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APPENDIX - GAUSS: GRAPH-ASSISTED UNCERTAINTY
QUANTIFICATION USING STRUCTURE AND SEMANTICS
FOR LONG-FORM GENERATION IN LLMS
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1 PROOFS OF LEMMAS AND THEOREMS

We provide the proofs of the Lemmas and Theorems below.

1.1 PROOF OF LEMMA 4.1

Lemma 4.1 (Lipschitz Continuity of Alignment Distance) The alignment distance Dα(M
r, Lr) is

Lipschitz continuous with respect to the feature cost matrix Mr and the structural cost tensor Lr.
That is, for any (Mr, Lr) and (M̃r, L̃r),∣∣∣Dα(M

r, Lr)−Dα(M̃r, L̃r)
∣∣∣ ≤ (1− α)∥Mr − M̃r∥∞ + α∥Lr − L̃r∥∞.

Proof. Recall the alignment distance is defined as:

Dα(M
r, Lr) = min

π∈Π

∑
i,j,k,ℓ

[(1− α)Mr[i, j] + αLr[i, k, j, ℓ]]πijπkℓ,

where Π =
{
π ∈ [0, 1]na×nr

∣∣∣ ∑nr

j=1 πij = 1,
∑na

i=1 πij = 1
}

is the set of admissible couplings
between nodes of the anchor graph and reference graph with na and nr nodes respectively.

For an arbitrary coupling π ∈ Π we define:

Dα(M
r, Lr;π) =

∑
i,j,k,ℓ

[(1− α)Mr[i, j] + αLr[i, k, j, ℓ]]πijπkℓ,

Suppose the cost inputs are perturbed as Mr 7→ M̃r and Lr 7→ L̃r, and define

∆M = ∥Mr − M̃r∥∞, ∆L = ∥Lr − L̃r∥∞.

Let π∗ be an optimal coupling for Dα(M
r, Lr), and π̃∗ be the optimal coupling for Dα(M̃r, L̃r),

then we observe that:

Dα(M
r, Lr)−Dα(M̃r, L̃r) ≤ Dα(M

r, Lr; π̃∗)−Dα(M̃r, L̃r; π̃∗)

=
∑
i,j,k,ℓ

[
(1− α)(Mr[i, j]− M̃r[i, j]) + α(Lr[i, k, j, ℓ]− L̃r[i, k, j, ℓ])

]
π̃∗
ij π̃

∗
kℓ

≤
∑
i,j,k,ℓ

[(1− α)∆M + α∆L] π̃
∗
ij π̃

∗
kℓ

= (1− α)∆M + α∆L,

since
∑

i,j π̃
∗
ij =

∑
k,ℓ π̃

∗
kℓ = 1.

By symmetry, the reverse inequality also holds. Hence,∣∣∣Dα(M
r, Lr)−Dα(M̃r, L̃r)

∣∣∣ ≤ (1− α)∆M + α∆L.

1
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1.2 PROOF OF THEOREM 4.1

Theorem 4.1 (Lipschitz Continuity of the Proposed Uncertainty Measure)

Let U(q) denote the uncertainty score for query q with respect to a generated graph Ga as the anchor,
and N − 1 independently generated graphs {Gr}r ̸=a as reference graphs, defined as

U(q) =
1

N − 1

∑
r ̸=a

Dα(M
r, Lr),

where (Mr, Lr) are the semantic cost matrices and structural cost tensors between Ga and Gr. Then
U(q) is Lipschitz continuous with respect to the collection {Mr, Lr}r ̸=a.

Proof. Recall that each alignment distance Dα(M
r, Lr) in U(q) is Lipschitz continuous by Lemma

4.1: ∣∣Dα(M
r, Lr) − Dα(M̃

r, L̃r)
∣∣ ≤ (1− α) ∥Mr − M̃r∥∞ + α ∥Lr − L̃r∥∞.

Now define, for each r,

∆r
M = ∥Mr − M̃r∥∞, ∆r

L = ∥Lr − L̃r∥∞.

Then ∣∣U(q) − Ũ(q)
∣∣ = 1

N − 1

∣∣∣∣∣∑
r ̸=a

[
Dα(M

r, Lr)−Dα(M̃
r, L̃r)

]∣∣∣∣∣
≤ 1

N − 1

∑
r ̸=a

[
(1− α)∆r

M + α∆r
L

]
≤ (1− α) max

r ̸=a
∆r

M + α max
r ̸=a

∆r
L.

Since this bound depends linearly on the perturbations {Mr, Lr}r ̸=a, it shows that U(q) is Lipschitz
continuous in the collection {Mr, Lr}, as claimed.

1.3 PROOF OF THEOREM 4.2

Theorem 4.2 (Convergence of the Uncertainty Measure) Under general boundedness assumptions on
the alignment distances, the uncertainty score U(q) defined exponentially converges around the true
mean E[U(q)], specifically:

P [ |U(q)− E[U(q)]| > ϵ ] ≤ 2 exp

(
−2(N − 1)ϵ2

D2

)
,

for any ϵ and some constant D > 0 that depends on the graph generation inconsistency.

Proof. Let Ga be the fixed anchor graph, and let G1, . . . , GN−1 be the N − 1 reference graphs, each
sampled independently from the LLM’s output distribution. Recall

U(q) =
1

N − 1

N−1∑
r=1

Dα

(
Mr, Lr

)
,

where Dα(M
r, Lr) = Dα(Ga, Gr) is the alignment distance between the anchor and the r-th refer-

ence. We further represent the uncertainty measure computed with graphs {G1, · · · , Gr, · · · , GN−1}
as U(q;G1, . . . , Gr, . . . , GN−1).

Bounded differences. Assume each term is bounded,
0 ≤ Dα(M

r, Lr) ≤ D

for some constant D > 0. If we replace one reference graph Gr by an independent draw G′
r, then

only the r-th summand in U(q) changes, and by boundedness,∣∣U(q;G1, . . . , Gr, . . . , GN−1) − U(q;G1, . . . , G
′
r, . . . , GN−1)

∣∣ ≤ D

N − 1
.

Hence U(q) satisfies the bounded-differences property with constants cr =
D

N − 1
for r =

1, . . . , N − 1.

2
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Application of McDiarmid’s Inequality. By McDiarmid’s inequality for any ϵ > 0,

Pr
[
U(q)− E[U(q)] > ϵ

]
≤ exp

(
− 2ϵ2∑N−1

r=1 c2r

)
= exp

(
−2 (N − 1) ϵ2

D2

)
.

A symmetric bound holds for Pr[E[U(q)]− U(q) > ϵ], so by the union bound,

Pr
[∣∣U(q)− E[U(q)]

∣∣ > ϵ
]
≤ 2 exp

(
− 2 (N−1) ϵ2

D2

)
,

as claimed.

Remark 1: Importantly, D is a property of the underlying generative process, specifically, the
language model’s consistency in producing structurally and semantically similar paragraphs in
response to the same query. Lower values of D indicate that the model tends to generate paragraphs
that are more coherent and uniform in their graph representations, thereby enabling faster convergence
and more stable uncertainty estimates.

2 GAUSS-ATOMIC : EXTENDING GAUSS TO ATOMIC-FACT UNCERTAINTY

Algorithm 1 GAUSS-atomic
Require: LLMM, query q, atomic extractorMatomic, entailment modelMentail, sample count N

1: Sample {P1, . . . , PN} ∼ M(q)
2: Anchor Pa ← P1

3: Extract anchor facts {vi}na
i=1 ←Matomic(Pa)

4: for r = 2, . . . , N do
5: Extract semantic graph of Pr and compute(

Mr, π r
) GAUSS←−−−− (Ga, Gr) ,

6: end for
7: for i = 1, . . . , na do
8:

Ufact(i)← 1
N−1

N∑
r=2

· 1
nr

nr∑
j=1

(1− π r
ij)M

r[i, j]

9: end for
10: Compute calibration metrics (AUROC, AUARC, etc) on {Ufact(i)}

While GAUSS produces a single uncertainty score at the paragraph level, its design naturally lends
itself to fine-grained extensions. We propose GAUSS-atomic, a fact-level variant of GAUSS,
which “zooms in” on each atomic fact within the anchor paragraph and quantifies its uncertainty
by evaluating alignment costs against reference generations. Specifically, GAUSS-atomic assigns
an uncertainty score to each atomic fact by jointly considering its structural role and semantic
correspondence within the broader context of the paragraph, thereby preserving the interpretability
and rigor of the original GAUSS framework at a finer resolution.

Concretely, given a prompt q and an LLMM, we:

1. Draw N independent long–form samples {P1, . . . , PN} ∼ M(q).
2. Designate Pa = P1 as the anchor, and extract its atomic facts

{fi}na
i=1 = Matomic(Pa) .

3. For each reference Pr (r = 2, . . . , N ):
• Extract its semantic graph and compute the Dα -alignment coupling π r ∈ Rna×nr and

cost matrix Mr[i, j] between anchor nodes vi and reference nodes wj .
4. Finally, for each anchor fact vi we define its atomic-fact uncertainty

Ufact(i) =
1

N − 1

N∑
r=2

· 1
nr

nr∑
j=1

(1− π r
ij) M

r[i, j]

3
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5. These {Ufact(i)} can then be evaluated against ground-truth veracity labels to obtain cali-
bration metrics like the AUROC, AUARC etc.

We provide the algorithmic flow for GAUSS-atomic in Algorithm 1. We illustrate the benefits of
using GAUSS over other approaches in Table 1.

Table 1: Atomic calibration performance (AUROC ↑, AUARC ↑) on LongFact and WildHallu for
four methods across five LLMs.

Method / Model LongFact WildHallu
AUROC AUARC AUROC AUARC

falcon-7b-instruct
GEN-BINARY 0.8462 0.9451 0.7859 0.8753
DIS-RATING 0.5143 0.8676 0.5032 0.7337
DIS-SINGLE 0.5000 0.8304 0.5001 0.7358
GAUSS-atomic 0.8600 0.9575 0.7853 0.8757
llama3-8b-instruct
GEN-BINARY 0.7205 0.9606 0.7876 0.9378
DIS-RATING 0.6839 0.9557 0.7479 0.9310
DIS-SINGLE 0.7560 0.9680 0.7984 0.9506
GAUSS-atomic 0.7616 0.9687 0.7847 0.9395

qwen2-7b-instruct
GEN-BINARY 0.7449 0.9587 0.7818 0.9298
DIS-RATING 0.6606 0.9404 0.6976 0.9025
DIS-SINGLE 0.7709 0.9657 0.7821 0.9334
GAUSS-atomic 0.7917 0.9674 0.7855 0.9382
qwen2-57b-instruct
GEN-BINARY 0.7192 0.9696 0.7762 0.9415
DIS-RATING 0.7530 0.9689 0.7494 0.9352
DIS-SINGLE 0.7830 0.9781 0.7685 0.9421
GAUSS-atomic 0.7920 0.9776 0.7691 0.9424
mistral-7b-instruct
GEN-BINARY 0.7372 0.9659 0.7556 0.9282
DIS-RATING 0.6821 0.9551 0.6674 0.8940
DIS-SINGLE 0.5472 0.9163 0.6065 0.8539
GAUSS-atomic 0.7612 0.9688 0.7689 0.9301

3 FILTERING ATOMIC FACTS VIA GAUSS-ATOMIC

One application of the GAUSS-atomic uncertainty scores is to improve the overall reliability of
the generated content by filtering out the most uncertain atomic facts. Concretely, given a generated
paragraph P , we:

1. Decompose P into na atomic facts {fi}na
i=1.

2. For each fact fi:

• Compute its uncertainty score ui = Ufact(i) via GAUSS-atomic.
• Obtain its binary veracity label si ∈ {0, 1} via the SAFE fact-checking module.

3. Choose a filtering level k%: discard the top k% most-uncertain facts.

4. Let τ = percentile({ui}, 100− k). Keep only S = { i : ui ≤ τ}, and compute the filtered
mean veracity

v̄filtered =
1

|S|
∑
i∈S

vi.

4
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Figure 1: The increase in mean veracity v̄filtered of the uncertainty based filtering - over the unfiltered-
case v̄all

5. Compare v̄filtered against the unfiltered mean v̄all = 1
na

∑
i si to measure the gain in

factuality by uncertainty based filtering.

Algorithm 2 Atomic-Fact Filtering via GAUSS-atomic

Require: Paragraph P , filtering rate k ∈ [0, 100]
1: {fi} ←decompose into atomic facts(P )
2: na ← |{fi}|
3: for i = 1 to na do
4: ui ←GAUSS-atomic (fi)
5: si ←SAFE veracity(fi)
6: end for
7: v̄all ← 1

na

∑na

i=1 si
8: τ ← percentile({ui}, 100− k)
9: S ← { i : ui ≤ τ}

10: v̄filtered ← 1
|S|

∑
i∈S vi

11:
12: return

(
v̄all, v̄filtered

)
This method provides a simple, yet practical guide to obtain filtered atomic facts that have a strong
guarantee to have higher veracity. We provide the algorithmic flow of the uncertainty based filtering
approach in Algorithm 2 and the results of this approach in Figure 1.

4 ALTERNATIVE NOTIONS OF STRUCTURAL COST

Beyond simple pairwise local distances, we can capture richer, global connectivity in our semantic
graphs by using the heat kernel of the graph Laplacian. Concretely, given a semantic graph

Gi = (Vi, Ei, Ci, ℓf )

with ni nodes, let Li ∈ Rni×ni be its (normalized) graph Laplacian. The heat kernel at time τ > 0 is
defined as

Hi(τ) = exp
(
−τ Li

)
∈ Rni×ni , (4.1)

where exp denotes the matrix exponential. Entries Hi(τ)k,ℓ encode the flux from node k to node ℓ
over time τ , thereby reflecting both local and multi-hop structural relationships.

To incorporate this into our alignment distance, we replace the original structural cost tensor Lr

(based on raw distance or cosine-dissimilarity) by a heat-kernel cost tensor L̂r(τ) defined as

L̂r(τ)
[
i, j, k, ℓ

]
=

∣∣Ha(τ) i,k − Hr(τ) j,ℓ
∣∣ . (4.2)

5
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Here Ha(τ) and Hr(τ) are the heat kernels of the anchor and reference graphs, respectively. We
utilize τ = 0.99 for the results shown in Table 2.

Finally, the full alignment distance between Ga and Gr becomes

Dheat
α

(
Ga, Gr; τ

)
= min

π∈Π

∑
i,j,k,ℓ

[
(1− α)Mr

i,j + α L̂r
i,j,k,ℓ(τ)

]
πij πkℓ , (4.3)

which we then plug into the uncertainty measure U(q).

Table 2: Comparison of GAUSS-kernel (τ = 0.99) and GAUSS on atomic-calibration metrics
(SC, PC, UCCE, QCCE) for LongFact and WildHallu (lower is better).

LongFact WildHallu
Model / Method SC PC UCCE QCCE SC PC UCCE QCCE

falcon-7b-instruct
GAUSS-kernel -0.6428 -0.6767 0.2089 0.2777 -0.7624 -0.7682 0.1809 0.2078
GAUSS -0.6555 -0.6915 0.1817 0.2199 -0.7565 -0.7616 0.1470 0.1978

llama3-8b-instruct
GAUSS-kernel -0.4038 -0.4224 0.1702 0.2515 -0.6789 -0.7080 0.2133 0.2439
GAUSS -0.4433 -0.4505 0.1613 0.2535 -0.6808 -0.7144 0.2048 0.2624

qwen2-7b-instruct
GAUSS-kernel -0.4891 -0.5155 0.1522 0.2869 -0.6999 -0.7017 0.1799 0.2378
GAUSS -0.4979 -0.5233 0.1403 0.2362 -0.7072 -0.7154 0.1798 0.2212

qwen2-57b-instruct
GAUSS-kernel -0.3582 -0.4006 0.2367 0.3502 -0.6644 -0.7190 0.1966 0.2664
GAUSS -0.4226 -0.4615 0.1844 0.3111 -0.6852 -0.7032 0.2061 0.2043

mistral-7b-instruct
GAUSS-kernel -0.4064 -0.4491 0.2151 0.2815 -0.6940 -0.7591 0.1867 0.2243
GAUSS -0.4408 -0.4678 0.2525 0.2672 -0.6949 -0.7584 0.1784 0.2310

We observe from Table 2 that employing straightforward semantic distance representations, such as
adjacency matrices, to construct the structural cost tensor in GAUSS yields more effective calibration
performance.

5 ROBUSTNESS TO SEMANTIC EMBEDDING VARIATIONS

Table 3: Atomic-calibration metrics (SC, PC, UCCE, QCCE) for two embedding variants of GAUSS.

Bios LongFact WildHallu

Model / Embedding SC PC UCCE QCCE SC PC UCCE QCCE SC PC UCCE QCCE

falcon-7b-instruct
GAUSS (all-mpnet-base-v2) -0.4118 -0.3321 0.1680 0.1845 -0.6555 -0.6915 0.1817 0.2199 -0.7565 -0.7616 0.1470 0.1978
GAUSS (stsb-roberta-base) -0.4080 -0.3321 0.1832 0.1659 -0.6727 -0.7045 0.1974 0.2501 -0.7517 -0.7570 0.1829 0.2142

llama3-8b-instruct
GAUSS (all-mpnet-base-v2) -0.7066 -0.7080 0.1035 0.1426 -0.4433 -0.4505 0.1613 0.2535 -0.6808 -0.7144 0.2048 0.2624
GAUSS (stsb-roberta-base) -0.7070 -0.7045 0.1348 0.1035 -0.5058 -0.5240 0.1753 0.2559 -0.6894 -0.7141 0.2217 0.2707

qwen2-7b-instruct
GAUSS (all-mpnet-base-v2) -0.6915 -0.7114 0.1606 0.1505 -0.4979 -0.5233 0.1403 0.2362 -0.7072 -0.7154 0.1798 0.2212
GAUSS (stsb-roberta-base) -0.6953 -0.7143 0.1420 0.1664 -0.5618 -0.5892 0.1623 0.2617 -0.7108 -0.7178 0.1808 0.2385

qwen2-57b-instruct
GAUSS (all-mpnet-base-v2) -0.6991 -0.7018 0.1328 0.1092 -0.4226 -0.4615 0.1844 0.3111 -0.6852 -0.7032 0.2061 0.2043
GAUSS (stsb-roberta-base) -0.6928 -0.6995 0.0746 0.0952 -0.4636 -0.5311 0.2055 0.3329 -0.6658 -0.7186 0.2038 0.2603

mistral-7b-instruct
GAUSS (all-mpnet-base-v2) -0.6643 -0.6766 0.1443 0.1407 -0.4408 -0.4678 0.2525 0.2672 -0.6949 -0.7584 0.1784 0.2310
GAUSS (stsb-roberta-base) -0.6648 -0.6663 0.1261 0.1453 -0.4820 -0.4754 0.2001 0.2819 -0.6963 -0.7596 0.1716 0.2250
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In order to explore the robustness of GAUSS to perturbations in the embeddings, we experi-
ment with two different embedding models with the same embedding size. These models are
all-mpnet-base-v2 and stsb-roberta-base.

all-mpnet-base-v2 This model is fine-tuned on a broad mixture of semantic similarity
datasets (e.g., STS, QuoraQP), and generates 768-dimensional embeddings. It is widely regarded as
one of the strongest general-purpose sentence encoders in terms of semantic textual similarity (STS)
performance.

stsb-roberta-base This model builds on the RoBERTa-base encoder, fine-tuned on the
STS Benchmark using a Siamese-BERT (SBERT) architecture. It also produces 768-dimensional
embeddings that are optimized for capturing fine-grained relational semantics between sentence pairs.

Despite architectural and training differences, Table 3 reveals that both models yield comparable
performance in calibration metrics across datasets. This empirical stability highlights a key theoretical
property of our framework: as formalized in Theorem 4.1, the proposed uncertainty measure is
Lipschitz continuous in its semantic cost inputs. Hence, bounded perturbations in node embeddings
(e.g., due to switching between embedding models) induce only minor, controlled changes in
uncertainty scores and thereby small changes in calibration. This result not only ensures robustness
to sentence encoder variations but also validates the practical reliability of GAUSS across diverse
embedding backbones.

6 ADDITIONAL EVALUATION DATASETS: ELI5 AND SCIQA

Table 4: Calibration metrics (SC, PC, UCCE, QCCE) on ELI5 and SciQA.

ELI5 SciQA
Model / Method SC PC UCCE QCCE SC PC UCCE QCCE

falcon-7b-instruct
DIS-RATING 0.1079 0.1261 0.0373 0.2185 0.0621 0.0118 0.0567 0.1140
DIS-SINGLE 0.0283 -0.0335 0.1533 0.4962 0.0430 0.0707 0.0000 0.5490
GEN-BINARY -0.5586 -0.5696 0.1470 0.1929 -0.5054 -0.5465 0.0828 0.1124
LUQ -0.3164 -0.3051 0.1219 0.1622 -0.1878 -0.2671 0.0924 0.0950
GAUSS -0.6022 -0.5704 0.1237 0.1671 -0.5503 -0.6021 0.0744 0.1568

mistral-7b-instruct
DIS-RATING -0.3568 -0.3185 0.1195 0.1577 -0.1706 -0.1657 0.1318 0.1854
DIS-SINGLE 0.1122 0.1045 0.1402 0.1927 -0.0096 -0.0969 0.1537 0.1976
GEN-BINARY -0.3662 -0.3186 0.1480 0.1653 -0.3002 -0.4275 0.1832 0.0976
LUQ -0.1271 -0.0755 0.1761 0.1880 -0.1071 0.0317 0.1372 0.1659
GAUSS -0.3775 -0.3214 0.1699 0.2242 -0.3102 -0.4220 0.1177 0.0995

To further assess our uncertainty quantification framework, we experiment on two publicly available
long-form QA benchmarks:

ELI5 The ELI5 dataset [1] is drawn from the “Explain Like I’m Five” subreddit. It covers a broad
range of user-curated explanatory queries, making it a challenging testbed for paragraph-level UQ.

SciQA SciQA [2] is a science-focused QA collection of questions sourced from elementary and
middle-school science curricula. Its domain specificity and factual rigor stress-test our uncertainty
estimates in technical contexts.

We observe from Table 4 that GAUSS produces consistently better correlation with the factuality
values.

7
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7 CONVERGENCE OF U(q) WITH SAMPLE SIZE AND LLM CONSISTENCY

We empirically examine the convergence behavior of the uncertainty measure U(q) as a function
of the number of reference samples N . According to Theorem 4.2, U(q) concentrates around its
expected value E[U(q)] at an exponential rate, with respect to the number of reference paragraphs
(N − 1) and the graph generation inconsistency factor D of the underlying LLM. As shown in
Figure 2, the deviation |U(q)− E[U(q)]| diminishes as N increases. Convergence is also faster for
some models over others.
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Figure 2: Convergence of the uncertainty measure U(q) to its expected value as the number of
reference samples N increases.

To further quantify this behavior, we interpret the parameter D as an intrinsic property of an LLM that
governs the rate at which its empirical uncertainty estimates converge to the true expected uncertainty.
For a fixed failure probability i.e. P [ |U(q)− E[U(q)]| > ϵ ] = δ, sample size N , and tolerance ϵ,
the high-probability upper bound on D is given by:

D = ϵ

√
2(N − 1)

ln(2/δ)
.

By setting δ = 0.05 and averaging over multiple runs, we compute the mean upper bound of D for
two representative models:

DQwen-2-57B-Instruct ≈ 0.0129, DLLaMA3-8B-Instruct ≈ 0.0149.

Lower values of D indicate LLMs with reduced graph inconsistency and faster convergence of their
uncertainty estimates. This formulation offers a model-agnostic metric to compare LLMs based
on their consistency in generating structurally and semantically coherent outputs across sampled
generations.

8 CHOICE OF ANCHOR PARAGRAPH

Our uncertainty estimation procedure requires selecting an anchor paragraph Ga to compare against
the remaining generations for a given query. By default, we follow prior work [3, 4], which uses the
first generated paragraph as the anchor. While simple and reproducible, this choice may introduce
variability in the resulting uncertainty scores. We thereby perform experiments with different anchor
paragraphs below.

EMPIRICAL STABILITY ON BIOS / LLAMA3-8B-INSTRUCT

To evaluate the robustness of our setup to anchor choice, we conduct two empirical analyses on the
Bios dataset.

1. Coefficient of Variation. For each query, we compute the uncertainty score U(q) using every
paragraph in the set as the anchor, and record the coefficient of variation:

CV =
σ(U(q))

µ(U(q))
.
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where µ(·), σ(·) are the empirical mean and standard deviation across different anchor paragraphs for
a given query. Averaged across queries, we find CV = 0.2333, suggesting relatively low spread in
uncertainty estimates.

2. Correlation-Coefficient Variability. We also assess how anchor choice affects agreement with
ground-truth veracity labels by computing the variability in correlation metrics across anchors:

Metric Mean Std Dev
SC −0.6844 0.3799
PC −0.6826 0.4077

These results show mild sensitivity to anchor selection in current settings. Nevertheless, we recognize
that more principled strategies may further enhance stability.

One such alternative involves choosing the paragraph whose semantic graph is, on average, closest to
all others, thereby minimizing structural deviation and reducing outlier influence:

Ga = arg min
G∈Gi

∑
r

Dα(G,Gr).

Another lightweight strategy would be to select the paragraph with the median number of atomic fact
nodes, which often approximates the central structure without requiring pairwise graph comparisons.
We leave investigation into these and other anchor-selection strategies to future work.

9 COMPUTATIONAL ANALYSIS OF GAUSS

We analyze the computational cost and practical runtime of GAUSS. In practice, the runtime of GAUSS
is dominated by three components: graph construction, entailment computation, and alignment.

Graph construction is efficient and uses lightweight embedding models such as
all-mpnet-base-v2, which have modest parameter sizes and fast inference.

GAUSS performs graph alignment between the anchor paragraph and each of the N − 1 sampled
reference paragraphs which involves the computation of the structural cost tensor. Overall the convex
optimization process to find the final alignment distance between the anchor and all references has a
complexity of

O
(
N · n2

a · n2
r

)
,

where N − 1 is the number of references, na is the number of atomic facts in the anchor, and nr is
the number in each reference graph. Alignment is fully parallelizable and offloaded to an an AMD
EPYC 7413 CPU.

Entailment, which is common to GAUSS and all other baselines, is performed using larger models
like Qwen2-32B-Instruct and constitutes the primary computational bottleneck.

We compare GAUSS with Gen-Binary, which also depends on entailment checks, under a consistent
hardware setup (Nvidia A100 GPUs for embedding and entailment). The runtimes across datasets are
reported below:

Dataset # Queries GAUSS Runtime (mins) Gen-Binary Runtime (mins)
WildHallu 500 ≈ 35 ≈ 30
LongFact 500 ≈ 35 ≈ 30
Bios 183 ≈ 10 ≈ 8

Since the dominant cost for both methods lies in entailment inference, their runtimes are comparable.
However, GAUSS yields stronger alignment with ground-truth veracity, achieving higher Spearman
and Pearson correlations, making it more effective without added computational overhead.
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10 EXTENDING GAUSS WITH CAUSAL DEPENDENCY MODELING

To extend GAUSS to paragraphs with logical flow, we integrate causal modeling into its structural
alignment. Specifically, we construct a causal structure matrix A ∈ {0, 1}n×n over atomic facts,
where:

A(i, k) =

{
1 if vi causally precedes or leads to vk,

0 otherwise.

This yields a directed, non-symmetric adjacency matrix inferred via a separate language model. We
define a fused structural cost tensor that incorporates both semantic and causal signals:

Ca(i, k) =
[
1− cos

(
lf (vi), lf (vk)

)]
+ [1−A(i, k)] ,

where lf (v) denotes the embedding of atomic fact v. The first term penalizes semantic dissimilarity,
and the second penalizes missing or reversed causal direction. We embed this cost tensor into
Equation 4.3 in the manuscript and compute the uncertainty measure. The resulting uncertainty
reflects both semantic cohesion and causal consistency across the paragraph.

To calibrate the uncertainty measure, we use a domain-specific anchor paragraph and perform the
following:

• A language model rates the anchor paragraph’s structural alignment with a golden reference
on a scale sstruct ∈ [0, 1].

• The mean factuality score across atomic facts in the anchor paragraph is calculated sfact ∈
[0, 1].

• The overall anchor score is: sanchor =
1
2 (sstruct + sfact).

We calibrate the uncertainty measure with sanchor to obtain SC and PC values which are reported
below. We perform these experiments on a small custom dataset requiring causal paragraphs. We
expect that an LLM that produces structurally, logically and semantically similar paragraphs should
have a high sanchor for the anchor paragraph.

Table 5: Correlation between sanchor and uncertainty measure of GAUSS˙

Model SC PC
Qwen2-7B-Instruct −0.821 −0.987
Llama-3-8B-Instruct −0.900 −0.867

11 ADDITIONAL EXPERIMENTAL DETAILS

All experiments were conducted using NVIDIA A100 GPUs. For generating responses from large
language models (LLMs), we employed a sampling strategy with a temperature of 1.0, top-p of 0.95,
and a maximum token limit of 512. Each model was prompted to produce 20 distinct responses per
input, aligning with the evaluation protocols for GAUSS LUQ, and GEN-BINARY. In computing the
semantic cost matrix Mr, we binarize the semantic cost matrix by setting entries with values ≥ 0.6
to 1 and the rest to 0, thereby emphasizing stronger semantic alignments. For the SAFE framework,
relevant web pages were retrieved using the Serper API, a high-performance Google Search API
known for delivering real-time search results with unparalleled speed.

12 PROMPT DESIGN

We illustrate the prompt design forMatomic in Table 6.

We also illustrate the prompting approach for theMentail in Table 7.

Below is the prompt for the SAFE framework in Table 8.
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Table 6: Prompt template for theMatomic fact-decomposition model.

Matomic Prompt

Please break down the following passage into independent fact pieces.

Step 1: For each sentence, split it into atomic facts, each containing exactly one subject–verb–object triple. If no explicit verb appears, use
“be” as the predicate.

Step 2: Output every fact piece on its own line, prefixed with ### and without any extra formatting.

Step 3: Ensure each fact is fully self-contained: avoid pronouns (he, she, it, this, that), and always repeat the original noun.

Examples:
Michael Collins (born October 31, 1930) is a retired American astronaut and test pilot. . .
### Michael Collins was born on October 31, 1930.
### Michael Collins is retired.
. . .

• League of Legends (often abbreviated as LoL) is a multiplayer online battle arena video game. . .
### League of Legends is a video game.
. . .

• Emory University has a strong athletics program, competing in the NCAA Division I ACC. . .
### Emory University has a strong athletics program.
. . .

Now it’s your turn. Here is the passage:
{ passage text }

Return only the list of prefixed fact pieces.

Table 7: Prompt template for theMentail support-checking model.

Mentail Prompt

Paragraph:
{paragraph}

Atomic Fact:
{fact}

Is the above atomic fact supported by the given paragraph?

Answer solely from the context—do not rely on external knowledge.
Do not provide explanations.

Output: Either yes or no.
Answer:

11
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Table 8: Prompt template for the SAFE fact-checking model.

SAFE Fact-Checking Prompt

Your task is to fact-check the following statement.
This statement is extracted from a passage about a specific subject (e.g., a person, place, or event).

Assign a veracity label:
• ’S’ if the statement is factually correct.
• ’NS’ if the statement is factually incorrect.

For example, given that we have the statement and evidence as such, output the veracity label output and your brief analysis as such:
Statement: Lebron James is a basketball player.
Evidence: Lebron James is an American professional basketball player for the Los Angeles Lakers of the NBA.
Analysis: Lebron James is an American professional basketball player, so this is correct.
Output: S
Pay close attention to numbers, dates, and other details.

Now for the statement and evidence below, output your brief analysis and veracity label output in the above described format:

• Statement: {atomic fact}

• Evidence: {retrieved evidence}

• Output: ¡your output here¿

13 LIMITATIONS AND FUTURE WORK

While GAUSS provides a principled and interpretable framework for uncertainty quantification in
long-form LLM generation, there remain several areas that invite further investigation:

• Computational cost of graph alignment. The graph alignment distance involves computing
the structural costs tensor with a computational cost of O(n2

a n
2
r) tensor, where na and nr

are the number of atomic facts in the anchor and reference paragraphs, respectively. This
computation can be massively parallelized for fast computation for paragraphs with typical
lengths.

• Unified treatment of uncertainty. At present, GAUSS captures overall variability in
generated outputs without explicitly distinguishing between epistemic uncertainty (stemming
from model limitations) and aleatoric uncertainty (reflecting inherent ambiguity in the input
or data). Future extensions could incorporate mechanisms to disentangle and analyze these
complementary aspects, providing more granular uncertainty quantification.

• Simplified graph structure. Our semantic graphs are currently constructed using undirected
edges based on symmetric semantic similarity. While this captures structural coherence well,
it does not yet encode directional or causal dependencies between facts such as temporal or
inferential relationships. Enriching the graph representation with directed edges or causal
signals may further improve uncertainty quantification.
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