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ABSTRACT

A major challenge in reinforcement learning is exploration, especially when reward
landscapes are sparse. Several recent methods provide an intrinsic motivation to
explore by directly encouraging agents to seek novel states. A potential disad-
vantage of pure state novelty-seeking behavior is that unknown states are treated
equally regardless of their potential for future reward. In this paper, we propose
an exploration objective using the temporal difference error experienced on extrin-
sic rewards as a secondary reward signal for exploration in deep reinforcement
learning. Our objective yields novelty-seeking in the absence of extrinsic reward,
while accelerating exploration of reward-relevant states in sparse (but nonzero)
reward landscapes. This objective draws inspiration from dopaminergic pathways
in the brain that influence animal behavior. We implement the objective with an
adversarial Q-learning method in which Q and Qx are the action-value functions
for extrinsic and secondary rewards, respectively. Secondary reward is given by
the absolute value of the TD-error of Q. Training is off-policy, based on a replay
buffer containing a mix of trajectories sampled using Q and Qx. We characterize
performance on a set of continuous control benchmark tasks, and demonstrate com-
parable or faster convergence on all tasks when compared with other state-of-the-art
exploration methods.

1 INTRODUCTION

Deep reinforcement learning (RL) has recently achieved impressive results across several challenging
domains, such as playing games (Mnih et al., 2016; Silver et al., 2017; OpenAI, 2018; Baker et al.,
2019) and controlling robots (OpenAI et al., 2018; Kalashnikov et al., 2018). In many of these
tasks, a well-shaped reward function is critical to learning performant policies. On the other hand,
deep RL still remains challenging for tasks where the reward function is sparse. In these settings,
state-of-the-art RL methods often perform poorly and train very slowly, if at all, due to the low
probability of observing improved rewards by following the current optimal policy or with a naive
exploration policy such as ε-greedy sampling.

The challenge of learning from sparse rewards is typically framed as a problem of exploration,
inspired by the notion that a successful RL agent must efficiently explore the state space of its
environment in order to find improved sources of reward. One common exploration paradigm is to
directly determine the novelty of states and to encourage the agent to visit states with the highest
novelty. In small MDPs this can be achieved through counting how many times each state has been
visited. This approach often performs poorly in high-dimensional or continuous state spaces, but
recent work (Tang et al., 2017; Bellemare et al., 2016; Fu et al., 2017) using count-like statistics have
shown success on benchmark tasks with complex state spaces. Another paradigm for exploration
learns a dynamic model of the environment and computes a novelty measure proportional to the
error of the model in predicting transitions in the environment. This exploration method relies on
the core assumption that well-modeled regions of the state space are similar to previously visited
states and thus are less interesting than other regions of state space. Predictions of the transition
dynamics can be directly computed (Pathak et al., 2017; Stadie et al., 2015; Savinov et al., 2019;
Burda et al., 2019a), or related to an information gain objective on the state space, as described in
VIME (Houthooft et al., 2016) and EMI (Kim et al., 2018).
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Several exploration methods have recently been proposed that capitalize on the function approxima-
tion properties of neural networks. Random network distillation (RND) trains a function to predict
the output of a randomly-initialized neural network from an input state, and uses the approximation
error as a reward bonus for a separately-trained RL agent (Burda et al., 2019b). Similarly, DORA
(Fox et al., 2018) trains a network to predict zero on observed states and deviations from zero are
used to indicate unexplored states.

An important shortcoming of existing exploration methods is that they only incorporate information
about states and therefore assume all unobserved states are equally motivating, regardless of their
viability for future reward. The viability of this assumption is highly task dependent: While games
like Montezuma’s Revenge or Super Mario Bros, where novelty correlates highly with success, can
be attacked effectively by state novelty methods alone (Burda et al., 2019b; Pathak et al., 2017;
Ecoffet et al., 2019; Kim et al., 2018), other tasks such as hide-and-seek or some Atari games where
novelty and utility are less correlated tend to frustrate state novelty methods (Burda et al., 2019b;
Baker et al., 2019; Burda et al., 2019a). Baker et al. (2019) explored using both RND and a simple
state counting baseline to discover skills such as navigation and block-pushing in a hide-and-seek
environment. However, the authors found that careful construction of the state representation used
for novelty seeking was necessary to discover any such skills, as novelty in the full state space did
not correspond to novelty in the intuitive sense (Baker et al., 2019).

In this paper we propose QXplore, a new exploration formulation that seeks novelty in the predicted
reward landscape instead of novelty in the state space. QXplore exploits the inherent reward-
space signal from the computation of temporal difference error (TD-error) in value-based RL, and
explicitly promotes visiting states where the current understanding of reward dynamics is poor. Our
formulation draws inspiration from biological models of dopamine pathways in the brain where levels
of dopamine correlate with TD-error in learning trials (Niv et al., 2005). Dopamine-seeking behavior
has previously been described in animals (Arias-Carrión & Pöppel, 2007) and serves as a biologically
plausible exploration objective in contrast to simple state novelty. In the following sections, we
describe QXplore and demonstrate its utility for efficient learning on a variety of complex benchmark
environments with continuous controls and sparse rewards.

2 PRELIMINARIES

We consider RL in the terminology of Sutton & Barto (1998), in which an agent seeks to maximize
reward in a Markov Decision Process (MDP). An MDP consists of states s ∈ S, actions a ∈ A, a
state transition function S : S ×A× S → [0, 1] giving the probability of moving to state st+1 after
taking action at from state st for discrete timesteps t ∈ 0, ..., T . Rewards are sampled from reward
function r : S ×A → R. An RL agent has a policy π(st, at) = p(at|st) that gives the probability of
taking action at when in state st. The agent aims to learn a policy to maximize the expectation of the
time-decayed sum of reward Rπ(s0) =

∑T
t=0 γ

tr(st, at) where at ∼ π(st, at).
A value function Vθ(st) with parameters θ is a function which computes Vθ(st) ≈ Rπ(st) for some
policy π. Temporal Difference (TD) error δt measures the bootstrapped error between the value
function at the current timestep and the next timestep as

δt = Vθ(st)− (r(st, at ∼ π(st)) + γVθ(st+1)) (1)

A Q-function is a value function of the form Q(st, at), which computes Q(st, at) = r(st, at) + γ ·
maxa′Q(st+1, a

′), the expected future reward assuming the optimal action is taken at each future
timestep. An approximation to this optimal Q-function Qθ with some parameters θ may be trained
using a mean squared TD-error objective LQθ = ||Qθ(st, at)−(r(st, at)+γ ·maxa′Q′

θ′(st+1, a
′))||2

given some target Q-function Q′
θ′ , commonly a time-delayed version of Qθ (Mnih et al., 2015).

Extracting a policy π given Qθ amounts to approximating argmaxaQθ(st, a). Many methods exist
for approximating the argmaxa operation in both discrete and continuous action spaces (Lillicrap
et al., 2015; Haarnoja et al., 2018). Following the convention of Mnih et al. (2016), we train Qθ using
an off-policy replay buffer of previously visited (s, a, r, s′) tuples, which we sample uniformly.
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Figure 1: Method diagram for QXplore. We define two Q-functions which sample trajectories from
their environment and store experiences in separate replay buffers. Q is a standard state-action value-
function, whereas Qx’s reward function is the unsigned temporal difference error of the current Q on
data sampled from both replay buffers. A policy defined by Qx samples experiences that maximize
the TD-error of Q, while a policy defined by Q samples experiences that maximize discounted reward
from the environment.

3 QXPLORE: TD-ERROR AS ADVERSARIAL REWARD SIGNAL

3.1 METHOD OVERVIEW

We first provide an overview of the method - a visual representation is depicted in Figure 1. At a high
level, QXplore is an exploration method that jointly trains two independent agents equipped with
their own Q-functions and reward functions:

1. Q: A standard Q-function, that learns a value function on reward provided by the external
environment.

2. Qx: A Q-function that learns a value function directly on the TD-error of Q.

Together, Q, Qx, and their policies form adversarial pairs, where the policy πQx that samples Qx is
the adversary to Q and vice versa for πQ. πQx achieves reward when the agent ventures into states
whose reward dynamics are foreign to Q (i.e. Q under/overestimates reward achieved). Separate
replay buffers are maintained for each agent, but each agent receives samples from both buffers at
train time. A similar adversarial sampling scheme was used to train an inverse dynamics model by
Hong et al. (2018), but to our knowledge multiple adversarial sampling policies have not previously
been used for exploration.

3.2 TD-ERROR OBJECTIVE

First we will describe our TD-error exploration objective. Schmidhuber et. al. first describe using
reward misprediction and model prediction error for exploration (Schmidhuber, 1991; Thrun &
Möller, 1991; 1992). However, the work was primarily concerned with model-building and system-
identification in small MDPs, and used reward prediction error rather than TD-error. Later, Gehring
& Precup (2013) used TD-error as a negative signal to constrain exploration to focus on states that
are well understood by the value function to avoid common failure modes. Related to maximizing
TD-error is maximizing the variance or KL-divergence of a posterior distribution over MDP’s or
Q-functions, which can be used as a measure of uncertainty (Osband & Van Roy, 2017; O’Donoghue
et al., 2017; Chen et al., 2017). Posterior uncertainty over Q-functions can be used for information
gain in the reward or Q-function space, as opposed to information gain in the state space as described
by VIME among others (Houthooft et al., 2016), but to our knowledge posterior uncertainty methods
have thus-far only been demonstrated in small MDP’s or for local exploration as an alternative to
dithering methods such as ε-greedy sampling.

In contrast to these previous works, we directly treat TD-error as a reward signal and use a Q-function
trained on this signal to induce an exploration policy, rather than as a supplementary objective or to
compute a confidence bound. Crucially, when combined with neural network function approximators,
this signal provides meaningful exploration information everywhere as discussed in Section 3.4. For
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Algorithm 1 QXplore Algorithm

Input: MDP S, Q-function Qθ with target Q′
θ′ , Qx function Qx,φ with target Q′

x,φ′ , replay buffers
ZQ and ZQx , batch size B and sampling ratios RQ and RQx , CEM policies πQ and πQx , time
decay parameter γ, soft target update rate τ , and environments EQ, EQx
while not converged do

Reset EQ, EQx
while EQ and EQx are not done do

Sample environments
ZQ ← (s, a, r, s′) ∼ πQ|EQ
ZQx ← (s, a, r, s′) ∼ πQx |EQx
Sample minibatches for Qθ and Qx,φ
(sQ, aQ, rQ, s

′
Q)← B ∗ RQ samples from ZQ and B ∗ (1−RQ) samples from ZQx

(sQx , aQx , rQx , s
′
Qx)← B ∗RQx samples from ZQx and B ∗ (1−RQx) samples from ZQ

Train
rx,θ ← |Qθ(sQx , aQx)− (rQx + γQ′

θ′(s
′
Qx , πQ(s

′
Qx)))|

LQ ← ||Qθ(sQ, aQ)− (rQ + γQ′
θ′(s

′
Q, πQ(s

′
Q)))||2

LQx ← ||Qx,φ(sQx , aQx)− (rx,θ + γQ′
x,φ′(s′Qx , πQx(s

′
Qx)))||2

Update θ ∝ LQ
Update φ ∝ LQx
θ′ ← (1− τ)θ′ + τθ
φ′ ← (1− τ)φ′ + τφ

end while
end while

a value function with parameters θ, and TD-error δt we define our exploration reward function as
rx,θ(st, at, st+1) = |δt| = |Qθ(st, at)− (rE(st, at) + γmaxa′Q′

θ′(st+1, a
′))| (2)

for some extrinsic reward function rE and target Q-function Q′
θ. Notably, we use the absolute value

of the temporal difference (rather than the squared error) used to compute updates for Qθ to keep the
magnitudes of rE and rx comparable and reduce the influence of outlier temporal differences on the
gradients of Qx, which we describe below.

Intuitively, a policy maximizing the expected sum of rx will sample trajectories where Qθ does not
have an accurate estimate of the future rewards it will experience. This is useful for exploration
because rx will be large not only for state-action pairs producing unexpected reward, but for all
state-action pairs leading to such states, providing a much denser exploration reward function. In
addition, a policy maximizing TD error can be seen as an adversarial teacher for training Qθ. Further,
TD-error-based exploration with a dedicated exploration policy removes the exploitation-versus-
exploration tradeoff that state-novelty methods must contend with, as maximizing TD-error will
produce trajectories that provide information about the task for Qθ to train on without impacting its
ability to converge to an optimal Q-function.

3.3 Qx: LEARNING A Q-FUNCTION TO MAXIMIZE TD-ERROR

Next, we will describe how we use the TD-error signal defined in Section 3.2 to define an exploration
policy. rx itself is a generic reward objective, which can be maximized by any RL algorithm. However,
given its derivation from a bootstrapped Q-function, training a second Q-function to maximize rx
allows the entire algorithm to be trained off-policy with a replay buffer shared between Qθ and
the Q-function maximizing rx, which we term Qx. This approach is beneficial for exploration, as
trajectories producing improved reward may be sampled only very rarely, and a shared replay buffer
improves data efficiency for training both Q-functions.

We define a Q-function, Qx,φ(s, a) with parameters φ, whose reward objective is rx. We train Qx,φ
using the standard bootstrapped loss function

LQx,φ = ||Qx,φ(st, at)− (rx(st, at, st+1) + γmaxa′Q′
x,φ′(st+1, a

′))||2 (3)

The two Q-functions, Qθ and Qx, are trained off-policy in parallel, sharing replay data so that Qθ
can train on sources of reward discovered by Qx and so that Qx can better predict the TD-errors of
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Qθ. Since the two share data, πQx acts as an adversarial teacher for Qθ, sampling trajectories that
produce high TD-error under Qθ and thus provide novel information about the reward landscape. To
avoid off-policy issues due to the different reward objectives, we sample a fixed ratio of experiences
collected by each policy for each training batch. We use a nonparametric cross-entropy method policy
inspired by Kalashnikov et al. (2018), previously described as more robust to hyperparameter variance
(Simmons-Edler et al., 2019; Kalashnikov et al., 2018). We also experimented with a variant using
DDPG-style parametric policies (Lillicrap et al., 2015) for both Qθ and Qx , but found preventing
sampling collapse by Qθ’s policy difficult. Our full method is shown in Figure 1, and pseudocode in
Algorithm 1.

3.4 STATE NOVELTY FROM NEURAL NETWORK FUNCTION APPROXIMATION ERROR

A key question in using TD-error for exploration is: What happens when the reward landscape is flat?
Theoretically, in the case that ∀(s, a), r(s, a) = C for some constant C ∈ R, an optimal Q-function
which generalizes perfectly to unseen states will, in the infinite time horizon case, simply output
∀(s, a), Q?(s, a) =

∑∞
t=0 Cγ

t. This results in a TD-error of 0 everywhere and thus no exploration
signal. However, using neural network function approximation, we find that perfect generalization
to unseen states-action pairs does not occur, and in fact observe in Figure 2 that the distance of a
new datapoint from the training data manifold correlates with the magnitude of the network output’s
deviation from

∑∞
t=1 Cγ

t and thus with TD-error. As a result, in the case where the reward landscape
is flat TD-error exploration converges to a form of state novelty exploration. This property of neural
network function approximation has been used by several previous exploration methods to good effect,
including RND (Burda et al., 2019b) and DORA (Fox et al., 2018). In particular, the exploration
signal used by RND (extrapolation error from fitting the output of a random network) should be
analogous to rx (extrapolation error from fitting a constant value), meaning we should expect to
perform comparably to RND in the worst case where no extrinsic reward exists.

Figure 2: A neural network trained to predict a constant value does not interpolate or extrapolate
well outside its training range, which can be exploited for exploration. Predictions of 3-layer MLPs
of 256 hidden units per layer trained to imitate f(x) = 0 on R → R with training data sampled
uniformly from the range [−0.75,−0.25] ∪ [0.25, 0.75]. Each line is the final response curve of an
independently trained network once its training error has converged (MSE < 1e-7).

4 EXPERIMENTS

We performed several experiments to demonstrate the effectiveness of Qx on continuous control
benchmark tasks. We first compare with a state of the art state novelty-based method, RND (Burda
et al., 2019b), and with ε-greedy sampling as a simple baseline, in Figure 3. We then compare to
results from several previous works on SparseHalfCheetah. Finally, we present two ablations
to QXplore, as well as some analysis of its robustness in response to several hyperparameters.
Implementation details and hyperparameters for QXplore, RND, and ε-greedy can be found in
Appendix A.
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4.1 EXPERIMENTAL SETUP

We benchmark on four continuous control tasks using the MuJoCo physics simulator that each require
exploration due to sparse rewards. First, the SparseHalfCheetah task originally proposed by
VIME (Houthooft et al., 2016). Next, we benchmark on three OpenAI gym tasks, FetchPush,
FetchSlide and FetchPickAndPlace, originally developed for goal-directed exploration
methods such as HER (Andrychowicz et al., 2017). We chose these tasks as they are challenging
exploration problems that are relatively simple to control, but still involve large continuous state
spaces and in the case of the Fetch tasks learning to generalize across random object/goal positions.
More details on these environments can be found in Appendix F.

4.2 EXPLORATION BENCHMARK PERFORMANCE
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Figure 3: Performance of QXplore compared with RND and ε-greedy sampling. QXplore outperforms
RND and ε-greedy on continuous control tasks. QXplore performs better due to efficient exploration
sampling by Qx and the separation of the exploration and exploitation objectives.

Episodes until
mean reward of QXplore VIME EX2 EMI SimHash

50 2000 10000* 4740* 2580* x*
100 3000 x* 6180* 4520* x*
200 4000 x* x* 8440* x*
300 7900 x* x* x* x*

Table 1: Number of episodes required to reach mean reward milestones on SparseHalfCheetah
for several methods. QXplore outperforms previously published methods. Results marked with “*”
are previously published numbers from VIME (Houthooft et al., 2016), EMI (Kim et al., 2018), or
Tang et al. (2017). Results marked with “x” indicate that the mean reward was not achieved. Note
that as QXplore performs rollouts for both Q and Qx in parallel QXplore is less sample-efficient
relative to single-policy methods.

We show the performance of each method on each task in Figure 3. QXplore outperforms RND
modestly on the SparseHalfCheetah task, but performs much better comparatively on the
Fetch tasks- only on FetchPush, the easiest task, did RND find non-random reward. We theorize
that this improved performance on the Fetch tasks is because QXplore’s TD-error exploration drives
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the agent to discover the conditional relationship between the changing goal position and the reward
function, whereas RND and other state novelty methods are goal-agnostic since the goal is static for
the entire episode. While QXplore is not a goal-directed RL method, the fact that this relationship is
discovered through TD-error exploration is encouraging as to its broader applicability.

A separate comparison to several other prominent exploration methods is in Table 1. These methods
are built on top of TRPO (Schulman et al., 2015), so a comparison in terms of training iterations
as in Figure 3 would not be informative due to TRPO’s variable update rule. We instead compare
number of episodes of interaction required to reach a given level of reward, though QXplore was not
intended to be performant with respect to this metric. Also, as noted in Section 4.3, it is possible
to train a viable Q function completely off-policy, and thus a version of QXplore that is optimized
for reduced environment interactions without significant loss of performance should be a simple
extension. While some decrease in episode efficiency is expected due to differing baseline methods
(TRPO (Schulman et al., 2015) versus Q-Learning), compared to published results for EMI (Kim
et al., 2018), EX2 (Fu et al., 2017), VIME (Houthooft et al., 2016), and SimHash (Tang et al., 2017)
on the SparseHalfCheetah task, QXplore reaches every reward milestone faster, and achieves a
peak reward (300) not achieved by any previous method.

4.3 ROBUSTNESS

As RL tasks are highly heterogeneous, and good parameterization/performance can be hard to obtain
in practice for many methods (Henderson et al., 2018), we performed sweeps over several hyperpa-
rameters and introduce several ablations of QXplore on SparseHalfCheetah to demonstrate the
method’s robustness and validate aspects of the algorithm.

Parameter Sweeps We swept over the learning rates of Q and Qx, as well as the ratio of self-
collected versus other-collected data used to train each function. The results suggest that while the
performance of Q is somewhat sensitive to learning rate, keeping learning rates for Q and Qx the
same works well. The results also show that performance is surprisingly invariant to the on/off-policy
data ratio, including when Q is trained entirely off-policy on data collected by Qx, suggesting that
the data collected by Qx is sufficient to train a policy to maximize reward without any on-policy
rollouts. Results are shown in Figures 5 and 6 in Appendix B.

Weight Initialization Also, since neural network generalization is key to QXplore, we tested several
different network weight initialization schemes, including some that were deliberately poor priors.
We found that while the performance of Q is sensitive to initialization scheme, Qx robustly finds
reward in all cases. See Figure 7 in Appendix C.

The ‘Noisy TV’ Problem One challenge that state novelty exploration methods must overcome
is that unpredictable observations (such as from a TV displaying static) act as maxima in the
exploration reward function. One advantage to TD-error driven exploration is that it is not sensitive
to unpredictable observations as they do not affect the underlying reward function. To demonstrate
this, we tested QXplore with a variant of the SparseHalfCheetah task with noisy observations.
We observe that QXplore performs as normal in this case. Detailed results and a description of the
task can be found in Appendix D.

4.4 ABLATIONS

There are two features of QXplore that distinguish it from prior work in exploration: the use of an
adversarial pair of policies that share experiences, and the use of TD-Error to drive exploration. We
conduct ablations that assess the impact that each of these two features has on the method. Results
for both can be found in Figure 9 of Appendix E.

Single-Policy QXplore First, we test a single-policy version of QXplore by replacingQθ(s, a) with a
value function Vθ(s) trained via bootstrap and computing rx,θ(st, at, st+1) = |Vθ(st)− (rE(st, at)+
γV ′

θ′(st+1))|. This variant uses only a single sample policy, Qx, which is trained via bootstrapped
off-policy Q-learning using one-step reward targets r1 = (rx(st, at, st+1)+αrE(st, at) to maximize
a combination of intrinsic and extrinsic rewards, controlled by the hyperparameter α. We find that
this variant is sensitive to α, as it must trade off between exploration and exploitation, with the range
of optimal values varying greatly between tasks. We evaluate the performance of this ablation using
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α = 0.1, observing that while the policy is able to find reward quickly and converge faster, the need
to satisfy both objectives results in a lower converged reward than the original QXplore method.

1-Step Reward Prediction Second, we run an ablation where we replacedQθ(s, a) in the calculation
of TD-error with a function that simply predicts the current r(st, at), shown in Figure 9. Using
reward error instead of a value function in Qx still produces the same state novelty fallback behavior
in the absence of reward; however, it provides only limited reward-based exploration utility and
does not allow us to use Qθ as an optimal Q-function once trained. We tested this variant with other
parameters held the same, and observe that it fails to find reward. Reward prediction error is not
sufficient to allow strong exploration behavior.

4.5 QUALITATIVE BEHAVIORAL ANALYSIS

Qualitatively, on SparseHalfCheetah we observe interesting behavior from Qx late in training.
After initially converging to obtain reward consistently, Qx appears to get “bored” and will try to
move closer to the reward threshold, stopping short or jumping back and forth across it during an
episode, which results in reduced reward but higher TD-error. This behavior is distinctive of TD-error
seeking over state novelty seeking, as such states are not novel compared to moving past the threshold
but do result in higher TD-error. Such behavior from Qx motivates Q to explore the state space
around the reward boundary. Example sequences of such behaviors are shown in Figure 4.

Figure 4: Example trajectories showing Qx’s behavior late in training that is distinctive of TD-error
maximization. The corresponding Q network reliably achieves reward at this point. In ”fake-out”,
Qx approaches the reward threshold and suddenly stops itself. In ”cross and re-cross”, Qx crosses
the reward threshold going forward and then goes backwards through the threshold.

5 DISCUSSION AND CONCLUSIONS

Here, we have described a new biologically-inspired method for using TD-error to explore in
reinforcement learning. We instantiate a reward function using TD-error, and show that when
combined with neural network approximation, it is sufficient to discover solutions to challenging
exploration tasks in fewer training iterations than recent state novelty-based exploration methods.
TD-error has different advantages and disadvantages for exploration compared to state prediction,
and we hope that our results can spur further work on diverse exploration signals in RL.

It is also worth noting that there may be additional benefits provided by Qx for Q learning in non-
exploration contexts. Maximizing TD-error can be seen as a form of hard example mining, and for
complex tasks could result in better generalization behavior.

We emphasize that we have only described one possible approach for TD-error driven learning in
this work. Our instantiation makes several assumptions, such as the use of off-policy Q-learning,
two sampling policies, and unsigned TD-error which is positive for both under-prediction and over-
prediction of future rewards. While these assumptions improve the performance of QXplore, more
work remains to be done on the topic, including how best to trade off between TD-error exploration
and extrinsic reward maximization, on-policy TD-error, and further developing the connections
between TD-error and biological concepts of curiosity, boredom, and exploration, which may lead to
new and improved exploration methods.
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Table 2: Parameters used for benchmark runs.

DEFAULT PARAMETERS

CEM
ITERATIONS 4
NUMBER OF SAMPLES 64
TOP K 6

ALL NETWORKS
NEURONS PER LAYER 256
NUMBER OF LAYERS 3
NON-LINEARITIES RELU
OPTIMIZER ADAM
ADAM MOMENTUM TERMS β1 = 0.9, β2 = 0.99

TRAINING
Q LEARNING RATE 0.001
BATCH SIZE 128
TIME DECAY γ 0.99
TARGET Q-FUNCTION UPDATE τ 0.005
TARGET UPDATE FREQUENCY 2
TD3 POLICY NOISE 0.2
TD3 NOISE CLIP 0.5
TRAINING STEPS PER ENV TIMESTEP 1

QXPLORE-SPECIFIC
Qx LEARNING RATE 0.001
Q BATCH DATA RATIO 0.75
Qx BATCH DATA RATIO 0.75

RND-SPECIFIC
PREDICTOR NETWORK LEARNING RATE 0.001

ε-GREEDY-SPECIFIC
ε 0.1

APPENDIX A: IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We describe here the details of our implementation and training parameters. We held these factors
constant and used a shared codebase for QXplore, RND, and ε-greedy to enable a fair comparison. We
used an off-policy Q-learning method based off of TD3 (Fujimoto et al., 2018) and CGP (Simmons-
Edler et al., 2019) with twin Q-functions and a cross-entropy method policy for better hyperparameter
robustness. Each network (Qθ, Qx,φ, RND’s random and predictor networks) consisted of a 3-layer
MLP of 256 neurons per hidden layer, with ReLU non-linearities. We used a batch size of 128 and
learning rate of 0.001, and for QXplore sampled training batches for Q and Qx of 75% self-collected
data and 25% data collected by the other Q-function’s policy as described in Algorithm 1.

We present the parameters we used for the benchmark tasks in Table 2.

APPENDIX B: PARAMETER SWEEPS

We performed two sets of parameter sweeps for QXplore: varying the learning rates of Q and Qx,
and varying the ratios of data sampled by each Q-function’s policy used in training batches for each
method. For learning rate, we tested combinations (QLR, QxLR) (0.01, 0.01), (0.01, 0.001), (0.001,
0.01), (0.001, 0.001), (0.001, 0.0001), (0.0001, 0.001), (0.0001, 0.0001).

For batch data ratios, we tested combinations (specified as self-fraction for Q, then self-fraction for
Qx) of (0, 1), (0.25, 0.75), (0.5, 0.5), (0.75, 0.25).

Results for these sweeps can be seen in Figures 5 and 6. QXplore is sensitive to learning rate, but
relatively robust to the training data mix, to the point of Q training strictly off-policy with only
modest performance loss.
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(a) SparseHalfCheetah (b) FetchPush-v1

Figure 5: Learning rate sweeps for Q and Qx

(a) SparseHalfCheetah (b) FetchPush-v1

Figure 6: Sample ratio sweeps for Q and Qx

APPENDIX C: WEIGHT INITIALIZATION

As we use neural net function approximation error as a state novelty baseline for early exploration,
the behavior of Qx may be sensitive to weight initialization. To test this, in addition to the Pytorch
default initialization method “Kaiming-Uniform,” (He et al., 2015) which we used for all runs
outside this section, we also tested initializing both Q and Qx with “Kaiming-Normal” and “Xavier-
Uniform,” (Glorot & Bengio, 2010) two other standard initialization methods. We further tested two
naive distributions that produced very high magnitude initial outputs, “Normal,” sampling weight
values from N(0, 1) and “Uniform,” sampling values from U(−1, 1). These configurations were not
expected to perform well, but do test the ability of Qx to explore given a poor initialization. In all
cases other than “Kaiming-Uniform” we set the bias of each neuron to 0. The results of this test for
SparseHalfCheetah are shown in Figure 7.

“Kaiming-Normal” and “Xavier-Uniform” both showed modest decrease in overall performance, but
bothQ andQx were able to converge on reward. “Normal” and “Uniform” however both more-or-less
prevented Q from converging on reward, though there is some sign that “Normal” is recovering. The
performance of Qx however is much more mild- only “Normal” and to a lesser extent “Uniform”
caused significant issues with discovering and converging on reward. This suggests that Qx is not
particulary dependent on careful weight initialization to explore with function approximation error.
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(b) Initialization of Qx

Figure 7: Several alternate initialization schemes for Q and Qx. While Q is negatively impacted, Qx
is relatively robust to poor initializations such as “Normal” and “Uniform.”

APPENDIX D: THE ‘NOISY TV’ PROBLEM

The ‘Noisy TV’ problem is a classic issue with some state-novelty exploration methods in which
states with unpredictable observations serve as maxima in the novelty reward space. QXplore’s
TD-error objective is not fundamentally vulnerable to the problem, but to demonstrate that our
function approximation early in training is also no subject to it, we trained QXplore on a variant of the
SparseHalfCheetah task where we add a random normally-distributed value to the observation
vector of the agent. The variance of this noise value increases proportionately to the movement of the
cheetah in the negative direction (away from the reward threshold). An agent vulnerable to the noisy
tv problem will be enticed to explore in the negative direction rather than forward, as this maximizes
the novelty/unpredictability of the observations.

We show the results of training QXplore on this environment in Figure 8 for both Q and Qx, as well
as the mean position of the cheetah along the movement dimension during Qx’s training rollouts. As
expected, the performance of neither Q nor Qx is meaningfully altered relative to the baseline, and
Qx is not biased to explore backwards to a greater degree than it typically does early in training.

APPENDIX E: ABLATIONS

To demonstrate the necessity of the major components of QXplore, we performed two ablations,
shown in Figure 9 and discussed in the main paper in Section 4.4.

APPENDIX F: ENVIRONMENT DETAILS

We use the SparseHalfCheetah environment proposed by Houthooft et al. (2016) in which a
simulated cheetah receives a reward of 0 if it is at least 5 units forward from the initial position and
otherwise receives a reward of -1. We also use the OpenAI gym tasks, FetchPush, FetchSlide,
and FetchPickAndPlace, which were originally developed for benchmarking HER Andrychow-
icz et al. (2017). The objective in these environments is to move a block to a target position, with a
reward function returning -1 if the block is not at the target and 0 if it is at the target. For consistency
between benchmarks, we structured the reward function of the SparseHalfCheetah task to
match the Fetch tasks, such that the baseline reward level is -1 while a successful state provides
0 reward, but report reward values on a 0 to 500 scale for direct comparison with previous work.
We trained each method with 5 random seeds for 5,000 episodes on SparseHalfCheetah and
50,000 episodes on Fetch tasks. Time to convergence on these tasks for any exploration method is
highly variable, and as such we visualize the mean and standard deviation of the runs in our results.
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(a) Noisy observation effects on Q
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(b) Noisy observation effects on Qx
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(c) Noisy observation effects on absolute position

Figure 8: QXplore trained on a ‘noisy tv’ variant of SparseHalfCheetah where one element of
the observation vector is normally distributed random value whose variance increases if the cheetah
moves in the negative direction. The performance of QXplore is not impacted in any way by this
noise, and it trains as normal.
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Figure 9: Plot showing the performance of two ablations, 1-Step Reward Prediction and Single-Policy
QXplore, compared to the original QXplore method. In the 1-Step ablation, Qx is trained to predict
a combination of extrinsic reward and reward prediction error, and fails to make progress. In the
Single-Policy ablation, the policy converges faster, but to a worse policy than vanilla QXplore due to
the need to balance TD-error and extrinsic reward maximization.
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