
Under review as submission to TMLR

A Appendix

A.1 Prompt design and number of demonstrations for Spider

Prompt design Adaptation setting EX TS
Concise 0-shot 81.2 76.0
Concise 4-shot 82.7 77.3
Verbose 0-shot 78.5 70.9
Verbose 4-shot 81.3 73.7

Table 28: Test-suite accuracy for different prompt design ap-
proaches in zero- and few-shot set-up on Spider Dev.

In Table 28, we analyze the performance of
Few-shot SQL-PaLM method on different
number of demonstrations (zero- vs. few-
shot) and queries with different prompt de-
signs. Overall, few-shot prompting outper-
forms zero-shot counterpart. We also ex-
plore the effect of different prompt design
approaches on performance. For the LLM
being queried (e.g. PaLM2), concise prompt
is observed to be better. “Verbose” prompts are based on using natural language to describe database schema,
which is closer to the way LLMs were trained, whereas “Concise” prompts use the symbols to describe the
database schema, which has advantages of clearly presenting table structure. Examples of concise prompt
and verbose prompt are provided in Appendix A.10.1 and A.10.2.

A.2 Prompt design for BIRD via few-shot prompting

In Table 29, we investigate various prompt design on BIRD datasets. Unlike Spider datasets (Table 28) where
concise prompt works better, for BIRD datasets verbose prompt works superior.

Table 29: Execution accuracy of Text-to-SQL with different prompt designs across different SQL difficulty
levels on BIRD datasets

Simple Moderate Challenging Total
Count 933 459 142 1534
Concise 49.95% 25.05% 19.01% 39.63%
Verbose 53.27% 29.85% 18.31% 43.02%

A.3 Descriptions of Robust Spider Datasets: Spider-SYN, Spider-Realistic, Spider-DK

Table 30: Information on different variants of Spider datasets with the purpose of evaluating robustness.

Counts Modification Category Source
Modify
Natural
Question?

Modify
Database
Schema?

Add
New
Database
Schema?

Examples

Spider-
SYN 1034

Manually modifying
natural language
questions with
synonym substitutions

Spider Dev. Yes No No

Spider
Database Schema: concert_singer
stadium(Stadium_ID, Location, Name, Capacity, Highest, Lowest, Average)
singer(Singer_ID, Name, Country, Song_Name, Song_release_year, Age, Is_male)
concert(concert_ID, concert_Name, Theme, Stadium_ID, Year)
singer_in_concert(concert_ID, Singer_ID)
#
Q: How many singers do we have?

Spider-SYN
Q: How many vocalists do we have?

Spider-
Realistic 508

Modify natural
language questions
to remove explicitly
mentioning column
names

Subset of
Spider Dev Yes No No

Spider
Database Schema: concert_singer
Q: How many concerts are there in year 2014 or 2015?

Q: How many concerts are there in 2014 or 2015?
No year

Spider-
DK 535

Modify database
schema to
incorporate the
domain knowledge

Subset of
Spider Dev Yes Yes Yes

Database Schema: concert_singer
Modify database column "Age" into "Birthday";
Replace its values from "52" to "1971-02-09 00:00:00"

Q: List all song names by singers above the average age.
hard to answer "age"-related question

37

Under review as submission to TMLR

A.4 Tuning performance with different foundation models

Table 31 shows the results of tuning open-source models LLaMA7B, LLaMA13B, and LLaMA33B on Spider
using the best input representation as reported in Gao et al. (2023a)33

Table 31: Evaluations on Spider dev split using different foundation models.
Foundation model TS
LLaMA-7B 66.7%
LLaMA-2-CHAT-7B 69.6%
LLaMA-13B 68.6%
LLaMA-2-CHAT-13B 65.1%
LLaMA-33B 69.1%

A.5 Synthetic data

A.5.1 Synthetic data prompt design
Synthetic Data Prompt Design

You will be provided with a list of tables from a SQL database followed by a natural language query
related to the database and the original SQL query answering the question. Your job is to understand
the natural language queries and generate up to 3 different SQL queries using diverse commands from the
original query while answering the question correctly. You need to make sure to use the same columns
from the original query for the generated query. You will also generate a similarity score between the
original and the generated query based on how closer they are syntactically.

Database tables schema are as follows:

CREATE TABLE customers (
customer_id int, -- unique customer id
name varchar(100), -- name of the customer
email_address varchar(255), -- email address of the customer

);

CREATE TABLE order (
order_id int, -- unique order id.
customer_id int, -- unique customer id.
order_amount decimal(10, 2), -- amount spent by the customer on the order

);

Question: Find the email of the top spending customer?

Original SQL query:

SELECT customers.first_name
FROM customers
JOIN order ON customers.customer_id = order.customer_id
GROUP BY customers.customer_id, customers.first_name
ORDER BY SUM(order.order_amount) DESC
LIMIT 1;

Output the generated queries and the similarity scores in a json list as follows:

33The numbers are taken from Gao et al. (2023a);

38

Under review as submission to TMLR

[
{"sql": // generated query-1,
"similarity": // similarity score (0.0-1.0) for query-1

},
{...}

]

A.5.2 Synthetic data similarity score distribution

Figure 10: Histogram plot of synthetic data similarity scores

32 displays the statistics of the generated queries with correctness and similarity filters applied. It is important
to note that lower similarity score indicates higher diversity.

Table 32: Synthetic data generation statistics for BIRD train split
Correct SQL Correct SQL + Similarity <= 0.9

Samples with 1+ generated queries 81.4% 78.8%

The mean, median, standard deviation of the similarity scores of all generated queries is reported in Table 33
and the histogram is plotted in Figure 10 in Appendix.

Table 33: Statistics of synthetic data similarity scores
Min Max Mean Median STD
0.5 1.0 0.85 0.85 0.07

A.6 Column Selection

A.6.1 Example of retrieval-based column selection

Template:

Column name [column_name] of type [column_type] from the table [table_name]. Description: [col-
umn_description]. Value examples: [common_distinct_values].

Example:

39

Under review as submission to TMLR

Column name ‘size’ of type ‘STRING’ from the table ‘package’. Description: ‘package size dimensions’.
Value examples: ‘small’, ‘medium’, ‘long’.

A.6.2 Program-aided column selection ablation studies

The accuracy of program-aided column selection is directly related to the accuracy of the preliminary SQL.
The higher the accuracy of these preliminary SQL queries, the better the column selections based on them
will be.

Table 34: Higher accuracy in preliminary SQL leads to better column selection
Accuracy (%) Table (%) Column (%)
Preliminary SQL Recall Precision F1 Recall Precision F1
43 92.96 91.15 92.04 84.75 86.62 85.67
50.2 94.10 94.41 94.25 87.97 90.87 89.40
55 93.76 95.12 94.44 89.62 91.69 90.64
58.8 94.64 96.14 95.39 90.66 92.60 91.62

A.6.3 Compare with other column selection methods

We presented other column selection methods: LLM base: prompting LLMs to request table and column
selection (Prompt is in Sec. A.6.4). LLM CoT: Following Pourreza & Rafiei (2023), we add few-shot
examples and use change-of-thought demonstrations to help the prompt (Prompt is in Sec. A.6.5). The model
is PaLM-2 text-bison. Automatic Annotation (Lei et al., 2020b) is a proposes pattern matching approach.
The last two lines are taken from Table 16 and Table 14 (Top 10), rounded by two decimals. The results in
Table 35 indicates that program-aided algorithm outperform the other methods with a clear margin.

Table 35: Comparison of Table and Column selection

Table selection Column selection
Methods Recall Precision F1 Recall Precision F1
LLM baseline 0.71 0.88 0.75 0.24 0.83 0.35
LLM Few-shot 0.85 0.82 0.82 0.81 0.64 0.70
Automatic Annotation 0.87 0.74 0.80 0.68 0.90 0.78
Retrieval-based (Ours) 0.90 0.56 0.39 0.82 0.27 0.39
Program-aided (Ours) 0.95 0.96 0.95 0.91 0.93 0.92

A.6.4 LLM base prompt design of column selection

We start with a simple baseline which asks the model to select a schema in two steps. First, select tables and
then columns. 1 Table selection

Select tables from my database named [database_name], to answer the given query.
Tables:
CREATE TABLE [table_name_1] ()
CREATE TABLE [table_name_2] ()
...

Query: '{query}'
Only generate a list of comma separated table names without any spaces.

2 Column selection
Given a table definition and a natural language query,
I am interested in selecting columns related to the query:

40

Under review as submission to TMLR

CREATE TABLE [table_name] (
[column_name] [column_type],

);
Table Values:
[3 row examples with header]
The natural language query: {query}
Select all related column names, including ids, from the table.
Only generate a list of comma separated column names values without any spaces.

A.6.5 LLM Few-shot with CoT for column selection

Following Pourreza & Rafiei (2023), we add few-shot examples and use change-of-thought demonstrations to
help the prompt.

You are an agent designed to find the schema_links for generating SQL queries for each
question based on the database schema and Foreign keys.
Hint helps you to find the correct schema_links.
###
Few examples of this task are:
###
Schema of the database with sample rows and column descriptions:
#
CREATE TABLE users (

user_id INT,
...

);
Table Values:
User_id ...
001 ...

Table users
User_id: id of the user
...

Question: Among the lists created by user 4208563...
Answer: Let’s think step by step. In the question , we are asked:
"user" so we need column = [lists_users.user_id]
"number of followers" so we need column = [lists.list_followers]...
Schema_links: [lists.list_followers,lists_users.user_subscriber,
lists.user_id = lists_user.user_id, lists.list_id = lists_user.list_id,
lists_users.user_id, 4208563, 1]

###
Schema of the database with sample rows and column descriptions:
#
CREATE TABLE [table_name] (

[column_name] [column_type],
...

);
Table Values:
[3 row examples with header]

Table [table_name]
[column_name]: [column_description]
...

Question: [question]

41

Under review as submission to TMLR

Answer: Let’s think step by step.

A.7 Column and table data statistics of BIRD dataset

Table 36 illustrates the distribution of data regarding the number of columns and tables per example in the
testing sets. The ground-truth distribution is also provided. Notably, BIRD presents a more challenging
scenario compared to Spider, with an average of 73 total columns to be selected per example, of which
only 3.7 columns are used in the ground truth. Similarly, the average number of tables is 7, and 1.9 tables
are selected in the ground truth. However, it’s essential to acknowledge that these sets still deviate from
real-world scenarios with thousands of columns. This direction should be further explored in the future.

Table 36: Statistics for table and columns in the data-sets
BIRD Test Spider Test

Mean Min. Max. P75 P95 SDT Mean Min. Max. P75 P95 SDT
Tables 7 3 13 8 11.5 2.7 4 2 11 4 8.3 2.2
Columns 73 11 192 91.5 155.5 48.8 20.8 7 59 24 50 13.5
Columns per table 10.4 2 115 9 42.4 16.8 5.2 2 26 6 11.2 3.6
Ground-truth Tables 1.9 1 4 2 3 0.7 1.5 1 4 2 3 0.6
Ground-truth columns 3.7 1 9 5 6 1.4 2.4 1 6 3 5 1.2

Table 37: Average of number of columns and tables for questions for BIRD datasets: we compute the average
number of table and columns for each questions.

number of queries Avg. number
of table

Avg. of
column counts

Median number
of tables

Min. of
column counts

Max. of
column counts

BIRD-valid 1534 7.4 76.3 71 11 201
BIRD-train 9428 12.0 77.4 48 6 457

A.8 Exploration on combining submodules

An alternative approach involves combining different input configurations in previous sections into a single
training experiment. This method entails integrating various elements, such as mixed training data, synthetic
data, database content, and column selection, into the inputs for a single experiment. However, the outcomes
of such experiments reveal that merging these components does not result in performance improvements over
using them individually. This suggests that LLMs may struggle to effectively process and understand all the
provided information simultaneously during tuning.

Type Train data Method Accuracy
Tuning BIRD + Spider + database content 58.80

Tuning BIRD + Spider
+ Synthetic data + database content 58.35

Tuning BIRD + Spider
+ Synthetic data

+ database content
+ soft column selection 58.08

Table 38: The effect of integrating all components into one training paradigm

A.9 Case Study of SQL Generation and Error Analysis

A.9.1 SQL-PaLM with few-shot Prompting

We present case studies of Few-shot SQL-PaLM in Table 39 and 40 for “correct” and “wrong” SQL generated
by Few-shot SQL-PaLM based on test-suite accuracy of Spider dataset. Surprisingly, the majority of examples

42

Under review as submission to TMLR

classified as "errors" by Few-shot SQL-PaLM were actually correct when evaluated by human experts,
indicating the scores of SQL-PaLM might be significantly higher. The evaluation fails due to (1) ambiguous
questions, exemplified by 1st example in Table 40, and (2) official test-suite evaluation struggles on evaluating
creative solutions with output which deviate from that of the ground-truth. For instance, the 2nd example
has multiple valid ground-truths; the 3rd example experiences type-related issues; the 4th example presents
different formats (e.g. “full name” and “first name, second name” are equally semantically correct for the
question. They both should be considered correct); and the 5th example is false negative due to the omission
of the "distinct" keyword.

Regarding the "real" mistakes made by Few-shot SQL-PaLM , such as the sixth and seventh examples, we
observed a departure from simple errors like syntax errors commonly found in other methods (Liu et al.,
2023a). Instead, the mistakes made by Few-shot SQL-PaLM closely resemble those that human experts
would make when developing the same solution, demonstrating its profound expertise in SQL. Another source
of errors is the presence of a "confusing database schema," where Few-shot SQL-PaLM encounters difficulties
in selecting the appropriate table or column when multiple equivalent options contain similar content (as
illustrated in the 5th example of Table 40).

Tables 39 and 40 show the capabilities of Few-shot SQL-PaLM , demonstrating that it can efficiently handle
complex SQL queries. It successfully deals with tasks such as joining multiple tables using various keywords
(as observed in the 1st, 2nd, 4th, and 5th examples in Table 39 and all examples in Table 40), as well as
employing nested SQL structures (as seen in the 3rd example of Table 39). Moreover, Few-shot SQL-PaLM
exhibits the ability to generate creative and diverse SQL outputs that differ from the ground-truth but remain
equally correct. This suggests a deep understanding of SQL content rather than mere memorization. Notable
examples include the 3rd example in Table 39 and the 2nd, 3rd, 4th, and 5th examples in Table 40. Even
in cases of errors, such as the 6th and 7th examples in Table 40, Few-shot SQL-PaLM presents alternative
solutions distinct from the ground-truth. Furthermore, Few-shot SQL-PaLM demonstrates the ability to
infer relevant SQL expression based on semantic meaning, i.e. "French singers" and "country=France," as
well as "young to old" and "OrderBy age ASC" (as evident in the 1st and 2nd examples). This capability is
attributed to the large-scale pretraining of LLMs.

A.9.2 Fine-tuned SQL-PaLM

Next, we present our manual investigation of the generated queries on the BIRD dev set. To quantify the error
cases for the queries generated from the fine-tuned Few-shot SQL-PaLM , we randomly select 100 samples
from BIRD dev set and categorize the queries that we considered mistakes based on the BIRD evaluation
procedure.

Table 41 shows a breakdown of the different error types that we have identified and provided some examples
in Table 42 for each category. We categorize the false positives as Wrong Ground-Truth (19%) which are
examples from the dataset that do not correctly answer the original question. Wrong Evidence (5%) which
denotes examples that have incorrect or misleading human-annotated evidences. Ambiguous (2%) which
are examples where the question’s meaning is ambiguous and open-ended (e.g., not clear what is expected
from the question). Evaluation Procedure (5% denoting that the generated SQL query was in fact correct
but was considered incorrect by the evaluation procedure (e.g., the generated queries contains additional
selected columns). For a comprehensive list of examples from the different error types, refer to Table 42.

This investigation demonstrates that from 100 randomly sampled incorrect queries (out of a total of 584 for
fine-tuned Few-shot SQL-PaLM), 31% of them are not correctly evaluated by the BIRD evaluation suite and
if this sample size is representative of the full dev set, it shows that there is a performance upper bound of
around 70%.

43

Under review as submission to TMLR

Table 39: Few-shot SQL-PaLM examples that are correct according to test-suite accuracy.
Data Schema Question Ground-truth SQL-PaLM Comment

Q1: stadium:
Stadium_ID, Location,
Name, Capacity, Highest,
Lowest, Average
singer: Singer_ID, Name,
Country, Song_Name,
Song_release_year, Age,
Is_male
concert: concert_ID,
concert_Name, Theme,
Stadium_ID, Year
singer_in_concert:
concert_ID, Singer_ID

What is the aver-
age, minimum, and
maximum age of all
singers from France?

SELECT avg(age) , min(age
) , max(age) FROM singer
WHERE country = 'France'

SELECT avg(age) , min(age
) , max(age) FROM singer
WHERE country = "France"

Inference on
the relation-
ship between
"French" and
"France"

Show name, country,
age for all singers or-
dered by age from
the oldest to the
youngest.

SELECT name , country ,
age FROM singer ORDER BY
age DESC

SELECT name , country ,
age FROM singer ORDER BY
age DESC

Inference
based on
understand-
ing the age
ranking via
“order by age
DESC”:

Q2: city: ID, Name, Coun-
tryCode, District, Popula-
tion
sqlite_sequence: name,
seq
country: Code, Name,
Continent, Region, Sur-
faceArea, IndepYear, Pop-
ulation, LifeExpectancy,
GNP, GNPOld, Local-
Name, GovernmentForm,
HeadOfState, Capital,
Code2
countrylanguage: Coun-
tryCode, Language, IsOffi-
cial, Percentage

What are the names
of nations where
both English and
French are official
languages?

SELECT T1.Name FROM
country AS T1 JOIN
countrylanguage AS
T2 ON T1.Code = T2

.CountryCode WHERE T2

.Language = "English"
AND T2.IsOfficial = "T"
INTERSECT SELECT T1.Name
FROM country AS T1 JOIN
countrylanguage AS T2 ON
T1.Code = T2.CountryCode
WHERE T2.Language = "

French" AND T2.IsOfficial
= "T"

SELECT T1.name FROM
country AS T1 JOIN
countrylanguage AS
T2 ON T1.code = T2

.countrycode WHERE T2

.language = "English"
AND T2.isofficial = "T"
INTERSECT SELECT T1.name
FROM country AS T1 JOIN
countrylanguage AS T2 ON
T1.code = T2.countrycode
WHERE T2.language = "

French" AND T2.isofficial
= "T"

Generate ex-
act GT

Q3: stadium: Sta-
dium_ID, Location, Name,
Capacity, Highest, Lowest,
Average
singer: Singer_ID, Name,
Country, Song_Name,
Song_release_year, Age,
Is_male
concert: concert_ID, con-
cert_Name, Theme, Sta-
dium_ID, Year
singer_in_concert: con-
cert_ID,Singer_ID

What are the num-
ber of concerts that
occurred in the
stadium with the
largest capacity ?

select count(*) from
concert where stadium_id
= (select stadium_id

from stadium order by
capacity desc limit 1)

SELECT count(*) FROM
concert AS T1 JOIN
stadium AS T2 ON

T1.stadium_id = T2.
stadium_id WHERE T2.
capacity = (SELECT max(
T3.capacity) FROM stadium
AS T3)

Creative
– different
from ground-
truth but
accurate

Q4: Student: StuID,
LName, Fname, Age, Sex,
Major, Advisor, city_code
Has_Pet: StuID, PetID
Pets: PetID, PetType,
pet_age, weight

Find the first name
of students who
have both cat and
dog pets .

select t1.fname from
student as t1 join

has_pet as t2 on t1.stuid
= t2.stuid join pets

as t3 on t3.petid = t2.
petid where t3.pettype =
'cat' intersect select

t1.fname from student as
t1 join has_pet as t2 on
t1.stuid = t2.stuid join
pets as t3 on t3.petid =
t2.petid where t3.pettype
= 'dog'

SELECT T1.fname FROM
student AS T1 JOIN

has_pet AS T2 ON T1.stuid
= T2.stuid JOIN pets

AS T3 ON T2.petid = T3.
petid WHERE T3.pettype =
"cat" INTERSECT SELECT

T1.fname FROM student AS
T1 JOIN has_pet AS T2 ON
T1.stuid = T2.stuid JOIN
pets AS T3 ON T2.petid =
T3.petid WHERE T3.pettype
= "dog"

Complex
SQL contain-
ing multiple
SQL key-
words.

Q5: continents: ContId,
Continent
countries: CountryId,
CountryName, Continent
car_makers: Id, Maker,
FullName, Country
model_list: ModelId,
Maker, Model
car_names: MakeId,
Model, Make
cars_data: Id, MPG,
Cylinders, Edispl, Horse-
power, Weight, Accelerate,
Year

What are the ids
and names of all
countries that either
have more than 3
car makers or pro-
duce fiat model ?

select t1.countryid ,
t1.countryname from

countries as t1 join
car_makers as t2 on t1
.countryid = t2.country
group by t1.countryid
having count(*) > 3

union select t1.countryid
, t1.countryname from
countries as t1 join

car_makers as t2 on t1.
countryid = t2.country
join model_list as t3 on
t2.id = t3.maker where t3
.model = 'fiat';

SELECT T1.countryid ,
T1.countryname FROM

countries AS T1 JOIN
car_makers AS T2 ON T1
.countryid = T2.country
GROUP BY T1.countryid
HAVING count(*) > 3

UNION SELECT T1.countryid
, T1.countryname FROM
countries AS T1 JOIN

car_makers AS T2 ON T1.
countryid = T2.country
JOIN model_list AS T3 ON
T2.id = T3.maker WHERE T3
.model = "fiat"

Complex
SQL contain-
ing multiple
SQL key-
words

44

Under review as submission to TMLR

Table 40: Few-shot SQL-PaLM outputs that are incorrect according to test suite evaluation. Indeed, according
to human experts, the majority of these “error cases” are actually the correct SQL outputs.
Question 1: What is the maximum capacity and the average of all stadiums ? (id=16,

database=concert_singer)
Ground-truth: select max(capacity), average from stadium
SQL-PALM: SELECT max(capacity) , avg(capacity) FROM stadium
Comment: Ambiguous question. The Ground-truth query would give the average occupancy column of each stadium,

where as the SQL-PALM one would give the average of the capacity column of all stadiums. Without
specific context, the SQL-PALM output matches the question better.

Human Expert True (Ground-truth issue)

Question 2: Which airline has most number of flights? (id=229, database=flight_2)
Ground-truth: SELECT T1.Airline FROM AIRLINES AS T1 JOIN FLIGHTS AS T2 ON T1.uid = T2.Airline GROUP BY T1.Airline

ORDER BY count(*) DESC LIMIT 1
SQL-PALM: SELECT T1.airline FROM airlines AS T1 JOIN flights AS T2 ON T1.uid = T2.airline GROUP BY T2.airline

ORDER BY count(*) DESC LIMIT 1
Comment: Both T1.Airline (the Airlines.Airline column, which contains names of airlines) and T2.airline (the

flights.airline column, which contains the uid of airlines) uniquely identify airlines, and grouping by
either one gives the same results. The evaluation failed because the data contains 12 airlines each with 100
flights (i.e. every one is the maximum), and instability of the ordering produces different outcomes when
both queries pick one of the maximums.

Human Expert True (Database and Eval issue)

Question 3: What are the id, name and membership level of visitors who have spent the largest amount of
money in total in all museum tickets? (id=420, database=museum_visit)

Ground-truth: SELECT t2.visitor_id , t1.name , t1.Level_of_membership FROM visitor AS t1 JOIN visit AS t2 ON t1.id
= t2.visitor_id GROUP BY t2.visitor_id ORDER BY sum(t2.Total_spent) DESC LIMIT 1

Excution result: (’3’, ’Arjen Robben’, 1), where ’3’ is a string
SQL-PALM: SELECT T1.id , T1.name , T1.level_of_membership FROM visitor AS T1 JOIN visit AS T2 ON T1.id =

T2.visitor_id GROUP BY T1.id ORDER BY sum(T2.total_spent) DESC LIMIT 1
Excution result: (3, ’Arjen Robben’, 1), where 3 is an integer
Comment: The result is actually correct. The highlighted differences t2.visitor_id and t1.id are equivalent because

the two tables are joined on t1.id = t2.visitor_id. Evaluation failed because of the field type differences,
as t1.id is int and t2.visitor_id is text.

Human Expert True (Database and Eval issue)

Question 4: List the names of all winners who played in both 2013 and 2016. (id=447, database=wta_1)
Ground-truth: SELECT winner_name FROM matches WHERE YEAR = 2013 INTERSECT SELECT winner_name FROM matches WHERE

YEAR = 2016
Excution result: (’Angelique Kerber’,), (’Petra Kvitova’,) ...
SQL-PALM: SELECT T1.first_name , T1.last_name FROM players AS T1 JOIN matches AS T2 ON T1.player_id =

T2.winner_id WHERE T2.year = 2013 INTERSECT SELECT T1.first_name , T1.last_name FROM players AS
T1 JOIN matches AS T2 ON T1.player_id = T2.winner_id WHERE T2.year = 2016

Execution result: (’Angelique’, ’Kerber’), (’Petra’, ’Kvitova’) ...
Comment: The result is actually correct. The highlighted differences, as both execution results make sense from semantic

perspective of the query. winner_name and T1.first_name , T1.last_name are equivalent for representation
of “name". Evaluation failed because of the differences in the output format type. If multiple ground-truths
are provided considering different output formats, this is not an error.

Human Expert True (Eval issue)

Question 5: What are the different template type codes? (id=322, database=cre_Doc_Template_Mgt):
Ground-truth: SELECT DISTINCT template_type_code FROM Templates
SQL-PALM: SELECT DISTINCT template_type_code FROM Ref_Template_Types
Comment: The results are actually correct. Few-shot SQL-PaLM selects a different table Ref_Template_Types, in-

stead of Templates. The same “template types” appear in multiple entries of Templates. The two SQL
outputs generate the same execution result when evaluating with “DISTINCT"". Evaluation failed because
Spider official evaluation removes ‘DISTINCT‘ during evaluation.

Human Expert True (Eval issue)

Question 6: Find the number of professionals who have not treated any dogs. (id=983,
database=dog_kennels):

Ground-truth: SELECT count(*) FROM Professionals WHERE professional_id NOT IN (SELECT professional_id FROM
Treatments)

SQL-PALM: SELECT count(*) FROM Professionals EXCEPT SELECT professional_id FROM Treatments
Comment: Left and Right sides of “’EXCEPT” need equivalent content. Corrected SQL is SELECT count(*) FROM (SELECT

professional_id FROM Professionals EXCEPT SELECT professional_id FROM Treatments)
Human Expert False (Wrong Use of keywords)

Question 7: Find the number of professionals who have not treated any dogs. (id=754, database=world_1):
Ground-truth: select t1.name from country as t1 join countrylanguage as t2 on t1.code = t2.countrycode where

t2.language = "english" and isofficial = "t" union select t1.name from country as t1 join
countrylanguage as t2 on t1.code = t2.countrycode where t2.language = "dutch" and isofficial = "t"

SQL-PALM: SELECT T1.name FROM country AS T1 JOIN countrylanguage AS T2 ON T1.code = T2.countrycode WHERE
T2.language = "English" OR T2.language = "Dutch" AND T2.isofficial = "T"

Comment: Operator Precedence: ADD > OR. Need to add parenthesis over “OR”. Corrected SQL is SELECT
T1.name FROM country AS T1 JOIN countrylanguage AS T2 ON T1.code = T2.countrycode WHERE (T2.language
= "English" OR T2.language = "Dutch") AND T2.isofficial = "T". Spider evaluation normalizes the
ground-truth outputs to all lowercase for easier evaluation, but mismatch exists when referring to
database content. Changes:english->English,dutch->Dutch, t->T

Human Expert False (Wrong operator precedence and eval issue)

45

Under review as submission to TMLR

Table 41: BIRD dev set errors from a sample of 100 queries denoted as "incorrect" by the evaluation procedure.
False-positive category Number of examples
Wrong Ground-Truth 19
Wrong Evidence 5
Ambiguous 2
Evaluation Procedure 5

46

Under review as submission to TMLR

Table 42: These examples demonstrate the different categories of errors of SQL-PaLM -fine-tuned.
Wrong Ground-Truth

Example 1:
Question Write all comments made on the post titled ’How does gentle boosting differ from AdaBoost?’

(id=579, database=codebase_community)
Ground-truth SELECT T1.Text FROM comments AS T1 INNER JOIN posts AS T2 ON T1.PostId = T2.Id WHERE T2.Title = ’How

does gentle boosting differ FROM AdaBoost?’.
Comment: The ground-truth query has an upper case "FROM" instead of "from" which is what is in the question.

Example 2:
Question What’s the finish time for the driver who ranked second in 2008’s Australian Grand Prix?

(id=937, database=formula_1)
Ground-truth SELECT T1.time FROM results AS T1 INNER JOIN races AS T2 on T1.raceId = T2.raceId WHERE T1.rank = 2

AND T2.name = ’Australian GrAND Prix’ AND T2.year = 2008
Comment Similarly to the previous example, the ground-truth query string doesn’t match the one from the question.

Likely this is due to a data-cleaning procedure in the BirdSQL dev set.

Example 3:
Question What race number has the most finishers? (id=979, database=formula_1)
Ground-truth SELECT raceId FROM results GROUP BY raceId ORDER BY COUNT(time IS NOT NULL) DESC LIMIT 1
Comment The COUNT(time IS NOT NULL) is somewhat unconventional. Typically, COUNT is used on a column name directly.

However, here it is counting the boolean result of time IS NOT NULL. This will count all rows, regardless of
whether time is null or not, since the expression time IS NOT NULL is always either true or false, both of which
are counted.

Example 4:
Question Please provide top three football players’ IDs who are among the lowest potential players and

prefer to use the right foot when attacking. (id=1135, database=european_football_2)
Ground-truth SELECT id FROM Player_Attributes WHERE preferred_foot = ’right’ ORDER BY potential DESC LIMIT 3
Comment The questions asks the "lowest potential players" so the ground-query should order by descending potential

- should not have DESC.

Wrong Evidence

Example 1:
Question What is the eligible free rate of the 10th and 11th schools with the highest enrolment for

students in grades 1 through 12?’ (id=31, database=california_schools)
Ground-truth SELECT CAST(‘Free Meal Count (K-12)‘ AS REAL) / ‘Enrollment (K-12)‘ FROM frpm ORDER BY ‘Enrollment

(K-12)‘ DESC LIMIT 9, 2.
Evidence K-12 refers to students in grades 1 through 12; Eligible free rate for K-12 = ‘FRPM Count

(K-12)‘ / ‘Enrollment (K-12)‘
Comment: The evidence suggests that the information can be found in column ‘FRPM Count (K-12)‘ but we can see that

in the ground-truth another column is actually chosen.

Example 2:
Question Among all chemical compounds that contain molecule TR047, identify the percent that form a

double-bond.’ (id=287, database=toxicology)
Ground-truth SELECT CAST(COUNT(CASE WHEN T.bond_type = ’=’ THEN T.bond_id ELSE NULL END) AS REAL) * 100 /

COUNT(T.bond_id) FROM bond AS T WHERE T.molecule_id = ’TR047’.
Evidence TR047 is the molecule id; double bond refers to bond_type = ’ = ’; percentage = DI-

VIDE(SUM(bond_type = ’ = ’), COUNT(all bond_id)) as percent where molecule_id =
’TR047’‘

Comment: The evidence suggests that bond_type has spaces ’ = ’, whereas the ground-truth query has no spaces.

Ambiguous

Example 1:
Question How many users last accessed the website after 2014/9/1? (id=533,

database=codebase_community)
Ground-truth SELECT COUNT(Id) FROM users WHERE date(LastAccessDate) > ’2014-09-01’.
Comment: It is not clear from the question whether we should include users that accessed the website exactly on the

day of 2014/09/01.

Evaluation Procedure

Example 1:
Question What is the height of the tallest player? Indicate his name. (id=1021,

database=european_football_2)
Ground-truth SELECT player_name FROM Player ORDER BY height DESC LIMIT 1
SQL-PALM: SELECT height, player_name FROM Player ORDER BY height DESC LIMIT 1;
Comment: The generated query selects an additional column but is essentially equal to the ground-truth query.

Example 2:
Question How many races were there in 2005? Name all the races in descending order. (id=592,

database=formula_1
Ground-truth SELECT name FROM races WHERE year = 2005 ORDER BY name DESC
SQL-PALM: SELECT COUNT(raceId) FROM races WHERE year = 2005 UNION ALL SELECT name FROM races WHERE year = 2005

ORDER BY name DESC;
Comment: The generated query selects contains the correct selection of races and also includes the count with a UNION

ALL statement.

47

Under review as submission to TMLR

A.10 Prompt examples

A.10.1 Concise Prompt Design: 4 shot
This is a task converting text into SQL statement. We will first given the dataset schema and then ask a
question in text. You are asked to generate SQL statement.

Here is an example: Convert text to SQL:

[Schema (values)]: | farm | city : city_id , official_name , status , area_km_2 , population ,
census_ranking | farm : farm_id , year , total_horses , working_horses , total_cattle , oxen
, bulls , cows , pigs , sheep_and_goats | farm_competition : competition_id , year , theme ,
host_city_id , hosts | competition_record : competition_id , farm_id , rank;

[Column names (type)]: city : city_id (number)| city : official_name (text)| city : status
(text)| city : area_km_2 (number)| city : population (number)| city : census_ranking (

text)| farm : farm_id (number)| farm : year (number)| farm : total_horses (number)| farm :
working_horses (number)| farm : total_cattle (number)| farm : oxen (number)| farm : bulls
(number)| farm : cows (number)| farm : pigs (number)| farm : sheep_and_goats (number)|

farm_competition : competition_id (number)| farm_competition : year (number)| farm_competition
: theme (text)| farm_competition : host_city_id (number)| farm_competition : hosts (text

)| competition_record : competition_id (number)| competition_record : farm_id (number)|
competition_record : rank (number);

[Primary Keys]: city : city_id | farm : farm_id | farm_competition : competition_id |
competition_record : competition_id;

[Foreign Keys]: farm_competition : host_city_id equals city : city_id | competition_record :
farm_id equals farm : farm_id | competition_record : competition_id equals farm_competition :
competition_id

[Q]: What are the themes of farm competitions sorted by year in ascending order?;

[SQL]: select theme from farm_competition order by year asc;

Here is an example: Convert text to SQL:

[Schema (values)]: | farm | city : city_id , official_name , status , area_km_2 , population ,
census_ranking | farm : farm_id , year , total_horses , working_horses , total_cattle , oxen
, bulls , cows , pigs , sheep_and_goats | farm_competition : competition_id , year , theme ,
host_city_id , hosts | competition_record : competition_id , farm_id , rank;

[Column names (type)]: city : city_id (number)| city : official_name (text)| city : status
(text)| city : area_km_2 (number)| city : population (number)| city : census_ranking (

text)| farm : farm_id (number)| farm : year (number)| farm : total_horses (number)| farm :
working_horses (number)| farm : total_cattle (number)| farm : oxen (number)| farm : bulls
(number)| farm : cows (number)| farm : pigs (number)| farm : sheep_and_goats (number)|

farm_competition : competition_id (number)| farm_competition : year (number)| farm_competition
: theme (text)| farm_competition : host_city_id (number)| farm_competition : hosts (text

)| competition_record : competition_id (number)| competition_record : farm_id (number)|
competition_record : rank (number);

[Primary Keys]: city : city_id | farm : farm_id | farm_competition : competition_id |
competition_record : competition_id; [Foreign Keys]: farm_competition : host_city_id equals
city : city_id | competition_record : farm_id equals farm : farm_id | competition_record :

competition_id equals farm_competition : competition_id

[Q]: What are the maximum and minimum number of cows across all farms.;

[SQL]: select max(cows), min(cows) from farm;

48

Under review as submission to TMLR

Here is an example: Convert text to SQL:

[Schema (values)]: | department_management | department : department_id , name , creation ,
ranking , budget_in_billions , num_employees | head : head_id , name , born_state , age |
management : department_id , head_id , temporary_acting (Yes);

[Column names (type)]: department : department_id (number)| department : name (text)|
department : creation (text)| department : ranking (number)| department : budget_in_billions (
number)| department : num_employees (number)| head : head_id (number)| head : name (text)| head
: born_state (text)| head : age (number)| management : department_id (number)| management :

head_id (number)| management : temporary_acting (text);

[Primary Keys]: department : department_id | head : head_id | management : department_id;

[Foreign Keys]: management : head_id equals head : head_id | management : department_id equals
department : department_id

[Q]: Show the name and number of employees for the departments managed by heads whose temporary
acting value is 'Yes'?;

[SQL]: select t1.name, t1.num_employees from department as t1 join management as t2 on t1.
department_id = t2.department_id where t2.temporary_acting = 'Yes';

Here is an example: Convert text to SQL:

[Schema (values)]: | farm | city : city_id , official_name , status , area_km_2 , population ,
census_ranking | farm : farm_id , year , total_horses , working_horses , total_cattle , oxen
, bulls , cows , pigs , sheep_and_goats | farm_competition : competition_id , year , theme ,
host_city_id , hosts | competition_record : competition_id , farm_id , rank;

[Column names (type)]: city : city_id (number)| city : official_name (text)| city : status
(text)| city : area_km_2 (number)| city : population (number)| city : census_ranking (

text)| farm : farm_id (number)| farm : year (number)| farm : total_horses (number)| farm :
working_horses (number)| farm : total_cattle (number)| farm : oxen (number)| farm : bulls
(number)| farm : cows (number)| farm : pigs (number)| farm : sheep_and_goats (number)|

farm_competition : competition_id (number)| farm_competition : year (number)| farm_competition
: theme (text)| farm_competition : host_city_id (number)| farm_competition : hosts (text

)| competition_record : competition_id (number)| competition_record : farm_id (number)|
competition_record : rank (number);

[Primary Keys]: city : city_id | farm : farm_id | farm_competition : competition_id |
competition_record : competition_id;

[Foreign Keys]: farm_competition : host_city_id equals city : city_id | competition_record :
farm_id equals farm : farm_id | competition_record : competition_id equals farm_competition :
competition_id

[Q]: Show the status of the city that has hosted the greatest number of competitions.;

[SQL]: select t1.status from city as t1 join farm_competition as t2 on t1.city_id = t2.
host_city_id group by t2.host_city_id order by count(*) desc limit 1;

Here is the test question to be answered: Convert text to SQL:

[Schema (values)]: | concert_singer | stadium : stadium_id , location , name , capacity
, highest , lowest , average | singer : singer_id , name , country , song_name ,

song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id ,
year | singer_in_concert : concert_id , singer_id;

[Column names (type)]: stadium : stadium_id (number)| stadium : location (text)| stadium : name
(text)| stadium : capacity (number)| stadium : highest (number)| stadium : lowest (number)|

49

Under review as submission to TMLR

stadium : average (number)| singer : singer_id (number)| singer : name (text)| singer : country
(text)| singer : song_name (text)| singer : song_release_year (text)| singer : age (number

)| singer : is_male (others)| concert : concert_id (number)| concert : concert_name (text)|
concert : theme (text)| concert : stadium_id (text)| concert : year (text)| singer_in_concert :
concert_id (number)| singer_in_concert : singer_id (text);

[Primary Keys]: stadium : stadium_id | singer : singer_id | concert : concert_id |
singer_in_concert : concert_id;

[Foreign Keys]: concert : stadium_id equals stadium : stadium_id | singer_in_concert : singer_id
equals singer : singer_id | singer_in_concert : concert_id equals concert : concert_id

[Q]: How many singers do we have?;

[SQL]:

A.10.2 Verbose Prompt Design: 4 shot
This is a task converting text into SQL statement . We will first given the

dataset schema and then ask a question in text. You are asked to generate
SQL statement .

Here is an example: Let us take a question and turn it into a SQL statement about
database tables . There are 4 tables
. Their titles are: city , farm , farm_competition , competition_record . Table

1 is city , and its column names and types are: City_ID (Type is number),
Official_Name (Type is text), Status (Type is text), Area_km_2 (Type is
number), Population (Type is number), Census_Ranking (Type is text). Table
2 is farm , and its column names and types are: Farm_ID (Type is number),
Year (Type is number), Total_Horses (Type is number), Working_Horses (Type
is number), Total_Cattle (Type is number), Oxen (Type is number), Bulls (
Type is number), Cows (Type is number), Pigs (Type is number),
Sheep_and_Goats (Type is number). Table 3 is farm_competition , and its
column names and types are: Competition_ID (Type is number), Year (Type is
number), Theme (Type is text), Host_city_ID (Type is number), Hosts (Type
is text). Table 4 is competition_record , and its column names and types are
: Competition_ID (Type is number), Farm_ID (Type is number), Rank (Type is
number).
The primary keys are: city_id from Table city , farm_id from Table farm ,
competition_id from Table farm_competition , competition_id from Table
competition_record .
The foreign keys are: host_city_id from Table farm_competition is equivalent
with city_id from Table city , farm_id from Table competition_record is
equivalent with farm_id from Table farm , competition_id from Table
competition_record is equivalent with competition_id from Table
farm_competition . Use foreign keys to join Tables . Let us take a text
question and turn it into a SQL statement about database tables . The
question is: What are the themes of farm competitions sorted by year in
ascending order? The corresponding SQL is: SELECT Theme FROM
farm_competition ORDER BY YEAR ASC;

Here is an example: Let us take a question and turn it into a SQL statement about
database tables . There are 4 tables
. Their titles are: city , farm , farm_competition , competition_record . Table

1 is city , and its column names and types are: City_ID (Type is number),
Official_Name (Type is text), Status (Type is text), Area_km_2 (Type is
number), Population (Type is number), Census_Ranking (Type is text). Table
2 is farm , and its column names and types are: Farm_ID (Type is number),
Year (Type is number), Total_Horses (Type is number), Working_Horses (Type
is number), Total_Cattle (Type is number), Oxen (Type is number), Bulls (

50

Under review as submission to TMLR

Type is number), Cows (Type is number), Pigs (Type is number),
Sheep_and_Goats (Type is number). Table 3 is farm_competition , and its
column names and types are: Competition_ID (Type is number), Year (Type is
number), Theme (Type is text), Host_city_ID (Type is number), Hosts (Type
is text). Table 4 is competition_record , and its column names and types are
: Competition_ID (Type is number), Farm_ID (Type is number), Rank (Type is
number).
The primary keys are: city_id from Table city , farm_id from Table farm ,
competition_id from Table farm_competition , competition_id from Table
competition_record .
The foreign keys are: host_city_id from Table farm_competition is equivalent
with city_id from Table city , farm_id from Table competition_record is
equivalent with farm_id from Table farm , competition_id from Table
competition_record is equivalent with competition_id from Table
farm_competition . Use foreign keys to join Tables . Let us take a text
question and turn it into a SQL statement about database tables . The
question is: What are the maximum and minimum number of cows across all
farms. The corresponding SQL is: SELECT max(Cows) , min(Cows) FROM farm;

Here is an example: Let us take a question and turn it into a SQL statement about
database tables . There are 3 tables
. Their titles are: department , head , management . Table 1 is department ,
and its column names and types are: Department_ID (Type is number), Name (
Type is text), Creation (Type is text), Ranking (Type is number),
Budget_in_Billions (Type is number), Num_Employees (Type is number). Table
2 is head , and its column names and types are: head_ID (Type is number),
name (Type is text), born_state (Type is text), age (Type is number). Table

3 is management , and its column names and types are: department_ID (Type
is number), head_ID (Type is number), temporary_acting (Type is text).
The primary keys are: department_id from Table department , head_id from Table
head , department_id from Table management .
The foreign keys are: head_id from Table management is equivalent with head_id
from Table head , department_id from Table management is equivalent with
department_id from Table department . Use foreign keys to join Tables .
Columns with relevant values : Table management Column temporary_acting have

values : Yes; Only use columns with relevant values to generate SQL. Let
us take a text question and turn it into a SQL statement about database
tables . The question is: Show the name and number of employees for the
departments managed by heads whose temporary acting value is 'Yes '? The
corresponding SQL is: SELECT T1.name , T1. num_employees FROM department AS

T1 JOIN management AS T2 ON T1. department_id = T2. department_id WHERE T2
. temporary_acting = 'Yes ';

Here is an example: Let us take a question and turn it into a SQL statement about
database tables . There are 4 tables
. Their titles are: city , farm , farm_competition , competition_record . Table

1 is city , and its column names and types are: City_ID (Type is number),
Official_Name (Type is text), Status (Type is text), Area_km_2 (Type is
number), Population (Type is number), Census_Ranking (Type is text). Table
2 is farm , and its column names and types are: Farm_ID (Type is number),
Year (Type is number), Total_Horses (Type is number), Working_Horses (Type
is number), Total_Cattle (Type is number), Oxen (Type is number), Bulls (
Type is number), Cows (Type is number), Pigs (Type is number),
Sheep_and_Goats (Type is number). Table 3 is farm_competition , and its
column names and types are: Competition_ID (Type is number), Year (Type is
number), Theme (Type is text), Host_city_ID (Type is number), Hosts (Type
is text). Table 4 is competition_record , and its column names and types are
: Competition_ID (Type is number), Farm_ID (Type is number), Rank (Type is
number).
The primary keys are: city_id from Table city , farm_id from Table farm ,

51

Under review as submission to TMLR

competition_id from Table farm_competition , competition_id from Table
competition_record .
The foreign keys are: host_city_id from Table farm_competition is equivalent
with city_id from Table city , farm_id from Table competition_record is
equivalent with farm_id from Table farm , competition_id from Table
competition_record is equivalent with competition_id from Table
farm_competition . Use foreign keys to join Tables . Let us take a text
question and turn it into a SQL statement about database tables . The
question is: Show the status of the city that has hosted the greatest
number of competitions . The corresponding SQL is: SELECT T1. Status FROM
city AS T1 JOIN farm_competition AS T2 ON T1. City_ID = T2. Host_city_ID
GROUP BY T2. Host_city_ID ORDER BY COUNT (*) DESC LIMIT 1;

Here is the test question to be answered: Let us take a question and turn it into a
SQL statement about database tables .
There are 4 tables. Their titles are: stadium , singer , concert ,
singer_in_concert . Table 1 is stadium , and its column names and types are:

Stadium_ID (Type is number), Location (Type is text), Name (Type is text)
, Capacity (Type is number), Highest (Type is number), Lowest (Type is
number), Average (Type is number). Table 2 is singer , and its column names

and types are: Singer_ID (Type is number), Name (Type is text), Country (
Type is text), Song_Name (Type is text), Song_release_year (Type is text),

Age (Type is number), Is_male (Type is others). Table 3 is concert , and
its column names and types are: concert_ID (Type is number), concert_Name
(Type is text), Theme (Type is text), Stadium_ID (Type is text), Year (
Type is text). Table 4 is singer_in_concert , and its column names and
types are: concert_ID (Type is number), Singer_ID (Type is text).
The primary keys are: stadium_id from Table stadium , singer_id from Table
singer , concert_id from Table concert , concert_id from Table
singer_in_concert .
The foreign keys are: stadium_id from Table concert is equivalent with
stadium_id from Table stadium , singer_id from Table singer_in_concert is
equivalent with singer_id from Table singer , concert_id from Table
singer_in_concert is equivalent with concert_id from Table concert . Use
foreign keys to join Tables . Let us take a text question and turn it into

a SQL statement about database tables . The question is: How many singers
do we have? The corresponding SQL is:

A.11 Database content

See “[Database values that related with questions]:” in red to show database content values.

Here is the test question to be anwered : Convert text to SQL:
[Schema (values)]: | california_schools | frpm : CDSCode , Academic Year ,

County Code , District Code , School Code , County Name , District Name ,
School Name , District Type , School Type , Educational Option Type , NSLP
Provision Status , Charter School (Y/N) , Charter School Number , Charter
Funding Type , IRC , Low Grade , High Grade , Enrollment (K -12) , Free Meal

Count (K -12) , Percent (%) Eligible Free (K -12) , FRPM Count (K -12) ,
Percent (%) Eligible FRPM (K -12) , Enrollment (Ages 5 -17) , Free Meal Count

(Ages 5 -17) , Percent (%) Eligible Free (Ages 5 -17) , FRPM Count (Ages
5 -17) , Percent (%) Eligible FRPM (Ages 5 -17) , 2013 -14 CALPADS Fall 1
Certification Status | satscores : cds , rtype , sname , dname , cname ,
enroll12 , NumTstTakr , AvgScrRead , AvgScrMath , AvgScrWrite , NumGE1500 |

schools : CDSCode , NCESDist , NCESSchool , StatusType , County , District
, School , Street , StreetAbr , City , Zip , State , MailStreet ,

MailStrAbr , MailCity , MailZip , MailState , Phone , Ext , Website ,
OpenDate , ClosedDate , Charter , CharterNum , FundingType , DOC , DOCType

52

Under review as submission to TMLR

, SOC , SOCType , EdOpsCode , EdOpsName , EILCode , EILName , GSoffered ,
GSserved , Virtual , Magnet , Latitude , Longitude , AdmFName1 , AdmLName1
, AdmEmail1 , AdmFName2 , AdmLName2 , AdmEmail2 , AdmFName3 , AdmLName3 ,
AdmEmail3 , LastUpdate ;

[Column names (type)] : frpm : cdscode (text) | frpm : academic year (text) |
frpm : county code (text) | frpm : district code (number) | frpm : school
code (text) | frpm : county name (text) | frpm : district name (text) |
frpm : school name (text) | frpm : district type (text) | frpm : school
type (text) | frpm : educational option type (text) | frpm : nslp provision

status (text) | frpm : charter school (y/n) (number) | frpm : charter
school number (text) | frpm : charter funding type (text) | frpm : irc (
number) | frpm : low grade (text) | frpm : high grade (text) | frpm :
enrollment (k -12) (number) | frpm : free meal count (k -12) (number) | frpm
: percent (%) eligible free (k -12) (number) | frpm : frpm count (k -12) (
number) | frpm : percent (%) eligible frpm (k -12) (number) | frpm :
enrollment (ages 5 -17) (number) | frpm : free meal count (ages 5 -17) (
number) | frpm : percent (%) eligible free (ages 5 -17) (number) | frpm :
frpm count (ages 5 -17) (number) | frpm : percent (%) eligible frpm (ages
5 -17) (number) | frpm : 2013 -14 calpads fall 1 certification status (number
) | satscores : cds (text) | satscores : rtype (text) | satscores : sname (
text) | satscores : dname (text) | satscores : cname (text) | satscores :
enroll12 (number) | satscores : numtsttakr (number) | satscores :
avgscrread (number) | satscores : avgscrmath (number) | satscores :
avgscrwrite (number) | satscores : numge1500 (number) | schools : cdscode (
text) | schools : ncesdist (text) | schools : ncesschool (text) | schools :

statustype (text) | schools : county (text) | schools : district (text) |
schools : school (text) | schools : street (text) | schools : streetabr (
text) | schools : city (text) | schools : zip (text) | schools : state (
text) | schools : mailstreet (text) | schools : mailstrabr (text) | schools

: mailcity (text) | schools : mailzip (text) | schools : mailstate (text)
| schools : phone (text) | schools : ext (text) | schools : website (text)
| schools : opendate (time) | schools : closeddate (time) | schools :
charter (number) | schools : charternum (text) | schools : fundingtype (
text) | schools : doc (text) | schools : doctype (text) | schools : soc (
text) | schools : soctype (text) | schools : edopscode (text) | schools :
edopsname (text) | schools : eilcode (text) | schools : eilname (text) |
schools : gsoffered (text) | schools : gsserved (text) | schools : virtual
(text) | schools : magnet (number) | schools : latitude (number) | schools
: longitude (number) | schools : admfname1 (text) | schools : admlname1 (
text) | schools : admemail1 (text) | schools : admfname2 (text) | schools :

admlname2 (text) | schools : admemail2 (text) | schools : admfname3 (text)
| schools : admlname3 (text) | schools : admemail3 (text) | schools :

lastupdate (time);
[Primary Keys]: frpm : CDSCode | satscores : cds | schools : CDSCode ;
[Foreign Keys] : frpm : CDSCode equals schools : CDSCode | satscores : cds

equals schools : CDSCode ;
[Database values that related with questions]:
The column ‘County Name‘ in Table ‘frpm‘ has database values: Alameda

The column ‘cname‘ in Table ‘satscores‘ has database values: Alameda
The column ‘County‘ in Table ‘schools‘ has database values: Alameda
The column ‘City‘ in Table ‘schools‘ has database values: Alameda
The column ‘MailCity‘ in Table ‘schools‘ has database values: Alameda
The column ‘GSoffered‘ in Table ‘schools‘ has database values: K-12
The column ‘GSserved‘ in Table ‘schools‘ has database values: K-12
The column ‘AdmFName1‘ in Table ‘schools‘ has database values: Rae
The column ‘AdmLName1‘ in Table ‘schools‘ has database values: Free
;

53

Under review as submission to TMLR

[Additional Info]: Eligible free rate for K -12 = `FRPM Count (K -12) ` / `
Enrollment (K -12) `

[Q]: What is the highest eligible free rate for K -12 students in the schools
in Alameda County ?;

[SQL]:
Here is an example : Convert text to SQL:

A.11.1 Full column description

See “[detailed description of tables and columns]” in red to show entire column descriptions, and they are
very lengthy.

Here is the test question to be anwered : Convert text to SQL:
[Schema (values)]: | california_schools | frpm : CDSCode , Academic Year ,

County Code , District Code , School Code , County Name , District Name ,
School Name , District Type , School Type , Educational Option Type , NSLP

Provision Status , Charter School (Y/N) , Charter School Number , Charter
Funding Type , IRC , Low Grade , High Grade , Enrollment (K -12) , Free

Meal Count (K -12) , Percent (%) Eligible Free (K -12) , FRPM Count (K -12) ,
Percent (%) Eligible FRPM (K -12) , Enrollment (Ages 5 -17) , Free Meal

Count (Ages 5 -17) , Percent (%) Eligible Free (Ages 5 -17) , FRPM Count (
Ages 5 -17) , Percent (%) Eligible FRPM (Ages 5 -17) , 2013 -14 CALPADS Fall
1 Certification Status | satscores : cds , rtype , sname , dname , cname ,

enroll12 , NumTstTakr , AvgScrRead , AvgScrMath , AvgScrWrite , NumGE1500
| schools : CDSCode , NCESDist , NCESSchool , StatusType , County ,

District , School , Street , StreetAbr , City , Zip , State , MailStreet ,
MailStrAbr , MailCity , MailZip , MailState , Phone , Ext , Website ,

OpenDate , ClosedDate , Charter , CharterNum , FundingType , DOC , DOCType
, SOC , SOCType , EdOpsCode , EdOpsName , EILCode , EILName , GSoffered ,
GSserved , Virtual , Magnet , Latitude , Longitude , AdmFName1 ,

AdmLName1 , AdmEmail1 , AdmFName2 , AdmLName2 , AdmEmail2 , AdmFName3 ,
AdmLName3 , AdmEmail3 , LastUpdate ;

[Column names (type)]: frpm : CDSCode (text) | frpm : Academic Year (text) |
frpm : County Code (text) | frpm : District Code (number) | frpm : School
Code (text) | frpm : County Name (text) | frpm : District Name (text) |
frpm : School Name (text) | frpm : District Type (text) | frpm : School
Type (text) | frpm : Educational Option Type (text) | frpm : NSLP
Provision Status (text) | frpm : Charter School (Y/N) (number) | frpm :
Charter School Number (text) | frpm : Charter Funding Type (text) | frpm :

IRC (number) | frpm : Low Grade (text) | frpm : High Grade (text) | frpm
: Enrollment (K -12) (number) | frpm : Free Meal Count (K -12) (number) |
frpm : Percent (%) Eligible Free (K -12) (number) | frpm : FRPM Count (K
-12) (number) | frpm : Percent (%) Eligible FRPM (K -12) (number) | frpm :
Enrollment (Ages 5 -17) (number) | frpm : Free Meal Count (Ages 5 -17) (
number) | frpm : Percent (%) Eligible Free (Ages 5 -17) (number) | frpm :
FRPM Count (Ages 5 -17) (number) | frpm : Percent (%) Eligible FRPM (Ages
5 -17) (number) | frpm : 2013 -14 CALPADS Fall 1 Certification Status (
number) | satscores : cds (text) | satscores : rtype (text) | satscores :
sname (text) | satscores : dname (text) | satscores : cname (text) |
satscores : enroll12 (number) | satscores : NumTstTakr (number) |
satscores : AvgScrRead (number) | satscores : AvgScrMath (number) |
satscores : AvgScrWrite (number) | satscores : NumGE1500 (number) |
schools : CDSCode (text) | schools : NCESDist (text) | schools :
NCESSchool (text) | schools : StatusType (text) | schools : County (text)
| schools : District (text) | schools : School (text) | schools : Street (
text) | schools : StreetAbr (text) | schools : City (text) | schools : Zip

(text) | schools : State (text) | schools : MailStreet (text) | schools :

54

Under review as submission to TMLR

MailStrAbr (text) | schools : MailCity (text) | schools : MailZip (text)
| schools : MailState (text) | schools : Phone (text) | schools : Ext (
text) | schools : Website (text) | schools : OpenDate (time) | schools :
ClosedDate (time) | schools : Charter (number) | schools : CharterNum (
text) | schools : FundingType (text) | schools : DOC (text) | schools :
DOCType (text) | schools : SOC (text) | schools : SOCType (text) | schools

: EdOpsCode (text) | schools : EdOpsName (text) | schools : EILCode (text
) | schools : EILName (text) | schools : GSoffered (text) | schools :
GSserved (text) | schools : Virtual (text) | schools : Magnet (number) |
schools : Latitude (number) | schools : Longitude (number) | schools :
AdmFName1 (text) | schools : AdmLName1 (text) | schools : AdmEmail1 (text)

| schools : AdmFName2 (text) | schools : AdmLName2 (text) | schools :
AdmEmail2 (text) | schools : AdmFName3 (text) | schools : AdmLName3 (text)

| schools : AdmEmail3 (text) | schools : LastUpdate (time);
[Primary Keys]: frpm : CDSCode | satscores : cds | schools : CDSCode ;
[Foreign Keys]: frpm : CDSCode equals schools : CDSCode | satscores : cds equals

schools : CDSCode ;
[detailed description of tables and columns]:

Column description of Table "frpm" have the following descriptions :
Column " County Name" of Table "frpm", means " County Code"

Column " Charter School (Y/N)" of Table frpm has value descriptions "0: N;1: Y"
Column "IRC" of Table frpm has value descriptions "Not useful "
Column " Enrollment (K -12)" of Table frpm has value descriptions " commonsense

evidence :K -12: 1st grade - 12nd grade"
Column "Free Meal Count (K -12)" of Table frpm has value descriptions "

commonsense evidence : eligible free rate = Free Meal Count / Enrollment "
Column "FRPM Count (K -12)" of Table "frpm", means "Free or Reduced Price Meal

Count (K -12)", has value descriptions " commonsense evidence : eligible FRPM
rate = FRPM / Enrollment "

Column "Free Meal Count (Ages 5 -17)" of Table frpm has value descriptions "
commonsense evidence : eligible free rate = Free Meal Count / Enrollment "

Column description of Table " satscores " have the following descriptions :
Column "cds" of Table " satscores ", means " California Department Schools "
Column "rtype" of Table satscores has value descriptions " unuseful "
Column "sname" of Table " satscores ", means " school name"
Column "dname" of Table " satscores ", means " district segment ", district name ,
Column "cname" of Table " satscores ", means " county name"
Column " enroll12 " of Table " satscores ", means " enrollment (1st -12 nd grade)"
Column " NumTstTakr " of Table " satscores ", means " Number of Test Takers in this

school ", Number of Test Takers , , has value descriptions " number of test
takers in each school "

Column " AvgScrRead " of Table " satscores ", means " average scores in Reading "
Column " AvgScrMath " of Table " satscores ", means " average scores in Math"
Column " AvgScrWrite " of Table " satscores ", means " average scores in writing "
Column " NumGE1500 " of Table " satscores ", means " Number of Test Takers Whose

Total SAT Scores Are Greater or Equal to 1500" , has value descriptions "
Number of Test Takers Whose Total SAT Scores Are Greater or Equal to 1500
commonsense evidence : Excellence Rate = NumGE1500 / NumTstTakr "

Column description of Table " schools " have the following descriptions :
Column " NCESDist " of Table " schools ", means "This field represents the 7-digit

National Center for Educational Statistics (NCES) school district
identification number . The first 2 digits identify the state and the last 5

digits identify the school district . Combined , they make a unique 7-digit
ID for each school district .", National Center for Educational Statistics
school district identification number ,

Column " NCESSchool " of Table " schools ", means "This field represents the 5-
digit NCES school identification number . The NCESSchool combined with the

55

Under review as submission to TMLR

NCESDist form a unique 12- digit ID for each school .", National Center for
Educational Statistics school identification number ,

Column " StatusType " of Table " schools ", means "This field identifies the status
of the district .", has value descriptions " Definitions of the valid status
types are listed below: Active : The district is in operation and

providing instructional services . Closed : The district is not in
operation and no longer providing instructional services . Merged : The

district has combined with another district or districts . Pending :
The district has not opened for operation and instructional services yet ,
but plans to open within the next 912 months ."

Column " County " of Table " schools ", means " County name"
Column " StreetAbr " of Table " schools ", means "The abbreviated street address of

the school , district , or administrative authoritys physical location .",
street address , , has value descriptions "The abbreviated street address of

the school , district , or administrative authoritys physical location . Note
: Some records (primarily records of closed or retired schools) may not
have data in this field ."

Column " MailStreet " of Table schools has value descriptions "The unabbreviated
mailing address of the school , district , or administrative authority . Note:

1) Some entities (primarily closed or retired schools) may not have data
in this field; 2) Many active entities have not provided a mailing street
address . For your convenience we have filled the unpopulated MailStreet
cells with Street data ."

Column " MailStrAbr " of Table " schools ", means " mailing street address ", has
value descriptions "the abbreviated mailing street address of the school ,
district , or administrative authority .Note: Many active entities have not
provided a mailing street address . For your convenience we have filled the
unpopulated MailStrAbr cells with StreetAbr data ."

Column " MailCity " of Table " schools ", means " mailing city", has value
descriptions "The city associated with the mailing address of the school ,
district , or administrative authority . Note: Many entities have not
provided a mailing address city. For your convenience we have filled the
unpopulated MailCity cells with City data ."

Column " MailZip " of Table " schools ", means " mailing zip", has value
descriptions "The zip code associated with the mailing address of the
school , district , or administrative authority . Note: Many entities have not

provided a mailing address zip code. For your convenience we have filled
the unpopulated MailZip cells with Zip data ."

Column " MailState " of Table " schools ", means " mailing state", has value
descriptions "The state within the mailing address . For your convenience we

have filled the unpopulated MailState cells with State data ."
Column "Ext" of Table " schools ", means "The phone number extension of the

school , district , or administrative authority .", extension ,
Column " Website " of Table " schools ", means "The website address of the school ,

district , or administrative authority ."
Column " OpenDate " of Table " schools ", means "The date the school opened ."
Column " ClosedDate " of Table " schools ", means "The date the school closed ."
Column " Charter " of Table " schools ", means "This field identifies a charter

school .", has value descriptions "The field is coded as follows : 1 = The
school is a charter 0 = The school is not a charter "

Column " CharterNum " of Table " schools ", means "The charter school number ,", has
value descriptions "4- digit number assigned to a charter school ."

Column " FundingType " of Table " schools ", means " Indicates the charter school
funding type", has value descriptions " Values are as follows : Not in CS (
California School) funding model Locally funded Directly funded "

Column "DOC" of Table " schools ", means " District Ownership Code", has value
descriptions "The District Ownership Code (DOC) is the numeric code used to

identify the category of the Administrative Authority . 00 - County

56

Under review as submission to TMLR

Office of Education 02 State Board of Education 03 Statewide
Benefit Charter 31 State Special Schools 34 Non - school
Location 52 Elementary School District 54 Unified School
District 56 High School District 98 Regional Occupational
Center / Program (ROC/P) commonsense evidence :Only the California Education
Authority has been included in the non - school location category ."

Column " DOCType " of Table " schools ", means "The District Ownership Code Type is
the text description of the DOC category .", The District Ownership Code

Type , , has value descriptions "(See text values in DOC field description
above)"

Column "SOC" of Table " schools ", means "The School Ownership Code is a numeric
code used to identify the type of school .", School Ownership Code , , has
value descriptions "08 - Preschool 09 Special Education
Schools (Public) 11 Youth Authority Facilities (CEA) 13
Opportunity Schools 14 Juvenile Court Schools 15 Other County

or District Programs 31 State Special Schools 60 Elementary
School (Public) 61 Elementary School in 1 School District (Public)

62 Intermediate / Middle Schools (Public) 63 Alternative
Schools of Choice 64 Junior High Schools (Public) 65 K -12
Schools (Public) 66 High Schools (Public) 67 High Schools in
1 School District (Public) 68 Continuation High Schools 69
District Community Day Schools 70 Adult Education Centers 98
Regional Occupational Center / Program (ROC/P)"

Column " SOCType " of Table " schools ", means "The School Ownership Code Type is
the text description of the type of school .", School Ownership Code Type ,

Column " EdOpsCode " of Table " schools ", means "The Education Option Code is a
short text description of the type of education offered .", Education Option

Code , , has value descriptions " ALTSOC Alternative School of Choice
COMM County Community School COMMDAY Community Day School CON

Continuation School JUV Juvenile Court School OPP
Opportunity School YTH Youth Authority School SSS State
Special School SPEC Special Education School TRAD Traditional

ROP Regional Occupational Program HOMHOS Home and Hospital
SPECON District Consortia Special Education School "

Column " EdOpsName " of Table " schools ", means " Educational Option Name", has
value descriptions "The Educational Option Name is the long text
description of the type of education being offered ."

Column " EILCode " of Table " schools ", means "The Educational Instruction Level
Code is a short text description of the institution 's type relative to the
grade range served .", Educational Instruction Level Code , , has value
descriptions "A Adult ELEM Elementary ELEMHIGH Elementary -
High Combination HS High School INTMIDJR Intermediate / Middle /
Junior High PS Preschool UG Ungraded "

Column " EILName " of Table " schools ", means "The Educational Instruction Level
Name is the long text description of the institutions type relative to the
grade range served .", Educational Instruction Level Name ,

Column " GSoffered " of Table " schools ", means "The grade span offered is the
lowest grade and the highest grade offered or supported by the school ,
district , or administrative authority . This field might differ from the
grade span served as reported in the most recent certified California
Longitudinal Pupil Achievement (CALPADS) Fall 1 data collection .", grade
span offered , , has value descriptions "For example XYZ School might
display the following data: GSoffered = PAdultGSserved = K12"

Column " GSserved " of Table " schools ", means "It is the lowest grade and the
highest grade of student enrollment as reported in the most recent
certified CALPADS Fall 1 data collection . Only K12 enrollment is reported
through CALPADS . This field may differ from the grade span offered .", grade

span served ., , has value descriptions " commonsense evidence :1. Only K12

57

Under review as submission to TMLR

enrollment is reported through CALPADS2 . Note: Special programs at
independent study , alternative education , and special education schools
will often exceed the typical grade span for schools of that type"

Column " Virtual " of Table " schools ", means "This field identifies the type of
virtual instruction offered by the school . Virtual instruction is
instruction in which students and teachers are separated by time and/or
location , and interaction occurs via computers and/or telecommunications
technologies .", has value descriptions "The field is coded as follows : F =
Exclusively Virtual The school has no physical building where students
meet with each other or with teachers , all instruction is virtual . V =
Primarily Virtual The school focuses on a systematic program of virtual
instruction but includes some physical meetings among students or with
teachers . C = Primarily Classroom The school offers virtual courses but
virtual instruction is not the primary means of instruction . N = Not
Virtual The school does not offer any virtual instruction . P = Partial
Virtual The school offers some , but not all , instruction through virtual
instruction . Note: This value was retired and replaced with the Primarily
Virtual and Primarily Classroom values beginning with the 201617 school
year ."

Column " Magnet " of Table " schools ", means "This field identifies whether a
school is a magnet school and/or provides a magnet program .", has value
descriptions "The field is coded as follows : Y = Magnet - The school is a
magnet school and/or offers a magnet program . N = Not Magnet - The school
is not a magnet school and/or does not offer a magnet program . commonsense
evidence :Note: Preschools and adult education centers do not contain a
magnet school indicator ."

Column " Latitude " of Table " schools ", means "The angular distance (expressed in
degrees) between the location of the school , district , or administrative

authority and the equator measured north to south ."
Column " Longitude " of Table " schools ", means "The angular distance (expressed

in degrees) between the location of the school , district , or administrative
authority and the prime meridian (Greenwich , England) measured from west

to east ."
Column " AdmFName1 " of Table " schools ", means " administrator 's first name", has

value descriptions "The superintendents or principals first name.
commonsense evidence :Only active and pending districts and schools will
display administrator information , if applicable ."

Column " AdmLName1 " of Table " schools ", means " administrator 's last name", has
value descriptions "The superintendents or principals last name. commonsense

evidence :Only active and pending districts and schools will display
administrator information , if applicable ."

Column " AdmEmail1 " of Table " schools ", means " administrator 's email address ",
has value descriptions "The superintendents or principals email address .
commonsense evidence :Only active and pending districts and schools will
display administrator information , if applicable ."

Column " AdmFName2 " of Table schools has value descriptions "SAME as 1"
Column " AdmFName3 " of Table schools has value descriptions "not useful "
Column " AdmLName3 " of Table schools has value descriptions "not useful "
Column " AdmEmail3 " of Table schools has value descriptions "not useful "
Column " LastUpdate " of Table schools has value descriptions "when is this

record updated last time"
;

[Database values that related with questions]
The column `County Name ` in Table `frpm ` has database values : Alameda
The column `cname ` in Table `satscores ` has database values : Alameda
The column `County ` in Table `schools ` has database values : Alameda
The column `City ` in Table `schools ` has database values : Alameda
The column `MailCity ` in Table `schools ` has database values : Alameda

58

Under review as submission to TMLR

The column `GSoffered ` in Table `schools ` has database values : K -12
The column `GSserved ` in Table `schools ` has database values : K -12
The column `AdmFName1 ` in Table `schools ` has database values : Rae
The column `AdmLName1 ` in Table `schools ` has database values : Free
;

[Additional Info]: Eligible free rate for K -12 = `FRPM Count (K -12) ` / `
Enrollment (K -12) `

[Q]: What is the highest eligible free rate for K -12 students in the schools
in Alameda County ?;

[SQL]:
Here is an example : Convert text to SQL:

A.11.2 Inferred column selection

See “[detailed description of tables and columns]” in red for soft column selection.

Here is the test question to be anwered : Convert text to SQL:
[Schema (values)]: | california_schools | frpm : CDSCode , Academic Year ,

County Code , District Code , School Code , County Name , District Name ,
School Name , District Type , School Type , Educational Option Type , NSLP
Provision Status , Charter School (Y/N) , Charter School Number , Charter
Funding Type , IRC , Low Grade , High Grade , Enrollment (K -12) , Free Meal

Count (K -12) , Percent (%) Eligible Free (K -12) , FRPM Count (K -12) ,
Percent (%) Eligible FRPM (K -12) , Enrollment (Ages 5 -17) , Free Meal Count

(Ages 5 -17) , Percent (%) Eligible Free (Ages 5 -17) , FRPM Count (Ages
5 -17) , Percent (%) Eligible FRPM (Ages 5 -17) , 2013 -14 CALPADS Fall 1
Certification Status | satscores : cds , rtype , sname , dname , cname ,
enroll12 , NumTstTakr , AvgScrRead , AvgScrMath , AvgScrWrite , NumGE1500 |

schools : CDSCode , NCESDist , NCESSchool , StatusType , County , District
, School , Street , StreetAbr , City , Zip , State , MailStreet ,

MailStrAbr , MailCity , MailZip , MailState , Phone , Ext , Website ,
OpenDate , ClosedDate , Charter , CharterNum , FundingType , DOC , DOCType
, SOC , SOCType , EdOpsCode , EdOpsName , EILCode , EILName , GSoffered ,
GSserved , Virtual , Magnet , Latitude , Longitude , AdmFName1 , AdmLName1
, AdmEmail1 , AdmFName2 , AdmLName2 , AdmEmail2 , AdmFName3 , AdmLName3 ,
AdmEmail3 , LastUpdate ;

[Column names (type)]: frpm : CDSCode (text) | frpm : Academic Year (text) | frpm
: County Code (text) | frpm : District Code (number) | frpm : School Code

(text) | frpm : County Name (text) | frpm : District Name (text) | frpm :
School Name (text) | frpm : District Type (text) | frpm : School Type (text
) | frpm : Educational Option Type (text) | frpm : NSLP Provision Status (
text) | frpm : Charter School (Y/N) (number) | frpm : Charter School Number

(text) | frpm : Charter Funding Type (text) | frpm : IRC (number) | frpm :
Low Grade (text) | frpm : High Grade (text) | frpm : Enrollment (K -12) (

number) | frpm : Free Meal Count (K -12) (number) | frpm : Percent (%)
Eligible Free (K -12) (number) | frpm : FRPM Count (K -12) (number) | frpm :
Percent (%) Eligible FRPM (K -12) (number) | frpm : Enrollment (Ages 5 -17) (
number) | frpm : Free Meal Count (Ages 5 -17) (number) | frpm : Percent (%)
Eligible Free (Ages 5 -17) (number) | frpm : FRPM Count (Ages 5 -17) (number)

| frpm : Percent (%) Eligible FRPM (Ages 5 -17) (number) | frpm : 2013 -14
CALPADS Fall 1 Certification Status (number) | satscores : cds (text) |
satscores : rtype (text) | satscores : sname (text) | satscores : dname (
text) | satscores : cname (text) | satscores : enroll12 (number) |
satscores : NumTstTakr (number) | satscores : AvgScrRead (number) |
satscores : AvgScrMath (number) | satscores : AvgScrWrite (number) |
satscores : NumGE1500 (number) | schools : CDSCode (text) | schools :

59

Under review as submission to TMLR

NCESDist (text) | schools : NCESSchool (text) | schools : StatusType (text)
| schools : County (text) | schools : District (text) | schools : School (

text) | schools : Street (text) | schools : StreetAbr (text) | schools :
City (text) | schools : Zip (text) | schools : State (text) | schools :
MailStreet (text) | schools : MailStrAbr (text) | schools : MailCity (text)

| schools : MailZip (text) | schools : MailState (text) | schools : Phone
(text) | schools : Ext (text) | schools : Website (text) | schools :
OpenDate (time) | schools : ClosedDate (time) | schools : Charter (number)
| schools : CharterNum (text) | schools : FundingType (text) | schools :
DOC (text) | schools : DOCType (text) | schools : SOC (text) | schools :
SOCType (text) | schools : EdOpsCode (text) | schools : EdOpsName (text) |
schools : EILCode (text) | schools : EILName (text) | schools : GSoffered (
text) | schools : GSserved (text) | schools : Virtual (text) | schools :
Magnet (number) | schools : Latitude (number) | schools : Longitude (number
) | schools : AdmFName1 (text) | schools : AdmLName1 (text) | schools :
AdmEmail1 (text) | schools : AdmFName2 (text) | schools : AdmLName2 (text)
| schools : AdmEmail2 (text) | schools : AdmFName3 (text) | schools :
AdmLName3 (text) | schools : AdmEmail3 (text) | schools : LastUpdate (time)
;

[Primary Keys]: frpm : CDSCode | satscores : cds | schools : CDSCode ;
[Foreign Keys]: frpm : CDSCode equals schools : CDSCode | satscores : cds

equals schools : CDSCode ;
[detailed description of tables and columns]:

Column description of Table "frpm" have the following descriptions :
Column " County Name" of Table "frpm", means " County Code"
Column " Enrollment (K -12)" of Table frpm has value descriptions " commonsense

evidence :K -12: 1st grade - 12nd grade"
Column "FRPM Count (K -12)" of Table "frpm", means "Free or Reduced Price Meal

Count (K -12)", has value descriptions " commonsense evidence : eligible FRPM
rate = FRPM / Enrollment "

;

[Database values that related with questions]
The column `County Name ` in Table `frpm ` has database values : Alameda
The column `cname ` in Table `satscores ` has database values : Alameda
The column `County ` in Table `schools ` has database values : Alameda
The column `City ` in Table `schools ` has database values : Alameda
The column `MailCity ` in Table `schools ` has database values : Alameda
The column `GSoffered ` in Table `schools ` has database values : K -12
The column `GSserved ` in Table `schools ` has database values : K -12
The column `AdmFName1 ` in Table `schools ` has database values : Rae
The column `AdmLName1 ` in Table `schools ` has database values : Free
;
[Additional Info]: Eligible free rate for K -12 = `FRPM Count (K -12) ` / `

Enrollment (K -12) `
[Q]: What is the highest eligible free rate for K -12 students in the schools

in Alameda County ?;
[SQL]:

60

	Introduction
	Text-to-SQL Challenges
	Related Work
	Approaches with Deep Neural Networks
	Text-to-SQL with LLMs

	Key Aspects of the SQL-PaLM Framework
	Problem Formulation
	Methods
	Input representation
	Prompting LLMs for few-shot learning
	Model tuning
	Instruction tuning
	Diversifying tuning data coverage
	Augmentation with synthetic data
	Integration of query-specific database content
	Table and column selection
	Test-time refinement via execution-based selection

	Experimental Setup
	Tasks and datasets
	Models
	Experiments
	Baselines
	Evaluation

	Results
	Few-shot prompting setting
	Ablation studies
	Performance for different SQL difficulty levels
	Robustness evaluations
	Improving few-shot prompting with column-selection

	Tuning settings
	Performance comparisons with few-shot prompting
	Scaling model size and different foundation models
	Comparisons with parameter efficient tuning
	The impact of training data diversity and generalization
	Incorporating database content

	Improving tuning with synthetic data
	Tuning with table and column selection
	Improvements with test-time refinement via execution-based selection
	Combining all constituents in SQL-PaLM
	Overall Text-to-SQL performance comparison with other methods

	Error analyses

	Conclusions
	Acknowledgement
	Appendix
	Prompt design and number of demonstrations for Spider
	Prompt design for BIRD via few-shot prompting
	Descriptions of Robust Spider Datasets: Spider-SYN, Spider-Realistic, Spider-DK
	Tuning performance with different foundation models
	Synthetic data
	Synthetic data prompt design
	Synthetic data similarity score distribution

	Column Selection
	Example of retrieval-based column selection
	Program-aided column selection ablation studies
	Compare with other column selection methods
	LLM base prompt design of column selection
	LLM Few-shot with CoT for column selection

	Column and table data statistics of BIRD dataset
	Exploration on combining submodules
	Case Study of SQL Generation and Error Analysis
	SQL-PaLM with few-shot Prompting
	Fine-tuned SQL-PaLM

	Prompt examples
	Concise Prompt Design: 4 shot
	Verbose Prompt Design: 4 shot

	Database content
	Full column description
	Inferred column selection

