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Abstract

Motivated by applications to machine learning and imaging science, we study a
class of online and stochastic optimization problems with loss functions that are not
Lipschitz continuous; in particular, the loss functions encountered by the optimizer
could exhibit gradient singularities or be singular themselves. Drawing on tools
and techniques from Riemannian geometry, we examine a Riemann–Lipschitz (RL)
continuity condition which is tailored to the singularity landscape of the problem’s
loss functions. In this way, we are able to tackle cases beyond the Lipschitz
framework provided by a global norm, and we derive optimal regret bounds and
last iterate convergence results through the use of regularized learning methods
(such as online mirror descent). These results are subsequently validated in a class
of stochastic Poisson inverse problems that arise in imaging science.

1 Introduction

The surge of recent breakthroughs in machine learning and artificial intelligence has reaffirmed the
prominence of first-order methods in solving large-scale optimization problems. One of the main
reasons for this is that the computation of higher-order derivatives of functions with thousands – if not
millions – of variables quickly becomes prohibitive; another is that gradient calculations are typically
easier to distribute and parallelize, especially in large-scale problems. In view of this, first-order
methods have met with prolific success in many diverse fields, from machine learning and signal
processing to wireless communications, nuclear medicine, and many others [10, 33, 36].

This success is especially pronounced in the field of online optimization, i.e., when the optimizer faces
a sequence of time-varying loss functions ft, t = 1, 2, . . . , one at a time – for instance, when drawing
different sample points from a large training set [11, 34]. In this general framework, first-order
methods have proven extremely flexible and robust, and the attained performance guarantees are well
known to be optimal [1, 11, 34]. Specifically, if the optimizer faces a sequence of G-Lipschitz convex
losses, the incurred min-max regret after T rounds is Ω(GT 1/2), and this bound can be achieved by
inexpensive first-order methods – such as online mirror descent and its variants [11, 34, 35, 40].

Nevertheless, in many machine learning problems (support vector machines, Poisson inverse problems,
quantum tomography, etc.), the loss landscape is not Lipschitz continuous, so the results mentioned
above do not apply. Thus, a natural question that emerges is the following: Is it possible to apply
online optimization tools and techniques beyond the standard Lipschitz framework? And, if so, how?

Our approach and contributions. Our point of departure is the observation that Lipschitz conti-
nuity is a property of metric spaces – not normed spaces. Indeed, in convex optimization, Lipschitz
continuity is typically stated in terms of a global norm (e.g., the Euclidean norm), but such a norm
is de facto independent of the point in space at which it is calculated. Because of this, the standard
Lipschitz framework is oblivious to the finer aspects of the problem’s loss landscape – and, in
particular, any singularities that may arise at the boundary of the problem’s feasible region. On the
other hand, in general metric spaces, this is no longer the case: the distance between two points
is no longer given by a global norm, so it is much more sensitive to the geometry of the feasible
region. For this reason, if the (Riemannian) distance dist(x, x′) between two points x and x′ becomes
larger and larger as the points approach the boundary of the feasible region, a condition of the form
| f (x) − f (x′)| = O(dist(x′, x)) may still hold even if f becomes singular at the boundary.
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We leverage this observation by introducing the notion of Riemann–Lipschitz (RL) continuity, an
extension of “vanilla” Lipschitz continuity to general spaces endowed with a Riemannian metric. We
show that this metric can be chosen in a principled manner based solely on the singularity landscape
of the problem’s loss functions – i.e., their growth rate at infinity and/or the boundary of the feasible
region. Subsequently, using a similar mechanism to choose a Riemannian regularizer, we provide an
optimal O(T 1/2) regret guarantee through the use of regularized learning methods – namely, “follow
the regularized leader” (FTRL) and online mirror descent (OMD).

Our second contribution concerns an extension of this framework to stochastic programming. First,
in the context of stochastic convex optimization, we show that an online-to-batch conversion yields
an O(T−1/2) value convergence rate. Second, motivated by applications to nonconvex stochastic
programming (where averaging is not a priori beneficial), we also establish the convergence of the
method’s last iterate in a class of nonconvex problems satisfying a weak secant inequality. Finally,
we supplement our theoretical analysis with numerical experiments in Poisson inverse problems.

Related work. To the best of our knowledge, the first treatment of a similar question was undertaken
by Bauschke et al. [3] who focused on deterministic, offline convex programs ( ft = f for all t) without
a Lipschitz smoothness assumption (i.e., Lipschitz continuity of the gradient, as opposed to Lipschitz
continuity of the objective). To tackle this issue, Bauschke et al. [3] introduced a second-order
“Lipschitz-like” condition of the form ∇2 f 4 β∇2h for some suitable Bregman function h, and they
showed that Bregman proximal methods achieve an O(1/T ) value convergence rate in offline convex
problems with perfect gradient feedback.

Always in the context of deterministic optimization, Bolte et al. [8] extended the results of Bauschke
et al. [3] to unconstrained non-convex problems and established trajectory convergence to critical
points for functions satisfying the Kurdyka–Łojasiewicz (KL) inequality. In a slightly different
vein, Lu et al. [24] considered functions that are also strongly convex relative to the Bregman
function defining the Lipschitz-like condition for the gradients, and they showed that mirror descent
achieves a geometric convergence rate in this context. Finally, in a very recent preprint, Hanzely et al.
[16] examined the rate of convergence of an accelerated variant of mirror descent under the same
Lipschitz-like smoothness assumption.

Importantly, all these works concern offline, deterministic optimization problems with perfect gradient
feedback and regularity assumptions that cannot be exploited in an online optimization setting (such as
the KL inequality). Beyond offline, deterministic optimization problems, Lu [23] recently established
the ergodic convergence of mirror descent in stochastic non-adversarial convex problems under a
“relative continuity” condition of the form ‖∇ f (x)‖ ≤ G infx′

√
2D(x′, x)/‖x′−x‖ (with D denoting the

divergence of an underlying “reference” Bregman function h). Except for trivial cases, this condition
is not related to Riemann–Lipschitz continuity, so there is no overlap in our results our methodology.

Finally, in a very recent paper, Bécigneul and Ganea [5] established the convergence of a class of
adaptive Riemannian methods in geodesically convex problems (extending in this way classical
results for AdaGrad to a manifold setting). Importantly, the Riemannian methodology of [5] involves
the exponential mapping of the underlying metric and focuses on geodesic convexity, so it concerns
an orthogonal class of problems. The only overlap would be in the case of flat Riemannian manifolds:
however, even though the manifolds we consider here are topologically simple, they are not flat. For
example, the open unit simplex endowed with the Shahshahani metric is isometric to the positive
orthant of a sphere with the round metric (cf. Section 3). This space has constant positive curvature
and the geodesics are portions of great circles, so the two analyses are very different in that case. In
view of this, there is no overlap with the analysis and results of [5].

2 Problem setup

We begin by presenting the core online optimization framework that we will consider throughout the
rest of our paper. This can be described by the following sequence of events:

1. At each round t = 1, 2, . . . , the optimizer chooses an action Xt from a convex – but not necessarily
closed or compact – subset X of an ambient normed space V � �d.

2. The optimizer incurs a loss ft(Xt) based on some (unknown) convex loss function ft : X → �.
3. The optimizer updates their action and the process repeats.
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Remark 1. For posterity, we note that if X is not closed, ft (or its derivatives) could become singular
at a residual point x ∈ bd(X ) \ X ; in particular, we do not assume here that ft admits a smooth
extension to the closure cl(X ) of X (or even that it is bounded over bounded subsets of X ).

In this broad framework, the most widely used figure of merit is the minimization of the agent’s
regret. Formally, the regret of a policy Xt ∈ X , t = 1, 2, . . . , is defined as

Regx(T ) =

T∑
t=1

[ ft(Xt) − ft(x)], (1)

for all x ∈ X . We then say that the policy Xt leads to no regret if Regx(T ) = o(T ) for all x ∈ X .

In addition to convexity, the standard assumption in the literature for the problem’s loss functions is
Lipschitz continuity, i.e.,

| ft(x′) − ft(x)| ≤ Gt‖x′ − x‖ (LC)
for some Gt ≥ 0, t = 1, 2, . . . , and for all x, x′ ∈ X . Under (LC), if the agent observes at each
stage t an element vt of ∂ ft(Xt), straightforward online policies based on gradient descent enjoy a
bound of the form Regx(T ) = O(ḠT T 1/2), with Ḡ2

T = T−1 ∑T
t=1 G2

t [11, 34, 40]. In particular, if
G ≡ lim supT→∞ ḠT < ∞ (e.g., if each ft is G-Lipschitz continuous over X ), we have the bound

Regx(T ) = O(GT 1/2) (2)

which is well known to be min-max optimal in this setting [1].

A note on notation. Throughout our paper, we make a clear distinction between V and its dual, and
we use Dirac’s notation 〈y|x〉 for the duality pairing between y ∈ V∗ and x ∈ V (not to be confused
with the notation 〈·, ·〉 for a scalar product on V). Also, unless mentioned otherwise, all notions of
boundary and interior should be interpreted in the relative (as opposed to topological) sense. We
also make the blanket assumption that the subdifferential ∂ ft of ft admits a continuous selection
∇ ft(x) ∈ ∂ ft(x) for all x ∈ dom ∂ ft ≡ {x ∈ X : ∂ ft(x) , ∅}.

3 Riemann–Lipschitz continuity

Despite its generality, (LC) may fail to hold in a wide range of problems and applications, ranging
from support vector machines to Poisson inverse problems, quantum tomography, etc. [3, 8, 24]. The
loss functions of these problems exhibit singularities at the boundary of the feasible region, so the
standard regret analysis cited above no longer applies. Accordingly, our first step will be to introduce
a family of local norms ‖·‖x, x ∈ X , such that a variant of (LC) holds even if the derivatives ∂ f /∂xi
of f blow up near the boundary of X .

To achieve this, we will employ the notion of a Riemannian metric. This is simply a position-
dependent scalar product on V , i.e., a continuous assignment of bilinear pairings 〈·, ·〉x, x ∈ X ,
satisfying the following conditions for all z, z′ ∈ V and all x ∈ X :

1. Symmetry: 〈z, z′〉x = 〈z′, z〉x.
2. Positive-definiteness: 〈z, z〉x ≥ 0 with equality if and only if z = 0.

More concretely, in the standard basis {ei}
d
i=1 of �d, we define the metric tensor of 〈·, ·〉x as the matrix

g(x) ∈ �d×d with components

gi j(x) = 〈ei, e j〉x i, j = 1, . . . , d. (3)

The norm of z ∈ V at x ∈ X is then defined as

‖z‖2x ≡ 〈z, z〉
2
x =

d∑
i, j=1

gi j(x)ziz j = z>g(x)z. (4)

In this way, a Riemannian metric allows us to measure lengths and angles between displacement
vectors at each x ∈ X ; for illustration, we provide some notable examples below:
Example 1 (Euclidean geometry). The ordinary Euclidean metric on X = �d is g(x) = I. This yields
the standard expressions ‖z‖2x =

∑d
i=1 z2

i and 〈z, z′〉x =
∑d

i=1 ziz′i , both independent of x.
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Example 2 (Hyperbolic geometry). The Poincaré metric on the positive orthant X = �d
++ is

g(x) = diag(1/x2
1, . . . , 1/x2

d), (5)

leading to the local norm ‖z‖2x =
∑d

i=1 z2
i /x2

i . Under (5), �d
++ can be seen as a variant of Poincaré’s

half-space model for hyperbolic geometry [21]; this will become important later.

Given a Riemannian metric on X , the length of a curve γ : [0, 1] → X is defined as Lg[γ] =∫ 1
0 ‖γ̇(s)‖γ(s) ds, and the Riemannian distance between x1, x2 ∈ X is given by

distg(x1, x2) = infγ Lg[γ]. (6)
Under this definition, it is natural to introduce the following Riemannian variant of (LC):

Definition 1. We say that f : X → � is Riemann–Lipschitz continuous relative to g if
| f (x′) − f (x)| ≤ G distg(x, x′) for some G ≥ 0 and all x, x′ ∈ U . (7)

Albeit simple to state, (RLC) may be difficult to verify because it requires the computation of the
distance function distg of g – which, in turn, relies on geodesic calculations to identify the shortest
possible curve between two points. Nevertheless, if f is differentiable, Proposition 1 below provides
an alternative characterization of Riemann–Lipschitz continuity which is easier to work with:

Proposition 1. Suppose that f : X → � is differentiable. Then, (RLC) holds if and only if
‖grad f (x)‖x ≤ G for all x ∈ X . (RLC)

Remark 2. In the above, the Riemannian gradient grad f (x) of f at x is defined as follows: First, let
Z = span{x′ − x : x, x′ ∈ U } denote the tangent hull of X . Then, grad f (x) ∈ Z is defined by the
characteristic property

f ′(x; z) = 〈grad f (x), z〉x for all z ∈ Z . (8)
Existence and uniqueness of grad f (x) is due to the fact that g(x) is positive-definite – and, hence,
invertible [21]. In particular, if X is full-dimensional (so Z = V), we have:

[grad f (x)]i =
∑d

j=1
g(x)−1

i j ∂ j f (x). (9)

The proof of Proposition 1 requires the introduction of further tools from Riemannian geometry;
seeing as these notions are not used anywhere else in our paper, we relegate it to the appendix.
Instead, we close this section with a simple example of a singular function which is nonetheless
Riemann–Lipschitz continuous:

Example 3. Let X = [0, 1]d\{0} (so X is convex but neither open nor closed) and let f (x) =
− log(a>x) for some positive vector a ∈ �d

++. If we take gi j(x) = δi j/(x1 + · · · + xd)2, we get

‖grad f (x)‖2x =

∑d
i=1 a2

i ·
(∑d

i=1 xi
)2

(a>x)2 ≤

∑d
i=1 a2

i

(min j a j)2 . (10)

Thus, although f is not Lipschitz continuous in the standard sense, it is Riemann–Lipschitz continuous
relative to g; we will revisit this example in our treatment of Poisson inverse problems in Section 6.

More generally, Example 3 suggests the following rule of thumb: if f exhibits a gradient singularity of
the form |∂i f (x)| = O(φ(x)) at some residual point x ∈ cl(X ) \ X of X , taking gi j(x) = φ(x)2δi j gives
‖grad f (x)‖2x = φ(x)−2 ∑d

i=1[∂i f (x)]2 = O(1). On that account, f is Riemann–Lipschitz continuous,
even though its derivative is singular; we find this heuristic particularly appealing because it provides
a principled choice of Riemannian metric under which f satisfies (RLC).

4 Algorithms

In this section, we present the algorithms that we will study in the sequel: “follow the regularized
leader” (FTRL) and online mirror descent (OMD). Both methods have been widely studied in the
literature in the context of “vanilla” Lipschitz continuity; however, beyond this basic setting, treating
FTRL/OMD in the Riemannian framework of the previous section is an intricate affair that requires
several conceptual modifications. For this reason, we take an in-depth look into both methods below.1

1For technical convenience, we tacitly assume in what follows that g(x) < µI for some µ > 0 and all x ∈ X .
Since g < 0, this can always be achieved without loss of generality by replacing g by g + µI.
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4.1 Regularization

We begin with the idea of regularization through a suitable penalty function. In our Riemannian
setting, we adapt this notion as follows:
Definition 2. Let g be a Riemannian metric on X and let h : V → � be a proper l.s.c. convex function
with dom h = X . We say that h is a Riemannian regularizer on X if:

1. The subdifferential of h admits a continuous selection, i.e., a continuous function ∇h such
that ∇h(x) ∈ ∂h(x) for all x ∈ X ◦ ≡ dom ∂h.

2. h is strongly convex relative to g, i.e.,

h(x′) ≥ h(x) + 〈∇h(x)|x′ − x〉 + 1
2 K‖x′ − x‖2x (11)

for some K > 0 and all x ∈ X ◦, x′ ∈ X .

The Bregman divergence induced by h is then defined for all p ∈ X , x ∈ X ◦ as

D(p, x) = h(p) − h(x) − 〈∇h(x)|p − x〉. (12)

There are two points worth noting in the above definition. First, the domain of h is all of X , but this
need not be the case for the subdifferential ∂h of h: by convex analysis arguments [32, Chap. 26],
we have riX ⊆ X ◦ ≡ dom ∂h ⊆ X . To connect the two, we will say that h is a Riemann–Legendre
regularizer when X ◦ = riX and D(p, xn)→ 0 whenever xn → p.

Second, strong convexity in (11) is defined relative to the underlying Riemannian metric. If the norm
in (11) does not depend on x, we recover the standard definition; however, the dependence of the
second-order term in (11) on g can change the landscape significantly. Lemma 1 and Example 4
below provide an illustration of this interplay between g and h:
Lemma 1. A Riemannian regularizer h is K-strongly convex relative to g if and only if

D(p, x) ≥ 1
2 K‖p − x‖2x. (13)

The proof of Lemma 1 follows from a rearrangement of (11) so we omit it. Instead, we present below
an example of a Riemannian regularizer building on Example 3:

Example 4. Let X and g be as in Example 3, and let h(x) = (1 + r2)/
∑d

i=1 xi with r2 =
∑d

i=1 x2
i . Then,

a tedious (but otherwise straightforward) algebraic calculation gives

D(p, x) ≥
d∑

i=1

(xi − pi)2

(
∑d

j=1 x j)2
= ‖p − x‖2x (14)

i.e., h is strongly convex relative to g. By contrast, due to the singularity of g at 0, it is easy to check
that the Euclidean regularizer h(x) = (1/2)

∑d
i=1 x2

i is not strongly convex relative to g.

4.2 Algorithms and feedback structure

With these preliminaries in hand, we begin with the FTRL algorithm, which we state here as follows:

Xt+1 = arg min
x∈X

{∑t

s=1
fs(x) + γ−1h(x)

}
. (FTRL)

In the above, γ > 0 is a step-size parameter whose role is discussed below; as for the existence of the
arg min, this is justified by the lower semicontinuity and strong convexity of h together with the fact
that dom h = X (so the minimum cannot be attained in the residual set cl(X ) \ X of X ).

In terms of feedback, FTRL assumes that the optimizer has access to all the loss functions encountered
up to a given round (except, of course, for the current one). In many cases of practical interest, this
assumption is too restrictive and, instead, the optimizer only has access to a first-order oracle for each
ft. To model this feedback structure, we assume that once Xt has been chosen, the optimizer receives
an estimate v̂t of ∇ ft(Xt) satisfying the following hypotheses:

a) Unbiasedness: �[v̂t | Ft] = ∇ ft(Xt). (15a)

b) Finite mean square: �[‖v̂t‖
2
∗ | Ft] ≤ M2

t . (15b)
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In the above, ‖·‖∗ denotes the dual norm of ‖·‖Xt , i.e., the Riemannian norm at the point Xt where
the oracle was called (we suppress here the index Xt and write ‖·‖∗ instead of ‖·‖Xt ,∗ to lighten the
notation). In particular, the oracle feedback v̂t may fail to be bounded in L2 relative to any global
norm on V∗; as such, (15) is considerably weaker than the standard L2-boundedness assumption for
global norms. Finally, in terms of measurability, the expectation in (15) is conditioned on the history
Ft of Xt up to stage t; since v̂t is generated randomly from Xt, it is not Ft-measurable.

To proceed, the main idea of mirror descent is to replace fs(x) in (FTRL) with the first-order surrogate
fs(x)← fs(Xs) + 〈∇ fs(Xs)|x − Xs〉. In this way, substituting v̂s for the estimate of ∇ fs(Xs) received at
stage s, we obtain the linearized FTRL scheme

Xt+1 = arg minx∈X
{
γ
∑t

s=1〈v̂s|x〉 + h(x)
}
. (16)

In turn, this leads to to the following incarnation of the online mirror descent (OMD) algorithm:

Yt+1 = Yt − γv̂t

Xt+1 = Q(Yt+1)
(OMD)

with Q denoting the “mirror map” of the method, namely

Q(y) = arg maxx∈X {〈y|x〉 − h(x)}. (17)

This version of OMD is also known as “dual averaging” [28, 29, 37] or “lazy mirror descent” [34];
for a “greedy” variant, see [6, 26, 27] and references therein.

5 Analysis and results

5.1 Regret analysis

We are now in a position to state our main results for the regret minimization properties of FTRL and
OMD. Throughout this section, we make the following assumptions:

1. Both algorithms are initialized at the “prox-center” xc = arg min h of X and are run with
(constant) step-size α/T 1/2 for some α > 0 chosen by the optimizer.

2. The t-th stage loss function ft : X → � is convex and satisfies (RLC) with constant Gt.

3. The optimizer’s aggregate loss
∑T

t=1 ft attains its minimum value at some x∗ ∈ X .

The purpose of the last assumption is to avoid cases where the infimum of a loss function is not
attained within the problem’s feasible region (such as e−x over �+). We then have:

Theorem 1. Let Reg(T ) ≡ Regx∗ (T ), Ḡ2
T = T−1 ∑T

t=1 G2
t , and M̄2

T = T−1 ∑T
t=1 M2

t . Then:

a) The FTRL algorithm enjoys the regret bound

Reg(T ) ≤
D(x∗, xc)

α
+

2αḠ2
T

K

√T . (18a)

b) The OMD algorithm with noisy feedback of the form (15) enjoys the mean regret bound

�[Reg(T )] ≤
D(x∗, xc)

α
+
αM̄2

T

2K

√T . (18b)

In particular, if supt Gt < ∞, supt Mt < ∞, both algorithms guarantee O(
√

T ) regret.

Remark 3. We emphasize here that the O(
√

T ) regret bound above is achieved even if X is unbounded
or if the “Bregman depth” D ≡ supx∈X D(x, xc) = sup h − inf h of X is infinite.2 Of course, if D < ∞
and G (or M) is known to the optimizer, (18) can be optimized further by tuning α. When these
constants are unknown, achieving an optimized constant by means of an adaptive step-size policy is
an important question, but one which lies beyond the scope of this paper.

2To see this, simply note that D(x, xc) = h(x) − h(xc) − 〈∇h(xc)|x − xc〉 < ∞ for all x ∈ X = dom h (recall
also that, since xc = arg min h, we have 0 ∈ ∂h(xc) so xc ∈ dom ∂h).
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The main idea behind the proof of Theorem 1 is to relate the Riemannian structure of X to the
Bregman regularization framework underlying (FTRL) and (OMD). A first such link is provided by
the Bregman divergence (12); however, because of the primal-dual interplay between Xt ∈ X and
Yt ∈ V∗, the Bregman divergence is not sufficiently adapted. To overcome this difficulty, we employ
the Fenchel coupling between a target point p ∈ X and y ∈ V∗, defined here as

Φ(p, y) = h(p) + h∗(y) − 〈y|p〉 for all p ∈ X , y ∈ V∗, (19)

with h∗(y) = maxx∈X {〈y|x〉 − h(x)} denoting the convex conjugate of h. As we show in the appendix,
the Fenchel coupling (which is non-negative by virtue of Young’s inequality) enjoys the key property

Φ(p, y − γv) ≤ Φ(p, y) − 〈γv|Q(y) − p〉 +
γ2

2K
‖v‖2Q(y),∗. (20)

It is precisely this primal-dual inequality which allows us to go beyond the standard Lipschitz
framework: compared to (primal-primal) inequalities of a similar form for global norms [2, 20, 26,
29, 39], the distinguishing feature of (20) is the advent of the Riemannian norm ‖v‖x,∗. Thanks to the
intricate connection between g and h, the second-order term in (20) can be controlled even when the
received gradient is unbounded relative to any global norm, i.e., even if the objective is singular.

The main obstacle to achieve this is that the underlying Riemannian metric g, the Fenchel coupling
Φ and the Bregman divergence D (all state-dependent notions of distance) need not be compatible
with one another. That this is indeed the case is owed to Lemma 1: tethering the Riemannian norm
in (13) to the second argument of the Bregman divergence instead of the first (or any other point
in-between) plays a crucial role in deriving (20). Any other relation between g and h along these
lines is not amenable to analyzing (FTRL) or (OMD) in this framework.

5.2 Applications to stochastic optimization

The second part of our analysis concerns stochastic optimization problems of the form

minimize f (x) = �[F(x;ω)]
subject to x ∈ X (Opt)

with the expectation taken over some model sample space Ω. Our first result here is as follows:
Theorem 2. Assume that f is convex and Riemann–Lipschitz continuous in mean square, i.e.,
supx �[‖∇F(x;ω)‖2x,∗] ≤ M2 for some M > 0. If (OMD) is run for T iterations with a constant
step-size of the form α/

√
T and stochastic gradients v̂t = ∇F(Xt;ωt) generated by an i.i.d. sequence

ωt ∈ Ω, we have

�[ f (X̄T )] ≤ min f +

[
Dc

α
+
αM2

2K

]
1
√

T
(21)

where X̄T = (1/T )
∑T

t=1 Xt is the “ergodic average” of Xt and Dc = infx∗∈arg min f D(x∗, xc) < ∞
denotes the Bregman distance of the prox-center xc of X to arg min f .

The key novelty in Theorem 2 is that the optimal O(T−1/2) convergence rate of OMD is maintained
even if the stochastic gradients of F become singular at residual points x ∈ cl(X ) \ X . As with
the regret guarantee of Theorem 1, this is achieved by the intricate three-way relation between the
landscape of f , the underlying Riemannian metric g (which is tailored to the singularity profile
of the latter), and the Riemannian regularizer h. The proof of Theorem 2 likewise relies on an
online-to-batch conversion of the regret guarantees of (OMD) for the sequence of stochastic gradients
∇F(·;ωt) of f ; the details can be found in the appendix.

To go beyond the ergodic guarantees of Theorem 2, we also analyze below the convergence of the
“last iterate” of OMD, i.e., the actual sequence of generated points Xt. This is of particular interest
for non-convex problems where ergodic convergence results are of limited value (because Jensen’s
inequality no longer applies). To obtain global convergence results in this setting, we focus on a class
of functions which satisfy a weak secant inequality of the form

inf{〈∇ f (x)|x − x∗〉 : x∗ ∈ arg min f , x ∈ K} > 0 (SI)

for every closed subset K of X that is separated by neighborhoods from arg min f . Variants of
this condition have been widely studied in the literature and include non-convex functions with
complicated ridge structures [9, 13, 18, 19, 22, 30, 38, 39]. In this very general setting, we have:
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Figure 1: Reconstruction of the Lena test image from a sample contaminated with Poisson noise. Left to right:
(a) the contaminated sample; (b) CMP reconstruction; (c) RMD reconstruction; and (d) Poisson likelihood
loss at each iteration. The RMD process provides a sharper definition of image features relative to the CMP
algorithm (which is the second-best); higher-definition images and more details can be found in the appendix.

Theorem 3. Assume f satisfies (SI) and is Riemann–Lipschitz continuous in L2. Suppose further
that arg min f is bounded and (OMD) is run with a sequence of stochastic gradients v̂t = ∇F(Xt;ωt),
a Riemann–Legendre regularizer h, and a variable step-size γt such that

∑∞
t=1 γt = ∞,

∑∞
t=1 γ

2
t < ∞.

Then, with probability 1, Xt converges to some (possibly random) x∗ ∈ arg min f .

The proof for Theorem 3 hinges on combining (quasi-)supermartingale convergence results with
the basic inequality (20); we detail the proof in the paper’s appendix. Seeing as (SI) holds trivially
for (pseudo-)convex functions, we only note here that Theorem 3 complements Theorem 2 in an
important way: the convergence of Xt implies that of X̄t, so the convergence of �[ f (X̄t)] to min f
follows immediately from Theorem 3; however, the rate of convergence (21) doesn’t. In practice,
the ergodic average converges to interior minimizers faster than the last iterate but lags behind when
tracking boundary points and/or in non-convex landscapes; we explore this issue in Section 6 below.

6 Numerical experiments in Poisson inverse problems

We conclude our paper with an application of our algorithmic results to a broad class of Poisson
inverse problems that arise in tomography. Referring the reader to the appendix for the details, the
objective of interest here is the Poisson likelihood loss (generalized Kullback–Leibler divergence):

f (x) =
∑m

j=1

[
u j log

u j

(Hx) j
+ (Hx) j − u j

]
(22)

where u ∈ �m
+ is a vector of Poisson data observations (e.g., pixel intensities) and H ∈ �m×d is an

ill-conditioned matrix representing the data-gathering protocol. Since the generalized KL objective
of (22) exhibits an O(1/x) singularity at the boundary of the orthant, we consider the Poincaré
metric g(x) = diag(1/x1, . . . , 1/xd) under which the KL divergence is Riemann–Lipschitz continuous
(cf. Example 2). Going back to Example 3, a suitable Riemannian regularizer for this metric is
h(x) =

∑m
i=1 1/x2

i , which is 1-strongly convex relative to g. We then run the induced mirror descent
algorithm with an online-to-batch conversion mechanism as described in Section 5.2. For reference
purposes, we call the resulting process Riemannian mirror descent (RMD).

Subsequently, we ran RMD on a Poisson denoising problem for a 384 × 384 test image contaminated
with Poisson noise (so d ≈ 105 in this case). For benchmarking, we also ran a fast variant of the
widely used Lucy–Richardson (LR) algorithm [7], and the recent composite mirror prox (CMP)
method of [17]; all methods were run with stochastic gradients and the same minibatch size. Because
of the “dark area” gradient singularities when [Hx] j → 0, Eucldiean stochastic gradient methods
oscillate without converging, so they are not reported. As we see in Fig. 1, the RMD process provides
the sharpest reconstruction of the original. In particular, after an initial warm-up phase, the last iterate
of Riemannian mirror descent consistently outperforms the LR algorithm by 7 orders of magnitude,
and CMP by 3. We also note that the Poisson likelihood loss decreases faster under the last iterate of
RMD relative to the different algorithmic variants that we tested, exactly because of the hysteresis
effect that is inherent to ergodic averaging.

In conclusion, we note that the introduction of an additional degree of freedom (the choice of Bregman
function and that of the local Riemannian norm), makes RMD a particularly flexible and powerful
paradigm for loss models with singularities. We find these results particularly encouraging for further
investigations on the interplay between Riemannian geometry and Bregman-proximal methods.
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A Riemann–Lipschitz continuity

In this appendix, our main goal is to prove Proposition 1, i.e., the equivalence between (7) and (RLC)
when f is differentiable.

To do so, we first need to introduce the notion of a geodesic, i.e., a length-minimizing curve that
attains the infimum infγ L[γ] over all piecewise smooth curves joining two points x1, x2 ∈ U . That
such a curve exists and is unique in our setting is a basic fact of Riemannian geometry [21]. Moreover,
given a tangent vector z ∈ Z , this leads to the definition of the exponential mapping exp: U ×Z → U
so that

(x, z) 7→ expx(z) = γz(1), (A.1)

where γz denotes the unique geodesic emanating from x with initial velocity vector γ̇z = z. We then
have expx(tz) = γz(t) for all t and, moreover, for sufficiently small r > 0, the restriction of expx to a
ball of radius r in Z is a diffeomorphism onto its image in U . The largest positive number ix such
that the above holds for all r < ix is then known as the injectivity radius of U at x [21].

Our proof of the equivalence between (7) and (RLC) follows a simplified version of the approach of
Ferreira [14] who, to our knowledge, was the first to discuss the concept of proximal subgradients in
Riemannian manifolds. To that end, fix some x ∈ U , let z = grad f (x) and consider the ray emanating
from x

γ(t) = expx(tz/‖z‖x). (A.2)

Since γ is a geodesic, we readily obtain distg(x, γ(t)) = t for all sufficiently small t. Also, by
construction, we have exp−1

x γ(t) = tz/‖z‖x. Hence, with f convex, it follows that, for some constant
α > 0 and for sufficiently small positive δ < ix, we have

f (γ(t)) − f (x) ≥ 〈z, exp−1
x (γ(t))〉 (A.3)

− α distg(x, γ(t))2, (A.4)

where we used the local topological equivalence of the Riemannian topology and the standard
topology of �d, and the fact that expz(t) is a diffeomorphism for sufficiently small δ > 0 – and hence,
for all δ < ix. Thus, if f is also Riemann–Lipschitz continuous in the sense of (7), we will also have

Gt ≥ f (γ(t)) − f (x) ≥ 〈z, tz/‖z‖x〉x − αt2. (A.5)

Thus, by isolating the leftmost and rightmost hand sides, dividing by t, and taking the limit t → 0, we
get

‖grad f (x)‖x = ‖z‖x ≤ G, (A.6)

as was to be shown.

To establish the converse, assume that (RLC) holds, fix x, x′ ∈ X pick K > G and a sufficiently small
δ > 0, and consider the Riemannian distance majorant w(x) = distg(x, x′) if distg(x, x′) < δ, and
w(x) = K distg(x, x′) + ε2/(δ − ε) when δ < distg(x, x′) < 2δ, with ε = distg(x, x′) − δ.

A simple calculation then shows that ‖gradw(x)‖x ≥ K > G. It is also straightforward to show that
the minimum of f + w is attained at x′, so

f (x′) = f (x′) + w(x′)
≤ f (x) + w(x)
≤ f (x) + K distg(x, x′). (A.7)

Then, by interchanging x and x′ above, we obtain | f (x) − f (x′)| ≤ K distg(x, x′). Since K > G has
been chosen arbitrarily, (7) follows.

B Properties of mirror mappings and the Fenchel coupling

We begin by recalling and clarifying some of the notational conventions used in the paper. First, let
V � �d be a finite-dimensional real space; then, its dual space will be denoted by V∗, and we write
〈y|x〉 for the duality pairing between y ∈ V∗ and x ∈ V . Also, if ‖·‖ is a norm on V , the dual norm on
V∗ is defined as ‖y‖∗ ≡ sup{〈y|x〉 : ‖x‖ ≤ 1}.
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Given an extended-real-valued convex function f : X → � ∪ {∞}, we will write dom f ≡ {x ∈
V : f (x) < ∞} for its effective domain. The subdifferential of f at x ∈ dom f is then defined as
∂ f (x) ≡ {y ∈ V∗ : f (x′) − f (x) + 〈y|x′ − x〉 for all x′ ∈ V} and the domain of subdifferentiability of
f is dom ∂ f ≡ {x ∈ dom f : ∂ f , ∅}. Finally, assuming it exists, the directional derivative of f
at x along z ∈ V is defined as f ′(x; z) ≡ d/dt|t=0 f (x + tz). We will then say that f is differentiable
at x ∈ dom f if there exists ∇ f (x) ∈ V∗ such that 〈∇ f (x)|z〉 = f ′(x; z) for all vectors of the form
z = x′ − x, x′ ∈ dom f .

With these notational conventions at hand, we proceed to prove some auxiliary results and estimates
that are used throughout the analysis of Section 5. To recall the basic setup, we assume throughout
what follows that h is a Riemannian regularizer in the sense of Definition 2. The convex conjugate
h∗ : V∗ → � of h is then defined as

h∗(y) = sup
x∈X
{〈y|x〉 − h(x)}. (B.1)

Since h is K-strongly convex relative to g, it is also strongly convex relative to the Euclidean norm
(recall here that g(x) < µI). As a result, the supremum in (B.1) is always attained, and h∗(y) is finite
for all y ∈ V∗ [4]. Moreover, by standard results in convex analysis [32, Chap. 26], h∗ is differentiable
on V∗ and its gradient satisfies the identity

∇h∗(y) = arg max
x∈X

{〈y|x〉 − h(x)}. (B.2)

Thus, recalling the definition of the mirror map Q : V∗ → X (cf.. Section 4):

Q(y) = arg max
x∈X

{〈y|x〉 − h(x)}, (B.3)

we readily get
Q(y) = ∇h∗(y). (B.4)

Together with the prox-mapping induced by h, all these notions are related as follows:

Lemma B.1. Let h be a Riemannian regularizer on X . Then, for all x ∈ dom ∂h, y ∈ V∗, we have:

a) x = Q(y) ⇐⇒ y ∈ ∂h(x). (B.5a)
b) x+ = Q(∇h(x) + y) ⇐⇒ ∇h(x) + y ∈ ∂h(x+) (B.5b)

Finally, if x = Q(y) and p ∈ X , we have

〈∇h(x)|x − p〉 ≤ 〈y|x − p〉. (B.6)

Remark. Note that (B.5b) directly implies that ∂h(x+) , ∅, i.e., x+ ∈ dom ∂h. An immediate
consequence of this is that the update rule x+ = Q(∇h(x) + y) is well-posed, i.e., it can be iterated in
perpetuity.

Proof of Lemma B.1. To prove (B.5a), note that x solves (B.2) if and only if y − ∂h(x) 3 0, i.e., if
and only if y ∈ ∂h(x). Eq. (B.5b) is then obtained in the same manner.

For the inequality (B.6), it suffices to show it holds for all p ∈ X ◦ ≡ dom ∂h (by continuity). To do
so, let

φ(t) = h(x + t(p − x)) − [h(x) + 〈y|x + t(p − x)〉]. (B.7)

Since h is strongly convex relative to g and y ∈ ∂h(x) by (B.5a), it follows that φ(t) ≥ 0 with equality
if and only if t = 0. Moreover, note that ψ(t) = 〈∇h(x + t(p− x))− y|p− x〉 is a continuous selection of
subgradients of φ. Given that φ and ψ are both continuous on [0, 1], it follows that φ is continuously
differentiable and φ′ = ψ on [0, 1]. Thus, with φ convex and φ(t) ≥ 0 = φ(0) for all t ∈ [0, 1], we
conclude that φ′(0) = 〈∇h(x) − y|p − x〉 ≥ 0, from which our claim follows. �

As said, for our analysis we use a ”primal-dual” divergence between a target point p ∈ X and a dual
vector y ∈ V∗, called the Fenchel coupling [25] and defined as follows:

Φ(p, y) = h(p) + h∗(y) − 〈y|p〉 for all p ∈ X , y ∈ V∗ (B.8)

The following lemma illustrates some basic properties of the Fenchel coupling.
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Lemma B.2. Let h be a Riemannian regularizer on X with convexity modulus K. Then, for all p ∈ X
and all y, y+ ∈ V∗, we have:

1. Φ(p, y) = D(p,Q(y)) if Q(y) ∈ X ◦ (but not necessarily otherwise).

2. If x = Q(y), then: Φ(p, y) ≥ K
2 ‖x − p‖2x

Proof. For our first claim, let x = Q(y). Then, by definition we have:

Φ(p, y) = h(p) − 〈y|Q(y)〉 − h(Q(y)) − 〈y|p〉 = h(p) − h(x) − 〈y|p − x〉. (B.9)

Since y ∈ ∂h(x), we have h′(x; p − x) = 〈y|p − x〉 whenever x ∈ X ◦, thus proving our first claim. For
our second claim, working in the previous spirit we get that:

Φ(p, y) = h(p) − h(x) − 〈y|p − x〉 with y ∈ ∂h(x) (B.10)

Thus, we obtain the result by recalling the strong convexity assumption for h with respect to the
Riemannian norms. �

We continue with some basic relations connecting the Fenchel coupling relative to a target point
before and after a gradient step. The basic ingredient for this is a primal-dual analogue of the so-called
“three-point identity” for Bregman functions [12]:
Lemma B.3. Let h be a regularizer on X . Fix some p ∈ X and let y+, y ∈ V∗. Then, if x+ = Q(y),
we have

Φ(p, y+) = Φ(p, y) + Φ(x+, y+) + 〈y+ − y|x+ − p〉. (B.11)

Proof. By definition, we get:

Φ(p, y+) = h(p) + h∗(y+) − 〈y+|p〉
Φ(p, y) = h(p) + h∗(y) − 〈y|p〉.

(B.12)

Then, by subtracting the above we get:

Φ(p, y+) − Φ(p, y) = h(p) + h∗(y+) − 〈y+|p − x〉 − h(p) − h∗(y) + 〈y|p〉

= h∗(y+) − h∗(y) − 〈y+ − y|p〉

= h∗(y+) − 〈y|Q(y)〉 + h(Q(y)) − 〈y+ − y|p〉

= h∗(y+) − 〈y|x+〉 + h(x+) − 〈y+ − y|p〉

= h∗(y+) + 〈y+ − y|x+〉 − 〈y+|x+〉 + h(x+) − 〈y+ − y|p〉

= Φ(x+, y+) + 〈y+ − y|x+ − p〉. (B.13)

and our proof is complete. �

With all this at hand, we have the following main estimation:
Proposition B.1. Let h be a Riemannian regularizer on X with convexity modulus K, fix some p ∈ X ,
let x = Q(y) for y ∈ V∗, and fix v ∈ V∗ and γ > 0. Then:

Φ(p, y − γv) ≤ Φ(p, y) − γ〈v|x − p〉 +
γ2

2K
‖v‖2x,∗ (B.14)

Proof. By the three-point identity (B.11), we get

Φ(p, y) = Φ(p, y − γv) + γ〈v|Q(y − γv) − p〉 + Φ(Q(y − γv), y) (B.15)

and hence by rearranging the terms we get:

Φ(p, y − γv) = Φ(p, y) − Φ(Q(y − γv), y) − γ〈v|Q(y − γv) − p〉
= Φ(p, y) − Φ(Q(y − γv), y) − γ〈v|x − p〉 + 〈γv|x − Q(y − γv)〉 (B.16)

By Young’s inequality [32], we also have

〈γv|x − Q(y − γv)〉 ≤
K
2
‖x − Q(y − γv)‖2x +

γ2

2K
‖v‖2x,∗, (B.17)

Thus, given that Φ(Q(y − γv), y) ≥ K
2 ‖x − Q(y − γv)‖2x by Lemmas 1 and B.2, our claim follows. �
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C Analysis of FTRL

Our goal here is to prove the regret bound (18a) of Theorem 1. The starting point of our analysis is
the following basic bound:
Lemma C.1 (34, Lemma 2.3). The sequence of actions generated by (FTRL) satisfies

Regx(T ) ≤ h(x) − h(X1) +

T∑
t=1

[ ft(Xt) − ft(Xt+1)]. (C.1)

Importantly, the above bound does not require any Lipschitz continuity or strong convexity assump-
tions, so it applies to our setting “as is”. The importance of Riemann–Lipschitz continuity lies in the
following:
Lemma C.2. If f is convex and Riemann–Lipschitz continuous with constant G, then:

f (x) − f (x′) ≤ G‖x′ − x‖x for all x, x′ ∈ X ◦. (C.2)

Proof. By the convexity of f , we have:

f (x) − f (x′) ≤ 〈∇ f (x)|x − x′〉 = 〈grad f (x), x − x′〉x
≤ ‖grad f (x)‖x‖x − x′‖x
≤ G‖x − x′‖x (C.3)

where the first line follows from the definition of the Riemannian gradient of f , the second one from
the Cauchy-Schwartz inequality, and the last from Proposition 1. �

With these preliminary results at hand, we obtain the following basic bound for FTRL:
Proposition C.1. Suppose that (FTRL) is run against a sequence of loss convex loss functions with
assumptions as in Section 5. Then, for all x ∈ X , we have:

Regx(T ) ≤
D(x, xc)

γ
+

2γ
K

T∑
t=1

G2
t (C.4)

Proof. Our proof is patterned after Shalev-Shwartz [34], but with an important difference regarding
the use of Riemannian norms and Riemann–Lipschitz continuity. To begin, let

Ft(x) =

t−1∑
s=1

fs(x) +
h(x)
γ

(C.5)

denote the “cumulative” loss faced by the optimizer up to roun t − 1, including the regularization
penalty. By the definition of the FTRL policy, Xt ∈ arg min Ft(x), so 〈∇Ft(Xt)|x − Xt〉 ≥ 0 and,
likewise, 〈∇Ft+1(Xt+1)|x− Xt+1〉 ≥ 0 for all x ∈ X . Furthermore, since h is K-strongly convex relative
to g, Ft and Ft+1 will be (K/γ)-strongly convex relative to g.

Putting all this together, we obtain:

Ft(Xt+1) ≥ Ft(Xt) +
K
2γ
‖Xt+1 − Xt‖

2
Xt+1

(C.6a)

Ft+1(Xt) ≥ Ft+1(Xt+1) +
K
2γ
‖Xt − Xt+1‖

2
Xt

(C.6b)

and hence, after summing the above inequalities:

ft(Xt) − ft(Xt+1) ≥
K
2γ
‖Xt+1 − Xt‖

2
Xt+1

+
K
2γ
‖Xt − Xt+1‖

2
Xt

≥
K
2γ
‖Xt+1 − Xt‖

2
Xt
. (C.7)

On the other hand, Lemma C.2 gives

ft(Xt) − ft(Xt+1) ≤ Gt‖Xt − Xt+1‖Xt (C.8)
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so, combining the last two inequalities, we get:

K
2γ
‖Xt+1 − Xt‖Xt ≤ Gt. (C.9)

Therefore, plugging this back into (C.8) yields

ft(Xt) − ft(Xt+1) ≤
2γG2

t

K
, (C.10)

and our result obtains from Lemma C.1. �

The proof of (18a) then follows by applying Proposition C.1 with a step-size of the prescribed form.

D Ergodic analysis of OMD

This appendix is devoted to the proof of our main regret bound for (OMD). We begin by recalling
ther recursive definition of the (lazy) OMD method:

Yt+1 = Yt − γv̂t

Xt+1 = Q(Yt+1)
(OMD)

with Q defined as in Appendix B and oracle feedback subject to the hypotheses (15). We may then
write the oracle feedback received by the optimizer at time t as v̂t = ∇ ft(Xt) + Ut+1; hence, by the
unbiasedness assumption (15a), it follows that �[Ut+1 | Ft] = 0, i.e., Ut is a martingale difference
sequence (MDS) relative to Ft.

Now, applying Proposition B.1 to (OMD), we get:

Φ(x∗,Yt+1) ≤ Φ(x∗,Yt) − γ〈v̂t |Xt − x∗〉 +
γ2

2K
‖v̂t‖

2
Xt ,∗

= Φ(x∗,Yt) + γ〈∇ ft(Xt)|x∗ − Xt〉 − γ〈Ut+1|Xt − x∗〉 +
γ2

2K
‖v̂t‖

2
Xt ,∗
. (D.1)

Hence, after rearranging and telescoping, we obtain

Reg(T ) ≤
T∑

t=1

〈∇ ft(Xt)|Xt − x∗〉 ≤
D(x∗, xc)

γ
+

T∑
t=1

ξt+1 +
γ

2K

T∑
t=1

‖v̂t‖
2
Xt ,∗

(D.2)

where, in the last line, we used the definition of the Riemannian dual norm ‖·‖∗ ≡ ‖·‖x∗,∗, and we set
ξt+1 = 〈Ut+1|x∗ − Xt〉. Our result then follows by taking expectations on both sides.

E Last-iterate analysis of OMD

In this last section, we will present the convergence analysis for the last iterate of (OMD) to arg min f .

We begin by recalling two important results from probability theory. The first is a version of the law
of large numbers for martingale difference sequences that are bounded in L2 [15]:
Theorem E.1. Let Yt =

∑t
i=1 ζi be a martingale and βt a non-decreasing positive sequence such that

limt→∞ βt = ∞. Then,
lim
t→∞

Yt/βt = 0 almost surely (E.1)

on the set
∑∞

t=1 β
−2
t �[ζ2

t | Ft−1] < ∞.

The second is a convergence result for quasi-supermartingales due to Robbins and Sigmund [31]:
Lemma E.1. Let (Ft)t∈� be a non-decreasing sequence of σ− algebras. Let (αt)t∈�, (θt)t∈� non-
negative Ft− measurable random variables, (ηt)t∈� is an Ft− measurable non-negative summable
random variable and the following inequality holds:

�[αt+1 | Ft] ≤ αt − θt + ηt almost surely (E.2)

Then, (αt)t∈� converges almost surely towards a [0,∞)-valued random variable.
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An application of this lemma leads us to the following result which is of independent interest:

Proposition E.1. Let Xt be the sequence of iterates generated by (OMD) run with a step-size
sequence γt such that

∑∞
t=1 γ

2
t < ∞ and a stochastic oracle as in the statement of Theorems 2 and 3.

Then, for all x∗ ∈ arg min f , Φ(x∗,Yt) converges with probability 1.

Proof. Let x∗ ∈ arg min f . Recalling our main estimation:

Φ(x∗,Yt+1) ≤ Φ(x∗,Yt) − γt〈v̂t |Xt − x∗〉x +
γ2

t

2K
‖v̂t‖

2
Xt ,∗

(E.3)

and taking conditional expectations on both sides, we get due to Ft− measurability arguments:

�[Φ(x∗,Yt+1)|Ft] ≤ Φ(x∗,Yt) − γt〈v̂t |Xt − x∗〉x +
γ2

t

2K
�[‖v̂t‖

2
Xt ,∗
|Ft]. (E.4)

Since, (2K)−1 ∑∞
t=1 γ

2
t �[‖v̂t‖

2
Xt ,∗
|Ft] ≤ M(2K)−1 ∑∞

t=1 γ
2
t < ∞. Thus, by applying the above we get

the result. �

Having this at hand, we can establish the following proposition:

Proposition E.2. Let Xt be the sequence of iterates generated by (OMD) with assumptions as in
Theorem 3. Then, for all x∗ ∈ arg min f , the sequence ‖Xt − x∗‖Xt is bounded with probability 1.

Proof. Recalling our main estimation and taking condition expectations on both sides, we get:

�[Φ(x∗,Yt+1) | Ft] ≤ Φ(x∗,Yt) − γt〈v̂t |Xt − x∗〉x +
γ2

t

2K
�[‖v̂t‖

2
Xt ,∗
|Ft] (E.5)

Hence, by the above corollary, we have that the sequence Φ(x∗,Yt) converges with probability 1 for
all x∗ ∈ arg min f . Thus, it is also bounded with probability 1 for all x∗. We then get

‖Xt − x∗‖2Xt
≤

2
K

Φ(x∗,Yt) (E.6)

which concludes our proof. �

We continue by showing that Xt possesses a subsequence that converges to arg min f :

Proposition E.3. Let Xt be the sequence of iterates generated by (OMD) with assumptions as in
Theorem 3. Then, with probability 1, there exists a (possibly random) subsequence of Xt which
converges to arg min f .

Proof. Assume to the contrary that, with positive probability, the sequence Xt generated by (OMD)
admits no limit points in arg min f . Conditioning on this event, there exists a (nonempty) closed set
C ⊂ X which is separated by neighborhoods from arg min f and is such that Xt ∈ C for all suffiently
large t. Then, by relabeling Xt if necessary, we can assume without loss of generality that Xt ∈ C for
all t ∈ �. Thus, by Proposition B.1, we get:

Φ(x∗,Yt+1) ≤ Φ(x∗,Yt) − γt〈v̂t |Xt − x∗〉 +
γ2

t

2K
‖v̂t‖

2
Xt ,∗

= Φ(x∗,Yt) − γt〈∇ f (Xt)|Xt − x∗〉 − γt〈Ut+1|Xt − x∗〉 +
γ2

t

2K
‖v̂t‖

2
Xt ,∗

≤ Φ(x∗,Yt) − γtδ(C) + γtξt+1 +
γ2

t

2K
‖v̂t‖

2
Xt ,∗

(E.7)

where in the last line we set δ(C) = inf{〈∇ f (x)|x − x∗〉 : x∗ ∈ arg min f , x ∈ C} > 0 (by (SI)),
Ut+1 = v̂t − ∇ f (Xt), ξt+1 = −〈Ut+1|Xt − x∗〉 and βt =

∑t
i=1 γi. Thus, by telescoping and factorizing we

get:

Φ(x∗,Yt+1) ≤ Φ(x∗,Y1) − βt

δ(C) −
∑t

s=1 γsξs+1

βt
−

∑t
s=1 γ

2
s‖v̂s‖

2
Xs,∗

2Kβt

 (E.8)
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By the unbiasedness assumption for Ut, we have �[ξt+1 | Ft] = 〈�[Ut+1 | Ft]|Xt − x∗〉 = 0. Moreover,
for all x∗ ∈ arg min f , we have

∞∑
t=1

γ2
t �[ξt+1 | Ft] ≤

∞∑
t=1

γ2
t ‖Xt − x∗‖2Xt

�[Ut+1 | Ft] ≤
∞∑

t=1

γ2
t Φ(x∗,Yt)�[Ut+1 | Ft] < ∞ (E.9)

where the last (strict) inequality is obtained due to the finite mean square property, the boundness
of Φ(x∗,Yt) and the fact that

∑∞
t=1 γ

2
t < ∞. Thus, we can apply the law of large numbers for L2−

martingales stated above and conclude that β−1
t

∑t
s=1 γsξs+1 converges to 0 almost surely. On the other

hand, for the term S t+1 =
∑t

s=1 γ
2
s‖v̂s‖

2
Xt ,∗

, since v̂s+1 is Fs-measurable for all s = 1, 2 . . . , t − 1 we
have:

�[S t+1 | Ft] = �

 t−1∑
i=1

γ2
t ‖v̂i‖

2
xi,∗

+ γ2
t ‖v̂t‖

2
Xt ,∗

∣∣∣∣∣∣∣ Ft

 = S t + γ2
t �

[
‖v̂t‖

2
Xt ,∗

∣∣∣ Ft

]
≥ S t (E.10)

so S t is a submartingale with respect to Ft. Furthermore, by the law of total expectation, we also get:

�[S t+1] = �[�[S t+1 | Ft]] ≤ σ2
t∑

i=1

γ2
i ≤ σ

2
∞∑

t=1

γ2
t < ∞, (E.11)

implying that S t is bounded in L1. Thus, due to Doob’s submartingale convergence theorem [15], we
coclude that S t converges to some (almost surely finite) random variable S∞ so limt→∞

S t+1
βt

= 0 with
probability 1.

Now, by letting t → ∞ in (E.8), we get Φ(x∗,Yt)→ −∞, a contradiction. Going back to our original
assumption, this shows that there exists a subsequence of Xt which converges to arg min f with
probability 1, as claimed. �

With all this at hand, we proceed to the proof of our last-iterate convergence result:

Proof of Theorem 3. By the boundedness (and hence compactness) of arg min f , Proposition E.3
implies that, with probability 1, there exists some x∗ ∈ arg min f such that Xtk → x∗ for some (possibly
random) subsequence Xtk of Xt. By the Riemann–Legendre property of h, it follows that Φ(x∗,Ytk ) =
D(x∗, Xtk ) → 0 as k → ∞, implying in turn that limt→∞ D(x∗, Xt) = 0 (by Proposition E.1). Since
D(x∗, Xt) ≥ K‖Xt − x∗‖2Xt

≥ µ‖Xt − x∗‖2, we conclude that Xt → x∗, and our proof is complete. �

F Applications to Poisson inverse problems and numerical experiments

F.1 Detailed statement of the problem

The class of Poisson inverse problems that we consider stem from linear systems of the form

u = Hx + z (F.1)

where

• x ∈ �d
+ is the object under study (a signal, image, . . . ).

• u ∈ �m
++ is the observed data (usually m � d).

• The kernel matrix H ∈ �m×d
+ is a representation of the data-gathering protocol and is

typically highly ill-conditioned (e.g., a Toeplitz matrix in the case of image deconvolution
problems).
• z ∈ �m is the noise affecting the measurements.

When data points are obtained by means of a counting process, measurements can be modeled
as Poisson random variables of the form u j ∼ Pois(Hx) j. Then, up to an additive constant, the
log-likelihood of x ∈ �d given an observation u ∈ �m

++ will be

L(x; u) = −

m∑
j=1

[
u j log

u j

(Hx) j
+ (Hx) j − u j

]
. (F.2)
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Hence, obtaining a maximum likelihood estimate for x leads to the archetypal Poisson inverse problem

minimize f (x) ≡ DKL(u,Hx),

subject to x ∈ �d
+,

(PIP)

where DKL(p, q) =
∑m

j=1[p j log(p j/q j) + q j − p j] denotes the generalized KL divergence on �m
+ . For

an extensive review of Poisson inverse problems, we refer the reader to Bertero et al. [7].

In many cases of practical interest, measurements arrive in distinct batches over time – e.g., as
sequential optical sections in microscopy and tomography. Moreover, due to the large numbers of
pixels/voxels involved (a typical range of values for m is between 106 and 107), gradients of f are
very costly to compute; as such, optimization methods that rely on accurate gradient data are difficult
to apply in this setting. Accordingly, a natural workaround to this obstacle is to exploit the online
nature of the measurement process, model (PIP) as an online optimization problem, and then to use
an online-to-batch conversion to get a candidate solution [34].

On the downside, this online optimization analysis crucially requires the loss functions faced by
the optimizer to be Lipschitz continuous. However, this assumption does not hold for (PIP): if
f j(x) = −u j log(u j/(Hx) j) denotes the singular part of the KL divergence for the j-th sample, we
readily get

∂ f j

∂xi
=

u jH ji

(Hx) j
. (F.3)

This shows that the gradient of f j exhibits an O(1/x) singularity at the boundary of �d
+, so f cannot

be Lipschitz under any global norm on �d.

As suggested by Example 3, this singularity can be lifted by considering the local norm

‖z‖2x = (x1 + · · · + xd)2 ∑d
i=1 z2

i for all v ∈ �d. (F.4)

In this case, we have

‖∇ f j(x)‖2x =

d∑
i=1

u2
j

H2
jix

2
i

(Hx)2
j

=
u2

j
∑d

i=1 H2
jix

2
i[∑d

i=1 H jixi
]2 = O(u2

j ), (F.5)

so ‖∇ f j‖x is bounded under this modified norm. This is the principal motivation for considering the
Riemannian mirror descent method defined with respect to this metric and the regularizer presented
in Example 4.

F.2 Details on the experiments

In the rest of this appendix, we discuss in more detail the algorithms tested in Section 6. The
algorithms we considered are

1. The accelerated Lucy–Richardson algorithm, as presented in [7] and corresponding to OMD
with the entropic regularizer h(x) =

∑
i xi log xi.

2. The composite mirror prox (CMP) of [17], corresponding to OMD with an extra gradient
step and the log-barrier (Burg) regularizer h(x) =

∑
i xi log xi.

3. The Riemannian mirror descent (RMD) algorithm detailed in Section 6, corresponding to
the Poincaré-like regularizer of Example 4.

All algorithms were run with stochastic gradients drawn with the same minibatch size (n = 256) and
a step-size of the form γt ∝ 1/

√
t (corresponding to the stochastic variant of each algorithm). For

comparison purposes, we harvested each algorithm’s last generated sample (“last iterate”) as well as
the corresponding ergodic average (defined here as X̄T =

∑T
t=1 γtXt

/∑T
t=1 γt).

Overall, the algorithms’ last generated sample provided consistently better results than the ergodic
average. The ground truth and the evolution of the Poisson likelihood loss is reported in Fig. 2; the
decontaminated images produced are subsequently reported in Fig. 3.
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Figure 2: The Lena test image (left) and the evolution of the Poisson likelihood (right).

(a) Contaminated image (b) LR reconstruction

(c) CMP reconstruction (d) RMD reconstruction

Figure 3: High-definition version of the images reconstructed by each algorithm.
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