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ABSTRACT

Event-based neuromorphic systems promise to reduce the energy consumption of
deep neural networks by replacing expensive floating point operations on dense
matrices by low energy, sparse operations on spike events. While these systems
can be trained increasingly well using approximations of the backpropagation
algorithm, this usually requires high precision errors and is therefore incompatible
with the typical communication infrastructure of neuromorphic circuits. In this
work, we analyze how the gradient can be discretized into spike events when
training a spiking neural network. To accelerate our simulation, we show that
using a special implementation of the integrate-and-fire neuron allows us to de-
scribe the accumulated activations and errors of the spiking neural network in
terms of an equivalent artificial neural network, allowing us to largely speed up
training compared to an explicit simulation of all spike events. This way we are
able to demonstrate that even for deep networks, the gradients can be discretized
sufficiently well with spikes if the gradient is properly rescaled. This form of
spike-based backpropagation enables us to achieve equivalent or better accuracies
on the MNIST and CIFAR10 datasets than comparable state-of-the-art spiking
neural networks trained with full precision gradients. The algorithm, which we call
SpikeGrad, is based on accumulation and comparison operations and can naturally
exploit sparsity in the gradient computation, which makes it an interesting choice
for a spiking neuromorphic systems with on-chip learning capacities.

1 INTRODUCTION

Spiking neural networks (SNNs) are a new generation of artificial neural network models (Maass,
1997) that try to harness properties of biological neurons to build energy efficient spiking neuro-
morphic systems. Processing in traditional artificial neural networks (ANNs) is based on parallel
processing of operations on dense tensors of fixed length. In contrast to this, spiking neuromorphic
systems communicate with asynchronous events, which allows dynamic, data dependent computation
that can exploit high temporal and spatial sparsity.

The recent years have seen a large number of approaches devoted to optimization of spiking neural
networks with the backpropagation algorithm, either by converting ANNs to SNNs (Diehl et al., 2015;
Esser et al., 2016; Rueckauer et al., 2017; Sengupta et al., 2019) or by simulating spikes explicitly
in the forward pass and optimizing these dynamics with floating point gradients (Lee et al., 2016;
Yin et al., 2017; Wu et al., 2018a;b; Severa et al., 2019; Jin et al., 2018; Bellec et al., 2018; Zenke
& Ganguli, 2018; Shrestha & Orchard, 2018). These methods aim to optimize SNNs for efficient
inference, and backpropagation is performed offline on a standard computing system. It would
however be desirable to also enable on-chip learning in neuromorphic chips using the power of the
backpropagation algorithm, and to maintain the advantages of spike-based processing also in the
error propagation phase.

Previous work on the implementation of backpropagation with spikes is mostly concerned with
biological plausibility. A non-spiking version of biologically inspired backpropagation is presented
by Sacramento et al. (2018). Guerguiev et al. (2017), Neftci et al. (2017) and Samadi et al. (2017)
introduce spike-based versions of the backpropagation algorithm using variants of (direct) feedback
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alignment (Lillicrap et al., 2016; Nøkland, 2016). The exact backpropagation algorithm, which
backpropagates through symmetric weights, might however be required to achieve good inference
performance on large-scale deep neural networks (Baldi & Sadowski, 2016; Bartunov et al., 2018).
O’Connor & Welling (2016) and Thiele et al. (2019) present implementations of standard backpropa-
gation where the gradient is coded into spikes and propagated through symmetric weights. In the
same spirit, our work is mostly concerned with exploiting spike based information encoding for
energy efficient processing, which means that inference performance and operational simplicity will
be preferred over biological plausibility and complex neuron models.

We demonstrate how backpropagation can be seamlessly integrated into the spiking neural network
framework by using a second accumulation compartment that discretizes the error into spikes. By
additionally weighting the activity counters by the learning rate, we obtain a system that is able to
perform learning and inference based on accumulations and comparisons alone. As for the forward
pass, this allows us to use the dynamic precision computation provided by the discretization of all
operations into spike events, and to exploit the sparsity of the gradient. Using a similar reasoning as
Binas et al. (2016) and Wu et al. (2019) have applied to forward propagation in SNNs, we show that
the system obtained in this way can be mapped to an integer activation ANN whose activations are
equivalent to the accumulated neuron responses for both the forward and the backward propagation
phase. This allows us to simulate training of large-scale SNNs efficiently on graphics processing units
(GPUs), using their equivalent ANN. Additionally, in contrast to conversion methods that approximate
pre-trained ANNs with SNNs, this method guarantees that the inference precision of the SNN will
be equivalent to the ANN. In contrast to O’Connor & Welling (2016), this is true for any number
of spikes and arbitrary spike order. We demonstrate classification accuracies equivalent or superior
to existing implementations of SNNs trained with full precision gradients, and comparable to the
precision of standard ANNs using similar topologies. This is the first time competitive classification
performances are reported on a large-scale spiking network where training and inference are fully
implemented with spikes. To the best of our knowledge, our work provides for the first time a
demonstration of how the sparsity of the gradient during backpropagation could be exploited within a
large-scale SNN processing structure.

2 THE SpikeGrad ALGORITHM

We begin with the description of SpikeGrad, the spike-based backpropagation algorithm. For each
training example/mini-batch, integration is performed from t = 0 to t = T for the forward pass and
from t = T + ∆t to t = T in the backward pass. Since no explicit time is used in the algorithm,
∆t represents symbolically the (very short) time between the arrival of an incoming spike and the
response of the neuron, which is only used here to describe causality.

Integrate-and-fire neuron model Our architecture consists of multiple layers (labeled by l ∈
[0, L]) of integrate-and-fire (IF) neurons with integration variable V li (t) and threshold Θff :

V li (t+ ∆t) = V li (t)−Θffs
l
i(t) +

∑
j

wlijs
l−1
j (t), V li (0) = bli. (1)

The variable wlij is the weight and bli a bias value. The spike activation function sli(t) ∈ {−1, 0, 1} is
a function which triggers a signed spike event depending on the internal variables of the neuron. It
will be shown later that the specific choice of the activation function is fundamental for the mapping
to an equivalent ANN. After a neuron has fired, its integration variable is decremented or incremented
by the threshold value Θff , which is represented by the second term on the r.h.s. of equation 1.

As a representation of the neuron activity, we use a trace xli(t) which accumulates spike information
over a single example:

xli(t+ ∆t) = xli(t) + ηsli(t). (2)

By weighting the activity with the learning rate η we avoid performing a multiplication when
weighting the input with the learning rate for the weight update equation 8.

Implementation of implicit ReLU and surrogate activation function derivative It is possible
to define an implicit activation function based on how the neuron variables affect the spike activation

2



Under review as a conference paper at ICLR 2020

function sli(t). In our implementation, we use the following fully symmetric function to represent
linear activation functions (used for instance in pooling layers):

sl,lini

(
V li (t)

)
:=


1 if V li (t) ≥ Θff

−1 if V li (t) ≤ −Θff

0 otherwise

. (3)

The following function corresponds to the rectified linear unit (ReLU) activation function:

sl,ReLU
i

(
V li (t), xli(t)

)
:=


1 if V li (t) ≥ Θff

−1 if V li (t) ≤ −Θff and xli(t) > 0

0 otherwise

. (4)

The pseudo-derivative of the activation function is denoted symbolically by S
′l
i . We use S

′l,lin
i (T ) = 1

for the linear case. For the ReLU, we use a surrogate of the form:

S
′l,ReLU
i (T ) :=

{
1 if V li (T ) > 0 or xli(T ) > 0

0 otherwise
. (5)

These choices will be motivated in the following sections. Note that the derivatives depend only on
the final states of the neurons at time T .

Discretization of gradient into spikes For gradient backpropagation, we introduce a second
compartment with threshold Θbp in each neuron, which integrates error signals from higher layers.
The process discretizes errors in the same fashion as the forward pass discretizes an input signal into
a sequence of signed spike signals:

U li (t+ ∆t) = U li (t)−Θbpz
l
i(t) +

∑
k

wl+1
ki δ

l+1
k (t). (6)

To this end, we introduce a ternary error spike activation function zli(t) ∈ {−1, 0, 1} which is defined
in analogy to equation 3 using the error integration variable U li (t) and the backpropagation threshold
Θbp. The error is then obtained by gating this ternarized variable zli(t) with one of the surrogate
activation function derivatives of the previous section (linear or ReLU):

δli(t) = zli(t)S
′l
i (T ). (7)

This ternary spike signal is backpropagated through the weights to the lower layers and also applied
in the update rule of the weight increment accumulator ωlij :

ωlij(t+ ∆t) = ωlij(t)− δli(t)xl−1
j (T ), (8)

which is triggered every time an error spike (equation 7) is backpropagated. The weight updates are
accumulated during error propagation and are applied after propagation is finished to update each
weight simultaneously. In this way, the backpropagation of errors and the weight update will, exactly
as forward propagation, only involve additions and comparisons of floating point numbers.

The SpikeGrad algorithm can also be expressed in an event-based formulation, described in algorithms
1, 2 and 3. This formulation is closer to how the algorithm would be implemented in an actual SNN
hardware system.

Loss function and error scale We use the cross entropy loss function in the final layer applied to
the softmax of the total integration V Li (T ) (no spikes are triggered in the top layer during inference).
This requires more complex operations than accumulations, but is negligible if the number of classes
is small. To make sure that sufficient error spikes are triggered in the top layer, and that error spikes
arrive even in the lowest layer of the network, we apply a scaling factor α to the error values before
transferring them to ULi . This scaling factor also implicitly sets the precision of the gradient, since a
higher number of spikes means that a large range of values can be represented. To counteract the
relative increase of the gradient scale, the learning rates have to be rescaled by a factor 1/α.
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Input encoding As pointed out in Rueckauer et al. (2017) and Wu et al. (2018b), it is crucial to
maintain the full precision of the input image to obtain good performances on complex standard
benchmarks with SNNs. One possibility is to encode the input in a large number of spikes (Sengupta
et al., 2019). Another possibility, which has been shown to require a much lower number of spikes
in the network, is to multiply the input values directly with the weights of the first layer (just like
in a standard ANN). The drawback is that the first layer then requires multiplication operations.
The additional cost of this procedure may however be negligible if all other layers can profit from
spike-based computation. This problematic does not exist for stimuli which are natively encoded in
spikes.

Algorithm 1 Forward

function PROPAGATE([l, i, j], s)
V li ← V li + s · wlij
sli ← sli(V

l
i , x

l
i) . spike activation function

if sli 6= 0 then
V li ← V li − sli ·Θff

xli ← xli + ηsli
for k in l + 1 connected to i do

PROPAGATE([l + 1, k, i], sli)

Algorithm 2 Backward

function BACKPROPAGATE([l, i, k], δ)
U li ← U li + δ · wl+1

ki

zli ← zli(U
l
i ) . error activation function

δli ← zli · S
′l
i

if zli 6= 0 then
U li ← U li − zli ·Θbp

for j in layer l − 1 connected to i do
BACKPROPAGATE([l − 1, j, i], δli)
ωlij ← ωlij − δli · x

l−1
j

Algorithm 3 Training of single example/batch

init: V ← b, U ← 0, x← 0, ω ← 0 . variables in bold describe all neurons in network/layer
while input spikes sini do

for k in l = 0 receiving sini do . spikes corresponding to training input
PROPAGATE([0, k, i], sini )

S′ ← S′(V ,x) . calculate surrogate derivatives
UL ← α · ∂L/∂ V L . calculate classfication error
for i in l = L do

while |ULi | ≥ Θbp do . backpropagate error spikes
BACKPROPAGATE([L, i,−], 0) . last layer receives no error

w ← w + ω . update weights with weight update accumulator

3 FORMULATION OF THE EQUIVALENT ANN

The simulation of the temporal dynamics of spikes requires a large number of time steps or events
if activations are large. It would therefore be extremely beneficial if we were able to map the SNN
to an equivalent ANN that can be trained much faster on standard hardware. In this section, we
demonstrate that it is possible to find such an ANN using the forward and backward propagation
dynamics described in the previous section.

Spike discretization error We start our analysis with equation 1. We reorder the terms and sum
over the increments ∆V li (t) = V li (t+ ∆t)− V li (t) every time the integration variable is changed
either by a spike that arrives at time tsj ∈ [0, T ] via connection j, or by a spike that is triggered at
time tsi ∈ [0, T ]. With the initial conditions V li (0) = bli, s

l
i(0) = 0, we obtain the final value V li (T ):

V li (T ) =
∑
tsj ,t

s
i

∆V li = −Θff

∑
tsi

sli(t
s
i ) +

∑
j

wlij
∑
tsj

sl−1
j (tsj) + bli (9)

By defining the total transmitted output of a neuron as Sli :=
∑
tsi
sli(t

s
i ) we obtain:

1

Θff
V li (T ) = Sli − Sli, Sli :=

1

Θff

∑
j

wlijS
l−1
j + bli

 (10)
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The same reasoning can be applied to backpropagation of the gradient. We define the summed
responses over error spikes times τsj ∈ [T + ∆t, T ] as Zli :=

∑
τs
i
zli(τ

s
i ) to obtain:

1

Θbp
U li (T ) = Zli − Zli , Zli :=

1

Θbp

(∑
k

wl+1
ki E

l+1
k

)
(11)

El+1
k =

∑
τs
k

δl+1
k (τsk) =

∑
τs
k

S
′l+1
k (T )zl+1

k (τsk) = S
′l+1
k (T )Zl+1

k . (12)

In both equation 10 and equation 11, the terms Sli and Zli are equivalent to the output of an ANN
with signed integer inputs Sl−1

j and El+1
k . 1/Θff and 1/Θbp are implicit scaling factors of activations

and gradients. If gradients shall not be explicitly rescaled, backpropagation requires Θbp = Θff .
The values of the residual integrations 1/ΘffV li (T ) and 1/ΘbpU li (T ) therefore represent the spike
discretization error SDEff := Sli − Sli or SDEbp := Zli − Zli between the ANN outputs Sli and
Zli and the accumulated SNN outputs Sli and Zli . Since we know that V li (T ) ∈ (−Θff ,Θff) and
U li (T ) ∈ (−Θbp,Θbp), this gives bounds of |SDEff | < 1 and |SDEbp| < 1.

So far we can only represent linear functions. We now consider an implementation where the ANN
applies a ReLU activation function instead. The SDE in this case is:

SDEReLU
ff := ReLU

(
Sli
)
− Sli. (13)

We can calculate the error by considering that equation 4 forces the neuron in one of two regimes
(note that xli > 0 ⇔ Sli > 0): In one case, Sli = 0, V li (T ) < Θff (this includes V li (T ) ≤ −Θff ).
This implies Sli = 1/ΘffV li (T ) and therefore |SDEReLU

ff | < 1 (or even |SDEReLU
ff | = 0 if V li (T ) ≤ 0).

In the other case, Sli > 0, V li (t) ∈ (−Θff ,Θff), where equation 4 is equivalent to equation 3.

This equivalence motivates the choice of equation 5 as a surrogate derivative for the SNN: the
condition (V li (T ) > 0 or xli(T ) > 0) can be seen to be equivalent to Sli(T ) > 0, which defines the
derivative of a ReLU. Finally, for the total weight increment ∆wlij , it can be seen from equation 2
and equation 8 that:

xli(T ) =
∑
tsi

∆xli(t
s
i ) = ηSli, ⇒ ∆wlij(T ) =

∑
τs
i

∆ωlij(τ
s
i ) = −ηSl−1

j Eli, (14)

which is exactly the weight update formula of an ANN defined on the accumulated variables. We
have therefore demonstrated that the SNN can be represented by an ANN by replacing all S and Z
by S and Z and applying the corresponding activation function directly on these variables. The error
that will be caused by this substitution compared to using the accumulated variables S and Z of an
SNN is described by the SDE. This ANN can now be used for training of the SNN on GPUs. The
SpikeGrad algorithm formulated on the variables s, z, δ and x represents the algorithm that would be
implemented on a event-based spiking neural network hardware platform. We will now demonstrate
how the SDE can be further reduced to obtain an ANN and SNN that are exactly equivalent.

Response equivalence For a large number of spikes, the SDE may be negligible compared to the
activation of the ANN. However, in a framework whose objective it is to minimize the number of
spikes emitted by each neuron, this error can have a potentially large impact.

One option to reduce the error between the ANN and the SNN output is to constrain the ANN during
training to integer values. One possibility is to round the ANN outputs:

Sl,round
i := round[Sli] = round

 1

Θff

∑
j

wlijS
l−1
j + bli

 , (15)

The round function here rounds to the next integer value, with boundary cases rounded away from
zero. This behavior can be implemented in the SNN by a modified spike activation function which is
applied after the full stimulus has been propagated. To obtain the exact response as the ANN, we
have to take into account the current value of Sli and modify the threshold values:

sl,res
i

(
V li (T ), Sli

)
:=


1 if V li (T ) > Θff/2 or (Sli ≥ 0, V li (T ) = Θff/2)

−1 if V li (T ) < −Θff/2 or (Sli ≤ 0, V li (T ) = −Θff/2)

0 otherwise

. (16)
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Because this spike activation function is applied only to the residual values, we call it the residual
spike activation function. The function is applied to a layer after all spikes have been propagated with
the standard spike activation function (equation 3 or equation 4). We start with the lowest layer and
propagate all residual spikes to the higher layers, which use the standard activation function. We
then proceed with setting the next layer to residual mode and propagate the residual spikes. This is
continued until we arrive at the last layer of the network.

By considering all possible rounding scenarios, it can be seen that equation 16 indeed implies:

Sli + sl,res
i

(
V li (T ), Sli

)
= round[Sli + 1/ΘffV

l
i (T )] = round[Sli]. (17)

The same principle can be applied to obtain integer-rounded error propagation:

Zl,round
i := round

[
Zli
]

= round

[
1

Θbp

(∑
k

wl+1
ki E

l+1
k

)]
. (18)

We have to apply the following modified spike activation function in the SNN after the full error has
been propagated by the standard error spike activation function:

zl,res
i

(
U li (T , Zli

)
:=


1 if U li (T )) > Θbp/2 or (Zli ≥ 0, U li (T ) = Θbp/2)

−1 if U li (T ) < −Θbp/2 or (Zli ≤ 0, U li (T ) = −Θbp/2)

0 otherwise

, (19)

which implies:

Zli + zl,res
i

(
U li (T ), Zli

)
= round[Zli + 1/ΘbpU

l
i (T )] = round[Zli]. (20)

We have therefore shown that the SNN will after each propagation phase have exactly the same
accumulated responses as the corresponding integer activation ANN. The same principle can be
applied to obtain other forms of rounding (e.g. floor and ceil), if equation 16 and equation 19 are
modified accordingly.

Computational complexity estimation Note that we have only demonstrated the equivalence of
the accumulated neuron responses. However, for each of the response values, there is a large number
of possible combinations of 1 and −1 values that lead to the same response. The computational
complexity of the event-based algorithm depends therefore on the total number n of these events. The
best possible case is when the accumulated response value Sli is represented by exactly |Sli| spikes.
In the worst case, a large number of additional redundant spikes is emitted which sum up to 0. The
maximal number of spikes in each layer is bounded by the largest possible integration value that can
be obtained. This depends on the maximal absolute weight value wlmax, the number of connections
N l

in and the number of spike events nl−1 each connection receives, which is given by the maximal
value of the previous layer (or the input in the first layer):

nlmin = |Sli|, nlmax =

⌊
1

Θff
N l

inw
l
maxn

l−1
max

⌋
. (21)

The same reasoning applies to backpropagation. Our experiments show that for input encodings
where the input is provided in a continuous fashion, and weight values that are much smaller than
the threshold value, the deviation from the best case scenario is rather small. This is because in
this case the sub-threshold integration allows to average out the fluctuations in the signal. This way
the firing rate stays rather close to its long term average and few redundant spikes are emitted. For
the total number of spikes n in the full network on the CIFAR10 test set, we obtain empirically
n−nmin/nmin < 0.035.

4 EXPERIMENTS

Classification performance Tables 1 and 2 compare the state-of-the-art results for SNNs on the
MNIST and CIFAR10 datasets. It can be seen that in both cases, our results are competitive with
respect to the state-of-the-art results of other SNNs trained with high precision gradients. Compared
to results using the same topology, our algorithm performs at least equivalently.
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Table 1: Comparison of different state-of-the-art spiking CNN architectures on MNIST. * indicates
that the same topology (28x28-15C5-P2-40C5-P2-300-10) was used.

Architecture Method Rec. Rate (max[mean±std])

Wu et al. (2018a)* BP float gradient 99.42%
Rueckauer et al. (2017) CNN converted to SNN 99.44%
Jin et al. (2018)* BP float gradient 99.49%
This work* BP float gradient 99.48[99.36± 0.06]%
This work* BP spike gradient 99.52[99.38± 0.06]%

Table 2: Comparison of different state-of-the-art spiking CNN architectures on CIFAR10. * indicates
that the same topology (32x32-128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512-10) was used.

Architecture Method Rec. Rate (max[mean±std])

Rueckauer et al. (2017) CNN converted SNN (with BN) 90.85%
Sengupta et al. (2019) VGG-16 converted to SNN 91.55%
Wu et al. (2018b)* BP float gradient (no NeuNorm) 89.32%
This work* BP float gradient 89.72[89.38± 0.25]%
This work* BP spike gradient 89.99[89.49± 0.28]%

The final classification performance of the network as a function of the error scaling term α in the
final layer can be seen in figure 1. Previous work on low bitwidth gradients (Zhou et al., 2018) found
that gradients usually require a higher precision than both weights and activations. Our results also
indicate that a certain minimum number of error spikes is necessary to achieve convergence. This
strongly depends on the depth of the network and if enough spikes are triggered to provide sufficient
gradient signal in the bottom layers. For the CIFAR10 network, convergence becomes unstable for
approximately α < 300. If the number of operations is large enough for convergence, the required
precision for the gradient does not seem to be extremely high. On the MNIST task, the difference in
test performance between a gradient rescaled by a factor of 50 and a gradient rescaled by a factor of
100 becomes insignificant. In the CIFAR10 task, this is true for a rescaling by 400 or 500. Also the
results obtained with the float precision gradients in tables 1 and 2 demonstrate the same performance,
given the range of the error.

Sparsity in backpropagated gradient To evaluate the potential efficiency of the spike coding
scheme relative to an ANN, we use the metric of relative synaptic operations. A synaptic operation

(a) (b)

Figure 1: Number of relative synaptic operations during backpropagation for different error scaling
factors α as a function of the epoch. Numbers are based on activation values of the equivalent integer
activation ANN. Test performance with error is given for each α. (a) MNIST. (b) CIFAR10.
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(a) (b)

Figure 2: Number of relative synaptic operations during backpropagation in each layer (connections
in direction of backpropagation) for different epochs. Numbers are based on activation values of the
equivalent integer activation ANN. (a) MNIST with α = 100. (b) CIFAR10 with α = 500.

corresponds to a multiply-accumulate (MAC) in the case of an ANN, and a simple accumulation
(ACC) in the case of an SNN. This metric allows us to compare networks based on their fundamental
operation. The advantage of this metric is the fact that it does not depend on the exact implementation
of the operations (for instance the number of bits used to represent each number). Since an ACC is
however generally cheaper and easier to implement than a MAC, we can be sure that an SNN is more
efficient in terms of its operations than the corresponding ANN if the number of ACCs is smaller
than the number of MACs.

Numbers were obtained with the integer activations of the equivalent ANN to keep simulation times
tractable. As previously explained, the integer response of the equivalent ANN represents the best
case scenario for the SNN, i.e. the activation encoding with the lowest number of spikes. The actual
number of events and synaptic operations in an SNN may therefore slightly deviate from these
numbers.

In figure 1, it can be seen that the number of operations decreases with increasing inference precision
of the network. This is a result of the decrease of error in the classification layer, which leads to the
emission of a smaller number of error spikes. Figure 2 demonstrates how the number of operations
during the backpropagation phase is distributed in the layers of the network (the float input bottom
layer and average pooling layers were omitted). While propagating deeper down the network, the
relative number of operations decreases and the error becomes increasingly sparse. This tendency is
consistent during the whole training process for different epochs.

5 DISCUSSION AND CONCLUSION

Using spike-based propagation of the gradient, we demonstrated that the paradigm of event-based
information propagation can be easily translated to the backpropagation algorithm. We have not only
shown that competitive inference performance can be achieved, but also that gradient propagation
seems particularly suitable to leverage spike-based processing by exploiting high signal sparsity. For
both forward and backward propagation, SpikeGrad requires a similar communication infrastructure
between neurons, which simplifies a possible spiking hardware implementation. One restriction of
our algorithm is the need for negative spikes, which could be problematic for some neuromorphic
hardware platforms.

In particular the topology used for CIFAR10 classification is rather large for the given task. We
decided to use the same topologies as the state-of-the-art to allow for better comparison. The
relatively large number of parameters may to a certain extent explain the very low number of relative
synaptic operations we observed during backpropagation. In an SNN, a large number of neurons and
parameters is however less problematic than in an ANN, since only the neurons that are activated by
input spikes will trigger computations. A large portion of the network will therefore remain inactive.
It would still be interesting to investigate signal sparsity and performance of SpikeGrad in ANN
topologies that were explicitly designed for minimal computation and memory requirements.
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A APPENDIX

B ADDITIONAL EXPLICATIONS

B.1 ROUND FUNCTION

It can be seen that the residual spike activation function covers indeed all possible cases. In particular,
the boundary cases are rounded correctly: for Vi = Θff , we obtain S = Si + 0.5. For Si ≥ 0, this
should be rounded to round[S] = Si + 1 and for Si < 0, we should obtain round[S] = Si. Similarly,
for Vi = −Θff , we obtain S = Si − 0.5. For Si ≤ 0, this should be rounded to round[S] = Si − 1
and for Si > 0, we should obtain round[S] = Si.

The same reasoning applies to error propagation.

C ADDITIONAL ARCHITECTURE DETAILS

C.1 AVERAGE POOLING

All pooling layers are average pooling layers, since these are much easier to implement in a spiking
neural network. Average pooling can simply be implemented as an IF neuron with constant weights:

wlij =
1

pli
, (22)

where pli is the number of neurons in the pooling window of the neuron.
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C.2 DROPOUT

Dropout can be implemented by an additional gating variable which randomly removes some neurons
during forward and backward propagation. During learning, the activations of the other neurons have
to be rescaled by the inverse of the dropout probability 1/(1− pdrop). This can be implemented in
the SNN framework by rescaling the threshold values by (1− pdrop).

C.3 MOMENTUM

While momentum is not required for the basic algorithm, we used it to speed up training. In a SNN
implementation, this could be implemented by adding additional accumulators that save past gradient
information.

C.4 PARAMETER PRECISION

All real valued variables are coded with 32 bit floating point variables.

D EXPERIMENTS

D.1 COMPUTING FRAMEWORK

All experiments are performed with custom CUDA/cuDNN accelerated C++ code. Training is
performed on RTX 2080 Ti graphic cards.

D.2 ERROR BARS

For all experiments, the means, errors and maximal values are calculated over 20 simulation runs.

D.3 PREPROCESSING

No preprocessing is used on the MNIST dataset. We separate the training set of size 60000 into
50000 training and 10000 validation examples, which are used to monitor convergence. Testing is
performed on the test set of 10000 examples.

For CIFAR10, the values of all color channels are divided by 255 and then rescaled by a factor of
20 to trigger sufficient activation in the network. The usual preprocessing and data augmentation is
applied. For data augmentation images are padded with the image mean value by two pixels on each
side and random slices of 32× 32 are extracted. Additionally, images are flipped randomly along the
vertical axis. We separate the training set of size 50000 into 40000 training and 10000 validation
examples, which are used to monitor convergence. Testing is performed on the test set of 10000
examples.

Final scores were obtained without retraining on the validation set.

D.4 HYPERPARAMETERS

The hyperparameters for training can be seen in tables 3 and 4.

The maximal inference performances in the results were achieved with α = 100 for MNIST and
α = 400 for CIFAR10.
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Table 3: Parameters used for training of MNIST.

Parameter Value

Epochs 60
Batch size 128
Θff 1.0
Θbp 1.0
Base learning rate η 0.1
Momentum 0.9
Decay policy mutliply by 0.1 every 20 epochs
Dropout (fc1 only) 0.5

Table 4: Parameters used for training of CIFAR10.

Parameter Value

Epochs 300
Batch size 16
Θff 1.0
Θbp 1.0
Base learning rate η 0.001
Momentum 0.9
Decay policy multiply by 0.1 after 150 epochs
Dropout (all except pool and top) 0.2
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