their presence in the sampled programs.

4.3 ANALYSIS OF EFFECTS OF ITERATED DISCRIMINATOR USE

In this section we explore in more detail of effect of our discriminator design. We first demonstrate
the difference-over-time from our first baseline in Sec. 4.1, in which we generate successive corpora
using either our discriminator or using simple random selection of parent. The results of this are
shown in Figure 1, in which we see how many programs from our target human useful set are solved
over time as successive corpora are generated. As expected, both the discriminator setup and the
random setup start at the same point, as the initial corpus does not use a discriminator. The first
discriminated sub-corpus trains a network which finds an additional 6.7 solutions to I/O examples
on average, compared to the non-discriminated corpus’ increase of only 2.8. This progress continues
as new sub-corpora are added, and is also seen on the graph of unique functionalities found. This
clearly demonstrates the value of the discriminator in corpus generation.
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Figure 1: Find rates of programs satisfying IO specifications, over sub-corpus count, for both our
approach (blue, higher) and random baseline (red, lower). Find rates for all 200 I/O specifications
on left, find rates for unique functionalities on right. First standard deviation shown.

We next examine the find rates over the ‘ancestry’ of sub-corpora in detail, to give indications as to
the behaviour of the system in response to the discriminator’s iterated use. Each sub-corpus past the
first uses another as a parent; the ancestry of a sub-corpus is therefore the number of parents since
the starting corpus. This varied by experiment, with all accepting a corpus with ancestry of at least
5, and the maximum being a single run which had a sub-corpus of ancestry 12.

In Figure 2 we plot the find rates of each program over ancestry progression. We discover that
certain programs are trivial to find, and do not require discriminator use (Array Length; Array to
Zero...). These have a find rate of nearly 1.0 before the discriminator is used (black in first cell).
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Figure 2: Program find rates over sub-corpus ancestry. From white at 0 find rate, to fully black
indicating 1.0 find rate. Border used to indicate a non-zero value. Plot cut off at ancestry = 8 due
to low sample size past this point. The way actual program outputs evolve is detailed in appendix 6.3.

Certain programs are found with high reliability past ancestry of 1, for example the identity pro-
gram. This program was almost never found without use of the discriminator, but a single use
lead to it having a nearly 1.0 find rate. This indicates that the discriminator lead to a set of sub-
corpora which represented the identity function’s programmatic behaviour far better. We found that
these sub-corpora’s programs nearly universally featured loops and sequential array write opera-
tions, functionalities required to produce the identity function.

The second use of the discriminator showed similar programs, such as Identity Parity and ‘Iterate
from Start’. These were rarely found in both a non-discriminated sub-corpus, or an ancestry = 1
sub-corpus, but featured regularly at later depths. This reflects the discriminator iterating on its
previous selections, attempting to discriminate between programs produced by a first-generation
discriminator and the human useful corpus. These programs now found feature more complex loop-
using behaviours than simple reproduction of the input array, such as using conditionals and literals.

Past ancestry = 2, however, we no longer see sudden find-rate jumps. This indicates that the
discriminator loses its effectiveness and can no longer guide as reliably towards the functionalities
of the human-useful corpus. We speculate that the discriminator is unable to force the presence of
the required functionalities in the produced training corpus either because (i) the genetic algorithm
doesn’t produce any for it to select; (ii) it does not have the capacity to represent the behaviours (due
to low layer width or depth); (iii) these functionalities are simply not identifiable from I/O mappings
alone. Further study of this is the subject of our future work.

5 CONCLUSION

This paper has presented a discriminator-based corpus generation technique, which iteratively seeks
to generate training programs drawn from the same distribution as the programs it is attempting
to solve. It works without the need for labelled training data, generating its own based purely on
supplied features of I/O examples and the underlying properties of the language itself. We show that
it is greatly superior to one which does not use a discriminator for selecting training examples.

Once generation has completed, our framework can also return a collated training corpus, allowing
training of a single large neural network. We show that this collated network is also significantly
stronger, in terms of quality of trained network, to one trained using random sampling techniques.

Based on our results, we argue that the way in which training corpora are generated for neural
program synthesis deserves significant further study – and may be of equal importance to the design
of the neural network used for synthesis itself. In future work we will further explore the ability of
discriminator-style networks to identify specific features of code likely to be involved in solving a
particular problem, as well as more advanced architectures for synthesis and discriminator networks.
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6 APPENDICES

6.1 LANGUAGE IMPLEMENTATION DETAILS

Our programs are implemented as a constrained version of C, as in the work of Wild & Porter
(2019). We, however, expand upon their work, increasing the limits on variable count, and introduc-
ing the concepts of runtime-defined array lengths and recursive function calls. We limit the programs
to length 14, the maximum number of integer variables to 7, the maximum number of array variables
to 2 (the one input and the one ultimately returned), the maximum array length under any condition
to 16 and the maximum value ever to between -255 and 255 (inclusive).

The operators available are described in Table 3, and represent a superset of the operators used in
the work of Wild and Porter.

Table 3: The 16 operators available in implementation of language, with the inputs to the functions
and their purpose

Operator Input

Assign from Variable to Array Array: Write Target; Integer: Array Index; Integer: Read
Target

Assign from Variable to Array Array: Read Target; Integer: Array Index; Integer: Write
Target

Create Array Array: Array to initialise/overwrite; Integer: Length of Ar-
ray

Get Array Length Array: Array to read length of; Integer: Write Target
Variable to Literal Integer: Write Target; Literal: Can be -1, 0 or 1
Arithmetic Add Integer: Write Target; Integer: Read 1; Integer: Read 2
Arithmetic Subtract Integer: Write Target; Integer: Read 1; Integer: Read 2
Arithmetic Multiply Integer: Write Target; Integer: Read 1; Integer: Read 2
Arithmetic Divide Integer: Write Target; Integer: Read 1; Integer: Read 2
Arithmetic Modulo Integer: Write Target; Integer: Read 1; Integer: Read 2
Assign Variable to other Variable Integer: Write Target; Integer: Read 1
Flow: Loop Integer: Iterator; Integer: Loop to
Flow: Condition: Greater than 0 Integer: Variable to test
Flow: Condition: Integer equality Integer: Variable to test 1; Integer: Variable to test 2

Recursive Function Call Array: Array to set to function return; Array: Input 1; Inte-
ger: Input 2

No-Operation No Inputs



6.2 BEAM SEARCH

Each line is given a “depth” to search, ranging from a single option to up to a maximum of 10 op-
tions. The combination of all programs within this space are initially added to a set, which therefore
has a size equal to the product of all the depths. The beam search constructs the initial search volume
by iteratively increasing the search depth of a single line to maximise the exploration value function.
This function is as follows:

[a0, a1, a2...an] represents the ranked option confidences from the neural network, now sorted such
that a0 is the highest-confidence option. These are normalised by dividing by a0.

S is the search volume size, and S′i is the search volume size if line i had its depth increased by one.

Di is the current depth of search of a given line minus one (for example if Di is 0, only the first
option will be added to the search volume, if it is 1, the top two ranked options will be added to the
combinational set of programs (thus doubling the search space size)).

The exploration value for adding increasing the depth of any given line i is
(aDi+1

)∗0.75i

S′
i−S

This process attempts to drive the neural network towards exploring lines in which multiple options
are highly confident, and away from lines where a single option has been given a high confidence
and all others given a low or negative confidence.

Once the iterative addition has produced a set of >= 1, 000, 000, the 1,000,000 options with the
highest sum confidence are selected and searched exhaustively.

6.3 GENERATED PROGRAM EXAMPLES

In Table 4 we see outputs from 15 randomly generated programs, from 3 randomly chosen sub-
corpora. The first is the starting corpus of the run, which had no discriminator. The second has
a discriminator trained between the human-useful IO examples and its parent corpus. The third
sub-corpus then has a second generation discriminator, which was trained based on a discriminated
corpus and the HU IO corpus.

All outputs are responses to the function being run with an input of input array = [0,1,2,3,4,5,6,7]
and input integer = 2.

We see that the programs in the starting corpus, ancestry=0, which were randomly sampled from
program space, differ greatly from the style of program we are attempting to train the network to
synthesise. The majority of all returned values are 0, and the array length varies considerably. There
is little evidence that the input array is being read in, or indeed any use of loops at all.

The second generation corpus, ancestry=1, shows little use of the input values, but has outputs in
more consistent ranges. The output lengths now appear to always be the length of the input array,
and the programs clearly use loops to write to the output array. Despite this, the output patterns are
highly uniform, often being the same value repeated for most of the output array.

The third generation corpus, ancestry=2, shows more complex program still. Negative values, which
would require arithmetic operations to produce, are present. The values vary across larger ranges,
and they show elements of the input array (the last example being the input array changed by a single
element).

We believe this is fairly illustrative of the behaviour of the discriminator, although more in-depth
analysis of the programs produced could form a good direction for future work.

6.4 CORPUS OF TARGET ‘HUMAN USEFUL’ FUNCTIONS

Functionally, all programs within this corpus receive both an array of length 2 to 16, with values
ranging between -8 and 8, and an integer also ranging from -8 to 8, the same as in the rest of the
paper. Some functions simply do not use the input variable, but this is accomplished solely by
ignoring it, not by changing the function input parameter set.

The human useful programs and their functionalities are listed in table 5



Table 4: Examples of outputs of generated programs, randomly chosen from 3 sub-corpora. These
sub-corpora are organised based on ancestry, how many parent-child relationships exist between the
first sub-corpus (ancestry=0).

Sub-corpus ancestry Program Output

Ancestry=0 [0]
Ancestry=0 [0,0,0,0,0,0,0,0]
Ancestry=0 [0,0,0,0,0,8,0,0]
Ancestry=0 [2]
Ancestry=0 [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

Ancestry=1 [7,7,7,8,7,7,7,7]
Ancestry=1 [0,2,2,2,2,2,2,0]
Ancestry=1 [7,8,8,8,8,8,8,8]
Ancestry=1 [8,8,8,2,8,8,8,8]
Ancestry=1 [2,2,2,2,2,2,0,0]

Ancestry=2 [0,8,16,24,32,40,48,56]
Ancestry=2 [-1,-7,-6,-5,-4,-3,-2,-1]
Ancestry=2 [0,8,16,24,32,40,48,56]
Ancestry=2 [0,-7,-7,-7,-7,-7,-7,-7]
Ancestry=2 [-2,1,2,3,4,5,6,7]



Table 5: Human useful programs, specified by user and presented to the system as a set of IO
mappings only.

Program Function

Absolute Values Returns an array of equal size to the input array, where all
values are the absolute values in the input array

Array Length Returns a 1-length array, whose value is the length of the
input array

Array to Zero Returns an array of equal length to the input array, filled
with zeroes

Cumulative Absolute Sum
Returns an array of equal length to the input array, filled
with the cumulative absolute values. That is to say cell
outputi =

∑i
n=0 |inputn|

Cumulative Sum
Returns an array of equal length to the input array, filled
with the cumulative values. That is to say cell outputi =∑i

n=0 inputn

Divergent Sequence
Returns an array of equal length to the input array, filled
with values such that if i is even outputi = i/2, otherwise
outputi = −(i/2), e.g. [0,0,1,-1,2,-2...]

First Element Only Returns an array of length 1, whose content is input0

Identity Returns a new array with length and contents matching the
input array

Index Parity Returns a new array with length equal to that of the input
array, filled with alternating 0s and 1s, e.g. [0,1,0,1...]

Iterative Difference

Returns a new array with length equal to that of the in-
put array, filled with the difference between the mapped
input array cell and the next, such that outputi = inputi−
inputi−1, with output0 = input0

Keep Evens Returns an array of equal length to that of the input array.
If inputi is even, outputi = inputi else outputi = 0

Keep Negatives Returns an array of equal length to that of the input array.
If inputi < 0, outputi = inputi else outputi = 0

Keep Odds Returns an array of equal length to that of the input array.
If inputi is odd, outputi = inputi else outputi = 0

Keep Positives Returns an array of equal length to that of the input array.
If inputi > 0, outputi = inputi else outputi = 0

Negative Returns the input array multiplied by -1. outputi =
−inputi

Pop from Array Returns an array one element shorter than the input. Values
are the input array’s values without the last.

Reduce Length by Half Returns an array half the length of the input array. Values
in it are the first values of the input array.



Table 6: Continuation of table 5
Program Function

Reverse Returns a copy of the input array, but with the elements in
reverse order

Shift Left
Returns an array of length one less than the input array.
Values are shifted, such that outputi = input(i+1). The
first input value is therefore not replicated in the output.

Shift Left Zero Padded
Returns an array of length equal to the input array. Values
are shifted, such that outputi = input(i+1). The last value
of the output array is set to zero.

Shift Right
Returns an array of length one greater than that of the input
array. Values are the values in the input array preceded by
a zero.

Shift Right Lossy
Returns an array of length equal to that of the input array.
Values are such that outputi = input(i−1), with the first
output value being zero.

Shuffle Zeros to Back

Returns an array of length equal to that of the input array.
Values are the the same elements as in the input array, with
the exception that all zero-values are moved to the end of
the sequence.

Sign of
Returns an array of length equal to that of the input array.
Values in output -1, 0 or 1. If inputi > 0 then outputi = 1,
if inputi < 0 then outputi = −1, else outputi = 0

Sort Returns a copy of the input array, sorted in ascending order.

Square Values Returns an array of length equal to that of the input array.
Values are such that outputi = (inputi)

2

To Iterator Returns an array of length equal to that of the input array.
Values are such that outputi = i



Table 7: Continuation of table 5. The programs in this table are those which use both the input array
and the input integer.

Program Function

Add Returns an array of length equal to that of the input array.
Values are such that outputi = inputi + inputInteger

Append
Returns an array of length one greater than that of the input
array. Values are those of the input array, followed by the
input integer.

Clip to Max
Returns an array of length equal to that of the input ar-
ray. Values are such that if inputi > inputInteger then
outputi = inputi else outputi = inputInteger

Clip to Min
Returns an array of length equal to that of the input ar-
ray. Values are such that if inputi < inputInteger then
outputi = inputi else outputi = inputInteger

Constant Addition Returns an array of length equal to that of the input array.
Values are such that outputi = inputi+(i∗inputInteger)

Fill Array Returns an array of length equal to that of the input array.
Values are such that outputi = inputInteger

Greater Than
Returns an array of length equal to that of the input ar-
ray. Values are such that if inputi > inputInteger then
outputi = 1 else outputi = −1

Iterate from Start Returns an array of length equal to that of the input array.
Values are such that outputi = i+ inputInteger

Less Than
Returns an array of length equal to that of the input ar-
ray. Values are such that if inputi < inputInteger then
outputi = 1 else outputi = −1

Multiples of Returns an array of length equal to that of the input array.
Values are such that outputi = i ∗ inputInteger

Subtract Returns an array of length equal to that of the input array.
Values are such that outputi = inputi − inputInteger
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