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ABSTRACT

Various gradient compression schemes have been proposed to mitigate the com-
munication cost in distributed training of large scale machine learning models.
Sign-based methods, such as signSGD (Bernstein et al., [2018]), have recently been
gaining popularity because of their simple compression rule and connection to
adaptive gradient methods, like ADAM. In this paper, we perform a general analy-
sis of sign-based methods for non-convex optimization. Our analysis is built on
intuitive bounds on success probabilities and does not rely on special noise distri-
butions nor on the boundedness of the variance of stochastic gradients. Extending
the theory to distributed setting within a parameter server framework, we assure
exponentially fast variance reduction with respect to number of nodes, maintaining
1-bit compression in both directions and using small mini-batch sizes. We validate
our theoretical findings experimentally.

1 INTRODUCTION

One of the key factors behind the success of modern machine learning models is the availability of
large amounts of training data (Bottou & Le Cunl 2003; [Krizhevsky et al.| |2012; [Schmidhuber;, 2015).
However, the state-of-the-art deep learning models deployed in industry typically rely on datasets
too large to fit the memory of a single computer, and hence the training data is typically split and
stored across a number of compute nodes capable of working in parallel. Training such models then
amounts to solving optimization problems of the form

M
mingera f(7) = 57 X fm(2), (D
m=1
where f,, : R? — R represents the non-convex loss of a deep learning model parameterized by
r € R% associated with data stored on node m.

Arguably, stochastic gradient descent (SGD) (Robbins & Monro, |1951} |Vaswani et al., 2019; (Qian
et al., 2019) in of its many variants (Kingma & Ba, 2015} |Duchi et al., 2011} Schmidt et al.| 2017}
Zeiler} 2012}, [Ghadimi & Lan| [2013) is the most popular algorithm for solving (I). In its basic
implementation, all workers m € {1,2,..., M} in parallel compute a random approximation
G (z1) of V fi, (), known as the stochastic gradient. These approximations are then sent to a
master node which performs the aggregation

i) = & 5 g7 ().

m=1
The aggregated vector is subsequently broadcast back to the nodes, each of which performs an update
of the form
Trp1 = Tk — V9(Tr),
thus updating their local copies of the parameters of the model.

1.1 GRADIENT COMPRESSION

Typically, communication of the local gradient estimators §™ () to the master forms the bottleneck
of such a system (Seide et al.,[2014; Zhang et al., 2017; Lin et al.,[2018). In an attempt to alleviate
this communication bottleneck, a number of compression schemes for gradient updates have been
proposed and analyzed (Alistarh et al.|[2017; Wang et al.,|2018; Wen et al.,|2017; [Khirirat et al., | 2018}
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Table 1: Summary of the theoretical results obtained in this work. O notation ignores logarithmic
factors and O* notation shows the rate to a neighbourhood of the solution.

This work This work SGD (Sec. l (Bernstein et al., 2019)
Theorern Theorem Theorem 6| s1ignSGD, Theorem 1
Step size w1 w1 % (1
e =y 0" (%) 0" (%) 0" (%) X
Step size ~( 1 1 ~ [ 1
= Al 0 () o () 0 () X
Step size L L L .
v=0(%) o(k) o) o () o ()
Can handle biased
estimators? v v/ X X
Weak dependence on 1 & 1 &, L&
smoothness parameters? v d 1; Li /g Z; Li X max Li 7 l; L
X
Weak noise v v X unimodal,
assumptions? pi > 3 pi> 3 El|gll3 < Cﬂ symmetric 82z
Var[g;] < o3
Gradient norm used 2 A mix of
p-norm p-norm (squared) [

in theory 1* and 12 norms

Mishchenko et al., 2019). A compression scheme is a (possibly randomized) mapping @ : R? — R?,
applied by the nodes to §"(zy) (and possibly also by the master to aggregated update in situations
when broadcasting is expensive as well) in order to reduce the number of bits of the communicated
message.

Sign-based compression. Although most of the existing theory is limited to unbiased compression
schemes, i.e., on operators () satisfying EQ(z) = z, biased schemes such as those based on
communicating signs of the update entries only often perform much better (Seide et al., 2014} Strom,
2015; |Wen et al., [2017; |Carlson et al.,[2015} |Balles & Hennig|, |2018}; | Bernstein et al.,[2018};[2019;
Zaheer et al.l 2018; [Liu et al.| [2019). The simplest among these sign-based methods is signSGD (see
also Algorithm I} Option 1), whose update direction is assembled from the component-wise signs of
the stochastic gradient.

Adaptive methods. While ADAM is one of the most popular adaptive optimization methods used
in deep learning (Kingma & Bal 2015), there are issues with its convergence (Reddi et al., [2019)
and generalization (Wilson et al.,[2017) properties. It was noted in|Balles & Hennig| (2018)) that the
behaviour of ADAM is similar to a momentum version of signSGD. Connection between sign-based
and adaptive methods has long history, originating at least in Rprop (Riedmiller & Braun, |1993)) and
RMSprop (Tieleman & Hinton, [2012). Therefore, investigating the behavior of signSGD can improve
our understanding on the convergence of adaptive methods such as ADAM.

1.2 CONTRIBUTIONS

We now summarize the main contributions of this work. Our key results are summarized in Table[T]

e 2 methods for 1-node setup. In the M = 1 case, we study two general classes of sign based
methods for minimizing a smooth non-convex function f. The first method has the standard fornﬂ

Tpt1 & T — Yk sign §(zg), 2)

'In fact, bounded variance assumption is stronger (or, to be strict, more curtain) than SPB assumption in
the sense of differential entropy, but not in the direct sense. The entropy of probability distribution under the
bounded variance assumption is bounded, while under the SPB assumption it could be arbitrarily large.

%sign g is applied element-wise to the entries g1, g2, ...,ga of g € R?. For ¢t € R we define signt = 1 if
t>0,signt =0ift =0,and signt = —1if ¢ < 0.
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while the second has a new form not considered in the literature before:
Try1 < argmin{ f(xx), f(zx — e sign g(zx))}- 3)

o Key novelty. The key novelty of our methods is in a substantial relaxation of the requirements that
need to be imposed on the gradient estimator §(x,) of the true gradient V f (z*). In sharp contrast
with existing approaches, we allow §(zy) to be biased. Remarkably, we only need one additional and
rather weak assumption on § () for the methods to provably converge: we require the signs of the
entries of §(x,) to be equal to the signs of the entries of V f(2*) with a probability strictly larger
than 1/2 (see Section 2} Assumption|[I). We show through a counterexample (see Section[2.2)) that

this assumption is necessary.
e Geometry. As a byproduct of our analysis, we uncover a mixed [*-1?
methods (see Section [3).

geometry of sign descent

e Convergence theory. We perform a complexity analysis of methods () and (3)) (see Section[d.T}
Theorem . While our complexity bounds have the same O(1/vK) dependence on the number of
iterations, they have a better dependence on the smoothness parameters associated with f. TheoremlT]
is the first result on signSGD for non-convex functions which does not rely on mini-batching, and
which allows for step sizes independent of the total number of iterations K. Finally, Theorem 1 in
Bernstein et al.|(2019) can be recovered from our general Theorem E} Our bounds are cast in terms
of a novel norm-like function, which we call the p-norm, which is a weighted I norm with positive
variable weights.

e Distributed setup. We extend our results to the distributed setting with arbitrary M (Section[4.2),
where we also consider sign-based compression of the aggregated gradients.

2 SUCCESS PROBABILITIES AND GRADIENT NOISE

In this section we describe our key (and weak) assumption on the gradient estimator §(z) of the true
gradient V f (), and give an example which shows that without this assumption, method (2)) can fail.

2.1 SUCCESS PROBABILITY BOUNDS

Assumption 1 (SPB: Success Probability Bounds). For any x € RY, we have access to an indepen-
dent (and not necessarily unbiased) estimator G(x) of the true gradient g(x) == V f(x) that satisfies

pi(x) = Prob (sign g;(z) = signgi(z)) > 5, if gi(x) #0 “4)
forallz € R*and alli € {1,2,...,d}.

We will refer to the probabilities p; as success probabilities. As we will see, they play a central
role in the convergence of sign based methods. We stress that Assumption|l|is the only assumption
on gradient noise in this paper. Moreover, we argue that it is reasonable to require from the sign
of stochastic gradient to show true gradient direction more likely than the opposite one. Extreme
cases of this assumption are the absence of gradient noise, in which case p; = 1, and an overly noisy
stochastic gradient, in which case p; ~ %

Remark 1. Assumption[l|can be relaxed by replacing bounds (@) with
E [sign (gi(2) - gi(x))] > 0, if gi(x) #0.

However, if Prob(sign §;(x) = 0) = 0 (e.g. in the case of §;(x) has continuous distributions), then
these two bounds are identical.

Extension to stochastic sign oracle. Notice that we do not require § to be unbiased. Moreover, we
do not assume uniform boundedness of the variance, or of the second moment. This observation
allows to extend existing theory to more general sign-based methods with a stochastic sign oracle.
By a stochastic sign oracle we mean an oracle that takes z;, € R? as an input, and outputs a random
vector 8, € R? with entries in +1. However, for the sake of simplicity, in the rest of the paper we
will work with the signSGD formulation, i.e., we let §; = sign §(zy).
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2.2 A COUNTEREXAMPLE TO SIGNSGD

Here we analyze a counterexample to signSGD discussed in [Karimireddy et al.|(2019). Consider the
following least-squares problem with unique minimizer z* = (0, 0):

min f(z) = 5 [(a1,2)° + (a2, 2)°] . ar = [ 1] a2 = [ 1],

where ¢ € (0, 1) and stochastic gradient §(z) = V{a;, ) = 2(a;, v)a; with probabilities 1/2 for
i = 1,2. Let us take any point from the line | = {(z1, 22): 21 + 22 = 2} as initial point x( for
the algorithm and notice that sign §(x) = £(1, —1) for any € . Therefore, signSGD with any
step-size sequence remains stuck along the line [, whereas the problem has a unique minimizer at the
origin.

We now investigate the cause of the divergence. In this counterexample, Assumption [I]is violated.
Indeed, note that

sign g(z) = (—1)"sign{a;,x) [ 7']  with probabilities § for i=1,2.
By S = {z € R?: (a1,z) - {az,z) > 0} # () denote the open cone of points having either an acute
or an obtuse angle with both a;’s. Then for any = € S, the sign of the stochastic gradient is £(1, —1)
with probabilities 1/2. Hence for any 2 € S, we have low success probabilities:

pi(z) = Prob (sign §;(z) =signg;(z)) < 3, i=1,2.

So, in this case we have an entire conic region with low success probabilities, which clearly violates
. Furthermore, if we take a point from the complement open cone S¢, then the sign of stochastic
gradient equals to the sign of gradient, which is perpendicular to the axis of .S (thus in the next
step of the iteration we get closer to S). For example, if (a1,2) < 0 and (az,z) > 0, then
sign g(«) = (1, —1) with probability 1, in which case x — v sign §(z) gets closer to low success
probability region S.

In summary, in this counterexample there is a conic region where the sign of the stochastic gradient
is useless (or behaves adversarially), and for any point outside that region, moving direction (which
is the opposite of the sign of gradient) leads toward that conic region.

2.3  SUFFICIENT CONDITIONS FOR SPB

To justify our SPB assumption, we show that it holds under general assumptions on gradient noise.

Lemma 1 (see B.1). Assume that for any point x € R?, we have access to an independent and
unbiased estimator §(x) of the true gradient g(x). Assume further that each coordinate §; has

a unimodal and symmetric distribution with variance o2 = af(a:), 1 < i < d Then p; >

i
1 1 lgil 1.,
2" 2gi[+V3o; > 59 #0.

Next, we remove the distribution condition and add a condition on the variance bounds.

Lemma 2 (see[B.2). Assume that for any point x € R%, we have access to an independent, unbiased
estimator §(x) of the true gradient g(x), with coordinate-wise bounded variances o;(x) < ¢;|g;(z)|
for some constants 0 < ¢; < 1/v2. Then p; > 1 — c? > %, if ¢i#0.

Finally, we give a condition on mini-batch size for the SPB assumption to hold.

Lemma 3 (see [B.3). Assume that for any point x € R% we have access to an independent and
unbiased estimator §(x) of the true gradient g(x). Let 07 = o2(z) be the variance and v} = v (z)
be the 3th central moment of §;(x), 1 < i < d. Then SPB assumption holds if mini-batch size

7 > 2min (01‘2/9?,”?/|9i|‘7?)-

3 A NEW “NORM” FOR MEASURING THE SIZE OF THE GRADIENTS

In this section we introduce the concept of a norm-like function, which call p-norm, induced from
success probabilities. Used to measure gradients in our convergence rates, p-norm is a technical tool
enabling the analysis.
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Figure 1: Contour plots of the 12

Definition 1 (p-norm). Let p == {p;(x) ;izl be the collection of probability functions from the SPB
assumption. We define the p-norm of gradient g(x) via || g(x)||, == 2?21(2;)1' () — 1)|gi(z)]|.

Note that p-norm is not a norm as it may not satisfy the triangle inequality. However, under SPB
assumption, p-norm is positive definite as it is a weighted /' norm with positive (and variable) weights
2pi(z) —1 > 0. Thatis, ||g||, > 0, and ||g||, = 0 if and only if ¢ = 0. Under the assumptions
of Lemma p-norm can be lower bounded by a weighted I! norm with positive constant weights
1—2¢2>0: |gll, = 2%, (20 — D]gs] = 3%, (1 —2¢2)|gi|. Under the assumptions ofLemma
p-norm can be lower bounded by a mixture of the {! and squared /2 norms:

d d 2
lolly = 3o = Dl > - i = lgloa. )
1= i=

Note that [1'2-norm is again not a norm. However, it is positive definite, continuous and order
preserving, i.e., for any g%, g, § € R? we have: i) ||g|[;1.> > 0 and ||g;1.> = 0 if and only if g = 0;
ii) g* — g (in [? sense) implies ||g¥||;1.2 — ||g]|;1.2, and iii) 0 < g; < §; for any 1 < i < d implies
llgllir2 < ||gl|;1.2. From these three properties it follows that ||g*||;1.2 — 0 implies g* — 0. These
properties are important as we will measure convergence rate in terms of the /! norm in the case of
unimodal and symmetric noise assumption. To understand the nature of the I1'? norm, consider the
following two cases when o;(z) < ¢|g;(x)| + ¢ for some constants ¢, ¢ > 0. If the iterations are in
e-neighbourhood of a minimizer z* with respect to the [*° norm (i.e., max;<;<q |g;| < €), then the

12 norm is equivalent to scaled /> norm squared: mﬂgﬂg < g2 < ﬁ”g”% On

the other hand, if iterations are away from a minimizer (i.e., minj<;<q|g;| > L), then the {*:?-norm

is equivalent to scaled /* norm: m llgllr < llgllire < ﬁ llgll1- These equivalences are

visible in Figure where we plot the level sets of g — ||g||;1.2 at various distances from the origin.

4 CONVERGENCE THEORY

Now we turn to our theoretical results of sign based methods. First we give our general convergence
results under the SPB assumption. Afterwards, we present convergence result in the distributed
setting under the unimodal and symmetric noise assumptions.

Throughout the paper we assume that f: R? — R is lower bounded, i.e., f(z) > f* = € R?
and is L-smooth with some non-negative constants L = [Ly, ..., Ly]. That is, we assume that
fly) < fle)+(Vf(x),y—z)+ Z?Zl Li(y; —a;)? forall z, y € R We allow f to be nonconvex.

Let L : é Zi L; and Ly, = max; L;.

4.1 CONVERGENCE ANALYSIS FOR M =1

We now state our convergence result for Algorithm[Tjunder the general SPB assumption.

Algorithm 1 SIGNSGD
1: Input: step size y;, current point xy,
Jx  StochasticGradient(xy,)
. Option 1: x5 1 < x — Y& sign g
: Option 2: x4 < argmin{ f(x), f(xr — Y& sign gx) }
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Theorem 1 (Non-convex convergence of signSGD, see [B.4). Under the SPB assumption, signSGD
(Algorithmwith Option 1) with step sizes v, = vo/V'k + 1 converges as follows

: 1 | fEo)=f" 7 Y0dL log K
Jmin BV (i)l < e [FE 4 qdL] 4 ghios ©)
If v =7 > 0, we get 1/K convergence to a neighbourhood of the solution:
'S BVl < Lokl + 4 g
K Te)llp = T3 K 2 7

We now comment on the above result:

e Generalization. Theorem [I] is the first general result on signSGD for non-convex functions
without mini-batching, and with step sizes independent of the total number of iterations K. Known
convergence results (Bernstein et al., 2018;2019) on signSGD use mini-batches and/or step sizes
dependent on K. Moreover, they also use unbiasedness and unimodal symmetric noise assumptions,
which are stronger assumptions than our SPB assumption (see Lemmal(I). Finally, Theorem 1 in
Bernstein et al| (2019) can be recovered from Theorem [T](see Section D] for the details).

e Convergence rate. Rates (6) and (7) can be arbitrarily slow, depending on the probabilities p;. This
is to be expected. At one extreme, if the gradient noise was completely random, i.e., if p; = 1/2, then
the p-norm would become identical zero for any gradient vector and rates would be trivial inequalities,
leading to divergence as in the counterexample. At other extreme, if there was no gradient noise, i.e.,
if p; = 1, then the p-norm would be just the I norm and from (B) we get the rate O(1/v/K) with
respect to the I norm. However, if we know that p; > 1/2, then we can ensure that the method will
eventually converge.

e Geometry. The presence of the p-norm in these rates suggests that there is no particular geometry
(e.g., I! or [?) associated with signSGD. Instead, the geometry is induced from the success probabili-
ties. For example, in the case of unbiased and unimodal symmetric noise, the geometry is described
by the mixture norm /-2,

e Practicality. The rate (7) (as well as (30)) supports the common learning schedule practice of using
a constant step size for a period of time, and then halving the step-size and continuing this process.

For a reader interested in comparing Theorem | with a standard result for SGD, we state the standard
result in the Section [C}] We now state a general convergence rate for Algorithm [ with Option 2.

Theorem 2 (see [B.5). Under the SPB assumption, Algorithm [I|(Option 2) with step sizes 7, =

Y0/Vk + 1 converges as follows: + SRS EIV ()], < \/% [% + 'yodf/} . In the case

of constant step size vy, = v > 0, the same rate as (/) is achieved.

Comparing Theorem 2] with Theorem [I] notice that a small modification in Algorithm [I]can remove
the log-dependent factor from (6)); we then bound the average of past gradient norms instead of the
minimum. On the other hand, in a big data regime, function evaluations in Algorithm[I](Option 2,
line 4) are infeasible. Clearly, Option 2 is useful only when one can afford function evaluations and
has rough estimates about the gradients (i.e., signs of stochastic gradients). This option should be
considered within the framework of derivative-free optimization.

4.2 CONVERGENCE ANALYSIS IN DISTRIBUTED SETTING

Algorithm 2 DISTRIBUTED SIGNSGD WITH MAJORITY VOTE

1: Input: step sizes {vx }, current point xy, # of nodes M
2: on each node

3: g™ (x) < StochasticGradient(xy,)

4: on server

5: pull sign §™ () from each node

6: push sign [Z%Zl sign gmm)} to each node

7: on each node
. M . .
8: Tyl ¢ Tp — Vg Sign [Zm:l sign g™ (xk)}
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Figure 2: Experiments on distributed signSGD with majority vote using Rosenbrock function. Plots
show function values with respect to iterations averaged over 10 repetitions. Left plot used constant
step size v = 0.02, right plot used variable step size with vy = 0.02. We set mini-batch size 1 and
used the same initial point. Dashed blue lines show the minimum value.

In this part we present the convergence result of distributed signSGD (Algorithm 2)) with majority
vote introduced in [Bernstein et al.| (2018). Majority vote is considered within a parameter server
framework, where for each coordinate parameter server receives one sign from each node and sends
back the sign sent by the majority of nodes. Known convergence results (Bernstein et al., [2018;
2019) use O(K) mini-batch size as well as O(1/K) constant step size. In the sequel we remove this
limitations extending Theorem|I]to distributed training. In distributed setting the number of nodes M
get involved in geometry introducing new pj,s-norm, which is defined by the regularized incomplete
beta function I (see [B-6).

Definition 2 (pp;-norm). Let M > 1 be the number of nodes and | = [MT] Define pyr-norm of
. d

gradient g(x) at x € R as ||g(),,, = 3212 (2L(pi(2);1,1) — 1) |gi(=)].

Now we can state the convergence rate of distributed signSGD with majority vote.

Theorem 3 (Non-convex convergence of distributed signSGD, see [B.6). Under SPB assumption,
distributed signSGD (Algorithm|2) with step sizes v, = vo/V'k + 1 converges as follows

. —f* 7 dL log K
ming<r<r EIVF(@n)llpn < e [{E2L + q0dL| + 5L 8K ®)
For constant step sizes v, = v > 0, we have convergence up to a level proportional to step size :
Z B[V f(@i)lloy < Ho + 4. ©

Variance Reduction. Using Hoeffding’s inequality, we show that |g(x)/,,, — [lg(x)||1 expo-
nentially fast as M — oo: (1 —exp (—(2p(z) — 1)%1)) [lg(z) |1 < ll9(@)]lpns < llg(2)]l1, where

p(x) = minj<;<q p;(x) > /2. Hence, in some sense, we have exponential variance reduction in
terms of number of nodes (see[B.7).

Number of nodes. Notice that theoretically there is no difference between 2/ —1 and 2] nodes, and this

in not a limitation of the analysis. Indeed, as it is shown in the proof, expected sign vector at the master

with M = 2] — 1 nodes is the same as with M = 2[ nodes: ]Esign(g@l) gi) = E&gn(gz(m b “gi),

K]

where §(™) is the sum of stochastic sign vectors aggregated from nodes. The intuition behind this
phenomenon is that majority vote with even number of nodes, e.g. M = 21, fails to provide any sign
with little probability (it is the probability of half nodes voting for +1, and half nodes voting for
—1). However, if we remove one node, e.g. M = 2] — 1, then master receives one sign-vote less but
gets rid of that little probability of failing the vote (sum of odd number of +1 cannot vanish). So,
somehow this two things cancel each other and we gain no improvement in expectation adding one
more node to parameter server framework with odd number of nodes.

5 EXPERIMENTS

We verify our theoretical results experimentally using the MNIST dataset with feed-forward neural
network (FNN) and the well known Rosenbrock (non-convex) function with d = 10 variables:

F(@) = X0 fu@) = S 100(2i 40 — 222 + (1 —27)?, @€ R (10)
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Figure 3: Comparison of signSGD and SGD on MNIST dataset with a fixed budget of gradient
communication (MB) using single hidden layer FNN. For each batch size, we first tune the constant
step size over logarithmic scale {10,1, 1e — 1, 1e — 2, 1e — 2, 1le — 3} and then fine tune it. Clearly,
signSGD beats SGD if we compare their accuracies against communication. As suggested by the
theory (see Lemma [3) bigger mini-batch size increases the success probabilities p; and thus improves
the convergence.

Stochastic formulation of minimization problem for Rosenbrock function is as follows: at any point
x € R? we have access to biased stochastic gradient §(z) = V fi(x) + &, where index i is chosen
uniformly at random from {1,2,...,d — 1} and £ ~ N (0,v%]) with v > 0.
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Figure 4: Performance of signSGD with constant step size (y = 0.25) under four different noise
levels (mini-batch size 1, 2, 5, 8) using Rosenbrock function. Each column represent a separate
experiment with function values, evolution of minimum success probabilities and the histogram
of success probabilities throughout the iteration process. Dashed blue line in the first row is the
minimum value. Dashed red lines in second and third rows are thresholds 1/2 of success probabilities.
The shaded area in first and second rows shows standard deviation obtained from ten repetitions.

Figure 2] illustrates the effect of multiple nodes in distributed training with majority vote. As we see
increasing the number of nodes improves the convergence rate. It also supports the claim that in
expectation there is no improvement from 2/ — 1 nodes to 2/ nodes.

Figure ] shows the robustness of SPB assumption in the convergence rate (7) with constant step size.
We exploited four levels of noise in each column to demonstrate the correlation between success
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probabilities and convergence rate. In the first experiment (first column) SPB assumption is violated
strongly and the corresponding rate shows divergence. In the second column, probabilities still
violating SPB assumption are close to the threshold and the rate shows oscillations. Next columns
show the improvement in rates when success probabilities are pushed to be close to 1.
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Appendix: “On Stochastic Sign Descent
Methods”

A  EXTRA EXPERIMENTS

In this section we perform several additional experiments for further insights.
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Figure 5: Performance of signSGD with variable step size (7o = 0.25) under four different noise
levels (mini-batch size 1, 2, 5, 7) using Rosenbrock function. As in the experiments of Figure@with
constant step size, these plots show the relationship between success probabilities and the convergence
rate (§). In low success probability regime (first and second columns) we observe oscillations, while
in high success probability regime (third and forth columns) oscillations are mitigated substantially.
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Figure 6: In this part of experiments we investigated convergence rate (7) to a neighborhood of the
solution. We fixed gradient noise level by setting mini-batch size 2 and altered the constant step size.
For the first column we set bigger step size v = 0.25 to detect the divergence (as we slightly violated
SPB assumption). Then for the second and third columns we set v = 0.1 and v = 0.05 to expose the
convergence to a neighborhood of the minimizer. For the forth column we set even smaller step size
v = 0.01 to observe a slower convergence.
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Figure 7: Unit balls in /12 norm (5)) with different noise levels.
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B PROOFS

B.1 SUFFICIENT CONDITIONS FOR SPB: PROOF OF LEMMA [T

Here we state the well-known Gauss’s inequality on unimodal distributionsﬂ

Theorem 4 (Gauss’s inequality). Let X be a unimodal random variable with mode m, and let o2, be
the expected value of (X — m)?. Then for any positive value of r,

4 (o 2
= m > m
Prob(|X —m|>7r) << 9 ( Tl) N yr= f
~ om otherwise

Applying this inequality on unimodal and symmetric distributions, direct algebraic manipulations
give the following bound:

4 (o 2 r o \/g

_4(a o« V3
Prob(lXulér)z{ll LA e L
V3o otherwise T/U—F\/g

where m = p and orm = o2 are the mean and variance of unimodal, symmetric random variable X,
and r > 0. Now, using the assumption that each g;(x) has unimodal and symmetric distribution, we
apply this bound for X = §;(z), u = g;(z),0% = o (x) and get a bound for success probabilities
Prob(g; > 0), ifg; >0
Prob(g; <0), ifg; <0
1 4+Prob(0<g; <g;), ifg;>0
+Pr0bgl<gl<0) if g; <0

_{ + 3Prob(0 < g; < 2g;), ifg; >0
1
2"
1
2
1
2

Prob(sign g; = signg;) = {

1 +1Prob(2g; < §; <0), ifg; <0

PYOb(L% gi| <lgil)
1 ‘g¢|/0'z
2g|/os + V3

1 gl
2 ‘gz‘ + \[Uz

Improvment on Lemma [1| and /2 norm: The bound after Gauss inequality can be improved
including a second order term

+

+

1_4(c ife < V3 1
Prob<|X—u<r>>{”9(T)’ otteraics = T T T
e otherwise 14+ 7/v3o + (7/V30)
Indeed, letting z := 7/v/30 > 2/3, we get 1 — 93Z >1- + ——— as it reduces to 232% — 42 — 4 > 0.

Otherwise, if 0 < z < 2/3,then z > 1 — 1+z+22 as it reduces tol >1— 23 The improvement is
tighter as
r/o 1 1

=1- <1-— .
T/U—l— \/g 1+7/v3e — 1+ 7/V3o + (7/v30)?

Hence, continuing the proof of Lemmal[l] we get
1

1
O N> 1 - =
Prob(sign g; = signg;) > 1 RV (PRT

and we could have defined [':2-norm in a bit more complicated form as
4 1
1,2 1= 1 — il
lollas =3 (* o )
3see https://en.wikipedia.org/wiki/Gauss%27s_inequality
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B.2 SUFFICIENT CONDITIONS FOR SPB: PROOF OF LEMMA 2]

Here we estimate the failure probabilities of sign g(x) when g;(x) # 0:
Prob(sign g; # sign g;) = Prob(|g; — g:| = || + [g:])

< Prob(|gi — gi| > |gi])

= Prob((gi — ¢:)* > g7)

< E[(9: —29¢)2]
9i
_a
g
Hence )
Prob(sign g; = signg;) > 1 — U—; >1-c2
9i

B.3 SUFFICIENT CONDITIONS FOR SPB: PROOF OF LEMMA [3]

We will split the derivation into three lemmas providing some intuition on the way. The first two
lemmas establish success probability bounds in terms of mini-batch size. Essentially, we present
two methods: one works well in the case of small randomness, while the other one in the case of
non-small randomness. In the third lemma, we combine those two bounds to get the condition on
mini-batch size ensuring SPB assumption.

Lemmad. Let X1, X5, ..., X, beii.d. random variables with non-zero mean . :== EX1 5 0, finite
variance 0% := E| X, — pu|?* < oo. Then for any mini-batch size T > 1

2

. 1« ) o
Prob <51gn [7’ Zle] = &gnu) >1-—. (11

TH

Proof. Without loss of generality, we assume p > 0. Then, after some adjustments, the proof follows
from the Chebyshev’s inequality:

1 1<
>1— —Var |— X;
o2
= —
where in the last step we used independence of random variables X1, Xo, ..., X . O]

Obviously, bound (IT)) is not optimal for big variance as it becomes a trivial inequality. In the case of
non-small randomness a better bound is achievable additionally assuming the finitness of 3th central
moment.

Lemma 5. Let X1, Xo, ..., X, be i.i.d. random variables with non-zero mean p := EX; # 0,
positive variance 0 = E|X; — p|? > 0 and finite 3th central moment v® = E|X; — u|? < oo.
Then for any mini-batch size 7 > 1

A 1 vy VP
Prob (&gn lT ;Xll = 51gnu> 23 (1 + erf ( 3o ) U3ﬁ> ; (12)
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where error function erf is defined as

T
erf(z) = %/0 e dt, zeR

Proof. Again, without loss of generality, we may assume that x > 0. Informally, the proof goes
as follows. As we have an average of i.i.d. random variables, we approximate it (in the sense of
distribution) by normal distribution using the Central Limit Theorem (CLT). Then we compute
success probabilities for normal distribution with the error function erf. Finally, we take into account
the approximation error in CLT, from which the third term with negative sign appears. More formally,
we apply Berry—Esseen inequalityﬂ on the rate of approximation in CLT (Shevtsova, [2011):

3

1 T
Prob (mﬁ ;(Xi — ) >t> — Prob (N > t) iy

where N ~ A (0, 1) has the standard normal distribution. Setting ¢ = —u+/7 /0, we get

T 3
Prob <1ZXZ- > 0> — Prob (N > —“ﬁ)‘ <1 (13)
T =1

<

teR,

N |

o = 2037

It remains to compute the second probability using the cumulative distribution function of normal
distribuition and express it in terms of the error function:

1< 1<
Prob <sign [T ;XZ] = sign u) = Prob (7’ ;Xi > O)

@) 1 3
= prob (N> VT LY
o 2031

1 3

1 oo
Vr /_Mﬁ/g 203,/7

VT/o . 3
1<1+\F/M e 12 dr — — )
m™Jo O'\/F

(oo (25) -2

Clearly, bound (I2)) is better than (TT) when randomness is high. On the other hand, bound (12)
is not optimal for small randomness (¢ ~ 0). Indeed, one can show that in a small randomness
regime, while both variance ¢ and third moment % are small, the ration v/ might blow up to
infinity producing trivial inequality. For instance, taking X; ~ Bernoulli(p) and letting p — 1 gives
vjo=0 ((1 —p)Y 6). This behaviour stems from the fact that we are using CLT: less randomness
implies slower rate of approximation in CLT.

e_t2/2 dt —

N = N

O

As a result of these two bounds on success probabilities, we conclude a condition on mini-batch size
for the SPB assumption to hold.

Lemma 6. Let X1, Xo,..., X, be i.i.d. random variables with non-zero mean 11 # 0 and finite
variance 0% < co. Then

R : 1 (o VP
Prob | sign | — E X;| =signp | > -, if 7>2min|— , (14)
T 2

12 Julo?

where V2 is (possibly infinite) 3th central moment.

‘seehttps://en.wikipedia.org/wiki/Berry-Esseen_theorem
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Proof. First, if 0 = 0 then the lemma holds trivially. If v = oo, then it follows immediately from
Lemmafd] Assume both o and v are positive and finite.

In case of 7 > 202 /2 we apply Lemma again. Consider the case 7 < 202 /2, which implies
% < 1. Tt is easy to check that erf(x) is concave on [0, 1] (in fact on [0, c0)), therefore erf(z) >

erf(1)x for any x € [0, 1]. Setting x = LYT e get

V2o

which together with (I2)) gives

Prob (Sign l ZX} = mgnu) % (1 + erf\/(il) Nf _ U;\;) .

Hence, SPB assumption holds if

> v2 vt
erf(1) po?’
It remains to show that erf(1) > 1/v/2. Convexity of e” on = € [—1,0] implies e > 1 + (1 — Ye)z
for any = € [—1, 0]. Therefore

erf(1 \f/ et dt
Zﬁ/o (1—(1=1e)t?) dt

_2(2, 1y 22 1)_7_ 1
VT \3 0 3e val\3 "3.3) 9 2
Lemma (3) follows from Lemma (6) applying it to i.i.d. data g} (z), §?(), .. ., gM (z).

B.4 CONVERGENCE ANALYSIS: PROOF OF THEOREM[]]

First, from L-smoothness assumption we have
f(xps1) = f(or — Y sign gr)

SH

. L; L
< f(zr) = {9k, v sign g) Z - (e sign Ir.i)°

. dL
= f(zr) — {9k, sign gr) + 7%3,

where gi = g(z1), g = G(xk), gk.i is the i-th component of gy, and L is the average value of L;’s.
Taking conditional expectation given current iteration x, gives

dL

Elf (@k+1)lwr] < f(2r) — wE[(gr, sign gr)] + 7713 (15)
Using the definition of success probabilities p; we get
E[{gr, sign gr)] = (gk, Elsign gr]) (16)
= gri-Elsigngril = Y gr.i - Elsign gr.i] (17)
i=1 1<i<d
9k, i 70
= Y gri(pilzn) signgei + (1 — pi(wx))(— sign gi.i)) (18)
1<i<d
9k,i 70
d
= > @oilar) = Dlgral = Y @pilwr) = Dlgnsl = lgello- (19
1<i<d i=1
9k, 70
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Plugging this into (I3)) and taking full expectation, we get

E[f(zr)] — E|f(x dL
Ellgkllp < [f( k)] [f( k+1)] + 7,)%. (20)
Yk
Therefore K1 Kt
di
WElgelly < (f (o) = f*) + =7 M- 21)
k=0 k=0
Now, in case of decreasing step sizes v = yo/Vk + 1
E <
min, Elgil, Z 2 |gk|p/ Z 2
1 [ f(xo) = f*
< L |fw)= /7 dE
“VE| o Z k +1
1 -f(xo) — f = ()dL :|
< — |t og K
= VK | o Yo D) g
L[ flxo) = f* } YodL log K
= — + yodL| + .
VEL w0 2 VK
where we have used the following standard inequalities
1 1
Z — —<2+logK. (22)
k=1 \/E k=1 k

In the case of constant step size v, = v

Z Bllgel < e [(7an) - 5+ Gy7k] = LD S L

B.5 CONVERGENCE ANALYSIS: PROOF OF THEOREM 2]

Clearly, the iterations {zy } ;>0 of Algorlthml (Option 2) do not increase the function value in any
iteration, i.e. E[f(zj41)|zx] < f(z)). Continuing the proof of Theorem|1]from (20), we get

K-1 K—1 _
1 1 E[f(zx)] — E[f (@k41)] | dL
— E < = -
k=0 k=0
1

1 {f(moio fr

where we have used the following inequality

+ 70dLj| s

i\}ESNT(.

The proof for constant step size is the same as in Theorem [T}
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B.6 CONVERGENCE ANALYSIS IN DISTRIBUTED SETTING: PROOF OF THEOREM [3]

First, denote by I(p; a, b) the regularized incomplete beta function, which is defined as follows

B(p;a,b) Syt (1 =ttt
I(p;a,b) = = ,b>0,p€|0,1]. 23
(p;a,b) Blab) [l 1(1_t)b T p€[0,1] (23)

The proof of Theorem 3] goes with the same steps as in Theorem [T} except the derivation (T6)—(I9) is
replaced by

E[(gk, sign g\")] = <gk,E[signg,iM>1>

_Z!]}m' Esign gy ]
= Z |gk,il - E {s1gn( )'gk,i)]

1<i<d
gk7i7éo

= D gkl @Ii(xx); 1,1) = 1) = llgkllpu
1<i<d
9k,i 70

where we have used the following lemma.

Lemma 7. Assume that for some point x € R and some coordinate i € {1,2,...,d}, master node
receives M independent stochastic signs sign g7 (z), m = 1,..., M of true gradient g;(x) # 0. Let
G (z) be the sum of stochastic signs aggregated from nodes:

M
gt =3 signg™
m=1
Then
E [sign (9 ;)] = 21(ps:0,0) -1, (24)
where | = [(M+1)/2] and p; > 1/2 is the success probablity for coordinate 1.

2

Proof. Denote by ST the Bernoulli trial of node m corresponding to ith coordinate, where “success
is the sign match between stochastic gradient and gradient:

Sm .= {1’ if signg" =signgi | Bernoulli(p;). (25)

i 0, otherwise
Since nodes have their own independent stochastic gradients and the objective function (or dataset) is
shared, then master node receives i.i.d. trials S7", which sum up to a binomial random variable 5;:

M
= > S ~ Binomial(M, p;). (26)

m=1

First, let us consider the case when there are odd number of nodes, i.e. M = 2] — 1, [ > 1. In this
case, taking into account (23)) and (26), we have

Prob (sign QZ(M) = O) =0,
ng) :=Prob (signﬁgM) = Signgi) = Prob(S; > 1),
1-— pEM) =Prob (signggM) = —sign gi> .

It is well known that cumulative distribution function of binomial random variable can be expressed
with regularized incomplete beta function:

Prob(S; > 1) =I(py;l, M — 1+ 1) = I(ps;1,1). 27

18
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Therefore,

. ~(M M M
E [sign (5" gi) | = ol* 14 (1= ™) - (-1)
(M)

= 2p; 1
= 2Prob(S; > 1) — 1
— 20(psil,1) — 1.

In the case of even number of nodes, i.e. M = 2[, [ > 1, there is a probability to fail the vote
Prob (sign Q(M) = 0) > (0. However using and properties of beta functio gives

i

E {sign <§§2l) -giﬂ = Prob(S; >1+1)-1+Prob(S; <1—-1)-(-1)
=1I(pi;l+1,0) + 1(pis; 1,1 +1) -1
— (1)~ 1
—E [sign (gz@l‘l) -giﬂ :

This also shows that in expectation there is no difference between having 2/ — 1 and 2/ nodes. [

B.7 CONVERGENCE ANALYSIS IN DISTRIBUTED SETTING: VARIANCE REDUCTION

Here we show exponential variance reduction in distributed setting in terms of number of nodes. We
first state the well-known Hoeffding’s inequality:

Theorem 5 (Hoeffding’s inequality for general bounded random variables; see (Vershynin, [2018)),
Theorem 2.2.6). Let X1, Xo,..., Xy be independent random variables. Assume that X,, €
[Arn, Bim] for every m. Then, for any t > 0, we have

Prob %(X —EX,,) >t <exp| - 2t
m m) Z > EM (Bm_Am)2 .

m=1 m=1

Define random variables X", m = 1,2, ..., M showing the missmatch between stochastic gradient
sign and full gradient sign from node m and coordinate i:

—1, if signg]" = signg;
X" = ! 28
! { 1 otherwise (28)

3

Clearly EX?" = 1 — 2p; and Hoeffding’s inequality gives

M 2
t
Prob(i XZ”M(IQpi)zt>§exp(W>, t>0.

m=1

Choosing t = M(2p; — 1) > 0 (because of SPB assumption) yields
M 1
Prob (7;1 x> 0) < exp <—2(2pi - 1)2M> :
Using Lemma[24] we get

M
2I(p;, ;1) —1=E [Sign (QZ(M) 91)} =1— Prob (Z X" > 0) >1—exp (f(2pi — 1)21) ,

m=1

which provides the following estimate for pj/-norm:
(1 —exp (=(2p(x) = 1)%1)) llg(@)ll < ll9(@)llpar < llg(@)]l1,

where p(z) = miny<;<q pi(x) > /2.

Ssee https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
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C CONVERGENCE RESULT FOR STANDARD SGD

For comparison, here we state and prove non-convex convergence rates of standard SGD with the

same step sizes.

Theorem 6 (Non-convex convergence of SGD). Let § be an unbiased estimator of the gradient V f
and assume that E||g||3 < C for some C > 0. Then SGD with step sizes v, = Yo/V'k + 1 converges

as follows
L [ f(xo) = f* YoC Liax log K
mln E|Vf(x — | ——— +7%CLlnax| + ——— .
i BIV @0l < [P 00| 4 2 e O
In the case of constant step size v, = v > 0
K-1
1 f(xo) - f* CLmax
— > E 2< :
7 2 BVl < S50+ T

Proof. From L-smoothness assumption we have
Elf (zri)|ex] = E[f (2 — gn)|r]

< Fla) ~ Ellge mein)] + 228 g

me
= f(@e) = wllgells + =5 R Ellgell3]-

Taking full expectation, using variance bound assumption, we have

E[f (w1)] ~ Bl (0)] <~ Bllgel} + 2270

Therefore

CLmax
72

WEgk3 < E[f ()] = Elf (zr41)] + =%

Summing £k =0, 1, ..., K — 1 gives

K—

[

CLimax
WE|gell3 < (o) = £+ =522 37 .
k=0 =

Now, in case of decreasing step sizes v, = Yo/Vk + 1

in, Bllgels < 3 = Elo =
0<k<K 2= 2 ,/k 1
K—1
zo) — f*  CLyax 1
S f( 0) f + a: Y Z L
L k=0
<

[ —f* CLax
PO =T 30 L+ 2 05 1 |
L 0

[ f(zo) — f*
Yo

Yo CLmax 1Og K
2 VK

where again we have used inequalities (22)). In the case of constant step size v, = 7

- 5- w

+ Yo CVLmax:| +

K-1 CL

T 2 Blonlh < e |(te0) =57+ St

YK 2
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D RECOVERING THEOREM 1 IN (BERNSTEIN ET AL.,|2019)) FROM

THEOREM [I]
To recover Theorem 1 in (Bernstein et al.,|2019), first note that choosing a particular step size 7 in @
yields
2dL(f (o) — f*) . 2(f(wo) = f*)
ZEHQka \/Kv with v = T Jlk (€29)

Then, due to Lemmam under unbiasedness and unimodal symmetric noise assumption, we can lower
bound general p-norm by mixed /2 norm. Finally we further lower bound our /**? norm to obtain the
mixed norm used in Theorem 1 of Bernstein et al.| (2019): let H, = {1 < i < d: 0; < \/5/2|gk,i|}

di(f(l"o) - f*)
Gy A L A E
5o Kol K- g2
> =7 2 Ellgkllp2 = ——=
\/iKk:O z:: 122'91“"[01
K-1 2
5 1 Iki
> =7 Z Z gkl + — Z :
\/iK k=C zEHk ¢ Hy, Ti
1 K—-1
> = D lgwal + Z
k=0 1€H), ¢ Hy,

E STOCHASTIC SIGNSGD

Our experiments and the counterexample show that signSGD might fail to converge in general. What
we proved is that SPB assumption is roughly a necessary and sufficient for general convergence.
There are several ways to overcome SPB assumption and make signSGD to work in general, e.g.
scaled version of signSGD with error feedback (Karimireddy et al.,2019). Here we to present a
simple way of fixing this issue, which is more natural to signSGD. The issue with signSGD is that
sign of stochastic gradient is biased, which also complicates the analysis.

We define stochastic sign operator siféi, which unlike the deterministic sign operator is unbiased with
appropriate scaling factor.

Definition 3 (Stochastic Sign). Define the stochastic sign operator sign : R% — R? as

— +1, withprob. & + 1 %
(Signg)lz Mprob 3 ATl <<,
i =1, withprob. 5 — 5 Tola
and s?g;lO = 0 with probability 1.
Furthermore, we define stochastic compression operator C : R? — R as C(z) = |z||2 - signz,

which compresses rd bits to 7 + d bits (r bits per one floating point number). Then for any unbiased
estimator g we get

BIC@)] = B EC |3 = lale (5 + 575 ) ~ ke (5 - 5707 )| =Bl =

Var [C(9)] = E [IC(9) — gll3] =E [llC@)II3] —E [I3l5] = (d - DE|g]l3.

Using this relations, any analysis for SGD can be repeated for stochastic signSGD giving the same
convergence rate with less communication and with (d — 1) times worse coefficients.

Another scaled version of signSGD investigated in |Karimireddy et al.| (2019) uses non-stochastic

compression operator C’ : R — R? defined as C'(z) = Hx‘ll sign x. It is shown (see [Karimireddy.
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(2019), Theorem II) to converge as

2 (f(IO) - f*) ’yLmaXC B 252
T = DL

1 K—-1
= S EIVI ) <
k=0

where the error of current gradient compression is stored to be used in the next step. On the other
hand, adopting the analysis of Theorem 6| for the stochastic compression operator C, we get a bound

(370) B f* + 'YLmaxCd

1 K-1 f
— 2 <
I kZ:OEHVf(xk)Hz <% e

where no data needs to be stored. Furthermore, ignoring the factor 2 at the first term, later bound is
better if 7y > 1/8dL.max.

22



	Introduction
	Gradient compression
	Contributions

	Success Probabilities and Gradient Noise
	Success Probability Bounds
	A counterexample to signSGD
	Sufficient conditions for SPB

	A New ``Norm'' for Measuring the Size of the Gradients
	Convergence Theory
	Convergence Analysis for M=1
	Convergence Analysis in Distributed Setting

	Experiments
	Extra Experiments
	Proofs
	Sufficient conditions for SPB: Proof of Lemma 1
	Sufficient conditions for SPB: Proof of Lemma 2
	Sufficient conditions for SPB: Proof of Lemma 3
	Convergence Analysis: Proof of Theorem 1
	Convergence Analysis: Proof of Theorem 2
	Convergence Analysis in Distributed Setting: Proof of Theorem 3
	Convergence Analysis in Distributed Setting: Variance reduction

	Convergence Result for Standard SGD
	Recovering Theorem 1 in BZAA from Theorem 1
	Stochastic signSGD

