APPENDIX - GAUSS: GRAPH-ASSISTED UNCERTAINTY QUANTIFICATION USING STRUCTURE AND SEMANTICS FOR LONG-FORM GENERATION IN LLMS

Anonymous authors

Paper under double-blind review

1 Proofs of Lemmas and Theorems

We provide the proofs of the Lemmas and Theorems below.

1.1 Proof of Lemma 4.1

Lemma 4.1 (Lipschitz Continuity of Alignment Distance) The alignment distance $D_{\alpha}(M^r, L^r)$ is Lipschitz continuous with respect to the feature cost matrix M^r and the structural cost tensor L^r . That is, for any (M^r, L^r) and $(\widetilde{M^r}, \widetilde{L^r})$,

$$\left| D_{\alpha}(M^r, L^r) - D_{\alpha}(\widetilde{M^r}, \widetilde{L^r}) \right| \le (1 - \alpha) \|M^r - \widetilde{M^r}\|_{\infty} + \alpha \|L^r - \widetilde{L^r}\|_{\infty}.$$

Proof. Recall the alignment distance is defined as:

$$D_{\alpha}(M^r, L^r) = \min_{\pi \in \Pi} \sum_{i,j,k,\ell} \left[(1 - \alpha) M^r[i,j] + \alpha L^r[i,k,j,\ell] \right] \pi_{ij} \pi_{k\ell},$$

where $\Pi = \left\{ \pi \in [0,1]^{n_a \times n_r} \mid \sum_{j=1}^{n_r} \pi_{ij} = 1, \sum_{i=1}^{n_a} \pi_{ij} = 1 \right\}$ is the set of admissible couplings between nodes of the anchor graph and reference graph with n_a and n_r nodes respectively.

For an arbitrary coupling $\pi \in \Pi$ we define:

$$D_{\alpha}(M^r, L^r; \pi) = \sum_{i,j,k,\ell} \left[(1 - \alpha)M^r[i,j] + \alpha L^r[i,k,j,\ell] \right] \pi_{ij} \pi_{k\ell},$$

Suppose the cost inputs are perturbed as $M^r \mapsto \widetilde{M^r}$ and $L^r \mapsto \widetilde{L^r}$, and define

$$\Delta_M = \|M^r - \widetilde{M^r}\|_{\infty}, \quad \Delta_L = \|L^r - \widetilde{L^r}\|_{\infty}.$$

Let π^* be an optimal coupling for $D_{\alpha}(M^r, L^r)$, and $\widetilde{\pi}^*$ be the optimal coupling for $D_{\alpha}(\widetilde{M^r}, \widetilde{L^r})$, then we observe that:

$$\begin{split} \mathbf{D}_{\alpha}(M^r,L^r) - \mathbf{D}_{\alpha}(\widetilde{M^r},\widetilde{L^r}) &\leq \mathbf{D}_{\alpha}(M^r,L^r;\widetilde{\pi}^*) - \mathbf{D}_{\alpha}(\widetilde{M^r},\widetilde{L^r};\widetilde{\pi}^*) \\ &= \sum_{i,j,k,\ell} \left[(1-\alpha)(M^r[i,j] - \widetilde{M^r}[i,j]) + \alpha(L^r[i,k,j,\ell] - \widetilde{L^r}[i,k,j,\ell]) \right] \widetilde{\pi}_{ij}^* \widetilde{\pi}_{k\ell}^* \\ &\leq \sum_{i,j,k,\ell} \left[(1-\alpha)\Delta_M + \alpha\Delta_L \right] \widetilde{\pi}_{ij}^* \widetilde{\pi}_{k\ell}^* \\ &= (1-\alpha)\Delta_M + \alpha\Delta_L, \end{split}$$

since
$$\sum_{i,j} \widetilde{\pi}_{ij}^* = \sum_{k,\ell} \widetilde{\pi}_{k\ell}^* = 1$$
.

By symmetry, the reverse inequality also holds. Hence,

$$\left| D_{\alpha}(M^r, L^r) - D_{\alpha}(\widetilde{M^r}, \widetilde{L^r}) \right| \le (1 - \alpha)\Delta_M + \alpha\Delta_L.$$

1.2 Proof of Theorem 4.1

Theorem 4.1 (Lipschitz Continuity of the Proposed Uncertainty Measure)

Let U(q) denote the uncertainty score for query q with respect to a generated graph G_a as the *anchor*, and N-1 independently generated graphs $\{G_r\}_{r\neq a}$ as reference graphs, defined as

$$U(q) = \frac{1}{N-1} \sum_{r \neq a} \mathcal{D}_{\alpha}(M^r, L^r),$$

where (M^r, L^r) are the semantic cost matrices and structural cost tensors between G_a and G_r . Then U(q) is Lipschitz continuous with respect to the collection $\{M^r, L^r\}_{r\neq a}$.

Proof. Recall that each alignment distance $D_{\alpha}(M^r, L^r)$ in U(q) is Lipschitz continuous by **Lemma 4.1**:

$$\left| \mathcal{D}_{\alpha}(M^r, L^r) - \mathcal{D}_{\alpha}(\widetilde{M}^r, \widetilde{L}^r) \right| \leq (1 - \alpha) \|M^r - \widetilde{M}^r\|_{\infty} + \alpha \|L^r - \widetilde{L}^r\|_{\infty}.$$

Now define, for each r,

$$\Delta_M^r \ = \ \|M^r - \widetilde{M}^r\|_{\infty}, \qquad \Delta_L^r \ = \ \|L^r - \widetilde{L}^r\|_{\infty}.$$

Then

$$\begin{aligned} \left| U(q) - \widetilde{U}(q) \right| &= \frac{1}{N-1} \left| \sum_{r \neq a} \left[D_{\alpha}(M^r, L^r) - D_{\alpha}(\widetilde{M}^r, \widetilde{L}^r) \right] \right| \\ &\leq \frac{1}{N-1} \sum_{r \neq a} \left[(1-\alpha) \, \Delta_M^r \, + \, \alpha \, \Delta_L^r \right] \\ &\leq (1-\alpha) \, \max_{r \neq a} \Delta_M^r \, + \, \alpha \, \max_{r \neq a} \Delta_L^r. \end{aligned}$$

Since this bound depends linearly on the perturbations $\{M^r, L^r\}_{r\neq a}$, it shows that U(q) is Lipschitz continuous in the collection $\{M^r, L^r\}$, as claimed.

1.3 Proof of Theorem 4.2

Theorem 4.2 (Convergence of the Uncertainty Measure) Under general boundedness assumptions on the alignment distances, the uncertainty score U(q) defined exponentially converges around the true mean $\mathrm{E}[U(q)]$, specifically:

$$\mathbb{P}\left[\left|U(q) - \mathbb{E}[U(q)]\right| > \epsilon\right] \le 2\exp\left(-\frac{2(N-1)\epsilon^2}{D^2}\right),\,$$

for any ϵ and some constant D>0 that depends on the graph generation inconsistency.

Proof. Let G_a be the fixed anchor graph, and let G_1, \ldots, G_{N-1} be the N-1 reference graphs, each sampled independently from the LLM's output distribution. Recall

$$U(q) = \frac{1}{N-1} \sum_{r=1}^{N-1} D_{\alpha}(M^r, L^r),$$

where $D_{\alpha}(M^r, L^r) = D_{\alpha}(G_a, G_r)$ is the alignment distance between the anchor and the r-th reference. We further represent the uncertainty measure computed with graphs $\{G_1, \cdots, G_r, \cdots, G_{N-1}\}$ as $U(q; G_1, \ldots, G_r, \ldots, G_{N-1})$.

Bounded differences. Assume each term is bounded,

$$0 \leq D_{\alpha}(M^r, L^r) \leq D$$

for some constant D > 0. If we replace one reference graph G_r by an independent draw G'_r , then only the r-th summand in U(q) changes, and by boundedness,

$$|U(q; G_1, \dots, G_r, \dots, G_{N-1}) - U(q; G_1, \dots, G'_r, \dots, G_{N-1})| \le \frac{D}{N-1}.$$

Hence U(q) satisfies the bounded-differences property with constants $c_r = \frac{D}{N-1}$ for $r = 1, \ldots, N-1$.

Application of McDiarmid's Inequality. By McDiarmid's inequality for any $\epsilon > 0$,

$$\Pr \left[\left. U(q) - \mathrm{E}[U(q)] \right| > \epsilon \, \right] \, \leq \, \exp \left(-\frac{2\epsilon^2}{\sum_{r=1}^{N-1} c_r^2} \right) \, = \, \exp \left(-\frac{2\left(N-1\right)\epsilon^2}{D^2} \right).$$

A symmetric bound holds for $\Pr[\mathrm{E}[U(q)] - U(q) > \epsilon]$, so by the union bound,

$$\Pr[\left|U(q) - \mathrm{E}[U(q)]\right| > \epsilon] \le 2 \exp\left(-\frac{2(N-1)\epsilon^2}{D^2}\right),$$

as claimed.

Remark 1: Importantly, D is a property of the underlying generative process, specifically, the language model's consistency in producing structurally and semantically similar paragraphs in response to the same query. Lower values of D indicate that the model tends to generate paragraphs that are more coherent and uniform in their graph representations, thereby enabling faster convergence and more stable uncertainty estimates.

2 GAUSS-ATOMIC: EXTENDING GAUSS TO ATOMIC-FACT UNCERTAINTY

Algorithm 1 GAUSS-atomic

Require: LLM \mathcal{M} , query q, atomic extractor $\mathcal{M}_{\text{atomic}}$, entailment model $\mathcal{M}_{\text{entail}}$, sample count N

- 1: Sample $\{P_1, \ldots, P_N\} \sim \mathcal{M}(q)$
- 2: Anchor $P_a \leftarrow P_1$
- 3: Extract anchor facts $\{v_i\}_{i=1}^{n_a} \leftarrow \mathcal{M}_{\text{atomic}}(P_a)$
- 4: **for** r = 2, ..., N **do**
- 5: Extract semantic graph of P_r and compute

$$(M^r, \pi^r) \stackrel{\text{GAUSS}}{\longleftarrow} (G_a, G_r),$$

- 6: end for
 - 7: **for** $i = 1, ..., n_a$ **do**

$$U_{\text{fact}}(i) \leftarrow \frac{1}{N-1} \sum_{r=2}^{N} \cdot \frac{1}{n_r} \sum_{j=1}^{n_r} (1 - \pi_{ij}^r) M^r[i, j]$$

- 9: end for
- 10: Compute calibration metrics (AUROC, AUARC, etc.) on $\{U_{\text{fact}}(i)\}$

While GAUSS produces a single uncertainty score at the paragraph level, its design naturally lends itself to fine-grained extensions. We propose GAUSS-atomic, a fact-level variant of GAUSS, which "zooms in" on each atomic fact within the anchor paragraph and quantifies its uncertainty by evaluating alignment costs against reference generations. Specifically, GAUSS-atomic assigns an uncertainty score to each atomic fact by jointly considering its structural role and semantic correspondence within the broader context of the paragraph, thereby preserving the interpretability and rigor of the original GAUSS framework at a finer resolution.

Concretely, given a prompt q and an LLM \mathcal{M} , we:

- 1. Draw N independent long-form samples $\{P_1, \ldots, P_N\} \sim \mathcal{M}(q)$.
- 2. Designate $P_a = P_1$ as the *anchor*, and extract its atomic facts

$$\{f_i\}_{i=1}^{n_a} = \mathcal{M}_{\text{atomic}}(P_a).$$

- 3. For each reference P_r (r = 2, ..., N):
 - Extract its semantic graph and compute the D_{α} -alignment coupling $\pi^r \in \mathbb{R}^{n_a \times n_r}$ and cost matrix $M^r[i,j]$ between anchor nodes v_i and reference nodes w_i .
- 4. Finally, for each anchor fact v_i we define its atomic-fact uncertainty

$$U_{\text{fact}}(i) = \frac{1}{N-1} \sum_{r=2}^{N} \cdot \frac{1}{n_r} \sum_{j=1}^{n_r} (1 - \pi_{ij}^r) M^r[i, j]$$

5. These $\{U_{\rm fact}(i)\}$ can then be evaluated against ground-truth veracity labels to obtain calibration metrics like the AUROC, AUARC etc.

We provide the algorithmic flow for GAUSS-atomic in Algorithm 1. We illustrate the benefits of using GAUSS over other approaches in Table 1.

Table 1: Atomic calibration performance (AUROC \uparrow , AUARC \uparrow) on LongFact and WildHallu for four methods across five LLMs.

Method / Model	Long	gFact	Wild	Hallu
	AUROC	AUARC	AUROC	AUARC
falcon-7b-instruct				
GEN-BINARY	0.8462	0.9451	0.7859	0.8753
DIS-RATING	0.5143	0.8676	0.5032	0.7337
DIS-SINGLE	0.5000	0.8304	0.5001	0.7358
GAUSS-atomic	0.8600	0.9575	0.7853	0.8757
llama3-8b-instruct	;			
GEN-BINARY	0.7205	0.9606	0.7876	0.9378
DIS-RATING	0.6839	0.9557	0.7479	0.9310
DIS-SINGLE	0.7560	0.9680	0.7984	0.9506
GAUSS-atomic	0.7616	0.9687	0.7847	0.9395
qwen2-7b-instruct				
GEN-BINARY	0.7449	0.9587	0.7818	0.9298
DIS-RATING	0.6606	0.9404	0.6976	0.9025
DIS-SINGLE	0.7709	0.9657	0.7821	0.9334
GAUSS-atomic	0.7917	0.9674	0.7855	0.9382
qwen2-57b-instruc	et			
GEN-BINARY	0.7192	0.9696	0.7762	0.9415
DIS-RATING	0.7530	0.9689	0.7494	0.9352
DIS-SINGLE	0.7830	0.9781	0.7685	0.9421
GAUSS-atomic	0.7920	0.9776	0.7691	0.9424
mistral-7b-instruc	t			
GEN-BINARY	0.7372	0.9659	0.7556	0.9282
DIS-RATING	0.6821	0.9551	0.6674	0.8940
DIS-SINGLE	0.5472	0.9163	0.6065	0.8539
GAUSS-atomic	0.7612	0.9688	0.7689	0.9301

3 FILTERING ATOMIC FACTS VIA GAUSS-ATOMIC

One application of the GAUSS-atomic uncertainty scores is to improve the overall reliability of the generated content by *filtering out* the most uncertain atomic facts. Concretely, given a generated paragraph P, we:

- 1. Decompose P into n_a atomic facts $\{f_i\}_{i=1}^{n_a}$.
- 2. For each fact f_i :
 - Compute its uncertainty score $u_i = U_{\mathrm{fact}}(i)$ via GAUSS-atomic.
 - Obtain its binary veracity label $s_i \in \{0,1\}$ via the SAFE fact-checking module.
- 3. Choose a filtering level k%: discard the top k% most-uncertain facts.
- 4. Let $\tau = \text{percentile}(\{u_i\}, 100 k)$. Keep only $S = \{i : u_i \leq \tau\}$, and compute the *filtered mean veracity*

$$\bar{v}_{\text{filtered}} = \frac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} v_i.$$

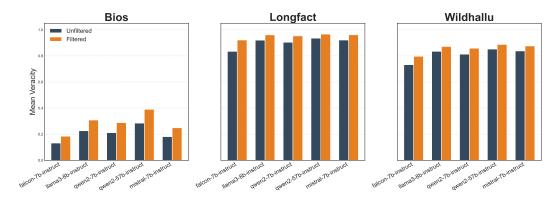


Figure 1: The increase in mean veracity $\bar{v}_{\rm filtered}$ of the uncertainty based filtering - over the unfiltered-case $\bar{v}_{\rm all}$

5. Compare $\bar{v}_{\text{filtered}}$ against the unfiltered mean $\bar{v}_{\text{all}} = \frac{1}{n_a} \sum_i s_i$ to measure the gain in factuality by uncertainty based filtering.

Algorithm 2 Atomic-Fact Filtering via GAUSS-atomic

```
Require: Paragraph P, filtering rate k \in [0, 100]

1: \{f_i\} \leftarrow \text{decompose\_into\_atomic\_facts}(P)

2: n_a \leftarrow |\{f_i\}|

3: for i = 1 to n_a do

4: u_i \leftarrow \text{GAUSS-atomic}(f_i)

5: s_i \leftarrow \text{SAFE\_veracity}(f_i)

6: end for

7: \bar{v}_{\text{all}} \leftarrow \frac{1}{n_a} \sum_{i=1}^{n_a} s_i

8: \tau \leftarrow \text{percentile}(\{u_i\}, 100 - k)

9: S \leftarrow \{i : u_i \leq \tau\}

10: \bar{v}_{\text{filtered}} \leftarrow \frac{1}{|S|} \sum_{i \in S} v_i

11:

12: return (\bar{v}_{\text{all}}, \bar{v}_{\text{filtered}})
```

This method provides a simple, yet practical guide to obtain filtered atomic facts that have a strong guarantee to have higher veracity. We provide the algorithmic flow of the uncertainty based filtering approach in Algorithm 2 and the results of this approach in Figure 1.

4 ALTERNATIVE NOTIONS OF STRUCTURAL COST

Beyond simple pairwise local distances, we can capture richer, global connectivity in our semantic graphs by using the *heat kernel* of the graph Laplacian. Concretely, given a semantic graph

$$G_i = (V_i, E_i, C_i, \ell_f)$$

with n_i nodes, let $L_i \in \mathbb{R}^{n_i \times n_i}$ be its (normalized) graph Laplacian. The heat kernel at time $\tau > 0$ is defined as

$$H_i(\tau) = \exp(-\tau L_i) \in \mathbb{R}^{n_i \times n_i},$$
 (4.1)

where exp denotes the matrix exponential. Entries $H_i(\tau)_{k,\ell}$ encode the flux from node k to node ℓ over time τ , thereby reflecting both local and multi-hop structural relationships.

To incorporate this into our alignment distance, we replace the original structural cost tensor L^r (based on raw distance or cosine-dissimilarity) by a *heat-kernel cost tensor* $\widehat{L}^r(\tau)$ defined as

$$\widehat{L}^{r}(\tau)[i,j,k,\ell] = \left| H_{a}(\tau)_{i,k} - H_{r}(\tau)_{j,\ell} \right|. \tag{4.2}$$

Here $H_a(\tau)$ and $H_r(\tau)$ are the heat kernels of the anchor and reference graphs, respectively. We utilize $\tau = 0.99$ for the results shown in Table 2.

Finally, the full alignment distance between G_a and G_r becomes

$$D_{\alpha}^{\text{heat}}(G_a, G_r; \tau) = \min_{\pi \in \Pi} \sum_{i,j,k,\ell} \left[(1 - \alpha) M_{i,j}^r + \alpha \widehat{L}_{i,j,k,\ell}^r(\tau) \right] \pi_{ij} \pi_{k\ell}, \qquad (4.3)$$

 which we then plug into the uncertainty measure U(q).

Table 2: Comparison of GAUSS-kernel ($\tau=0.99$) and GAUSS on atomic-calibration metrics (SC, PC, UCCE, QCCE) for LongFact and WildHallu (lower is better).

		Long	Fact		WildHallu				
Model / Method	SC	PC	UCCE	QCCE	SC	PC	UCCE	QCCE	
falcon-7b-instruct	t								
GAUSS-kernel	-0.6428	-0.6767	0.2089	0.2777	-0.7624	-0.7682	0.1809	0.2078	
GAUSS	-0.6555	-0.6915	0.1817	0.2199	-0.7565	-0.7616	0.1470	0.1978	
llama3-8b-instruc	et								
GAUSS-kernel	-0.4038	-0.4224	0.1702	0.2515	-0.6789	-0.7080	0.2133	0.2439	
GAUSS	-0.4433	-0.4505	0.1613	0.2535	-0.6808	-0.7144	0.2048	0.2624	
qwen2-7b-instruc	t								
GAUSS-kernel	-0.4891	-0.5155	0.1522	0.2869	-0.6999	-0.7017	0.1799	0.2378	
GAUSS	-0.4979	-0.5233	0.1403	0.2362	-0.7072	-0.7154	0.1798	0.2212	
qwen2-57b-instru	ct								
GAUSS-kernel	-0.3582	-0.4006	0.2367	0.3502	-0.6644	-0.7190	0.1966	0.2664	
GAUSS	-0.4226	-0.4615	0.1844	0.3111	-0.6852	-0.7032	0.2061	0.2043	
mistral-7b-instrue	mistral-7b-instruct								
GAUSS-kernel	-0.4064	-0.4491	0.2151	0.2815	-0.6940	-0.7591	0.1867	0.2243	
GAUSS	-0.4408	-0.4678	0.2525	0.2672	-0.6949	-0.7584	0.1784	0.2310	

We observe from Table 2 that employing straightforward semantic distance representations, such as adjacency matrices, to construct the structural cost tensor in GAUSS yields more effective calibration performance.

ROBUSTNESS TO SEMANTIC EMBEDDING VARIATIONS

Table 3: Atomic-calibration metrics (SC, PC, UCCE, QCCE) for two embedding variants of GAUSS.

0	Model / Emi
312	falcon-7b-in
313	GAUSS (all
314	GAUSS (sts
315	llama3-8b-ir
0.1.0	GAUSS (all
316	GAUSS (sts
317	gwen2-7b-in
318	GAUSS (all
319	GAUSS (sts
	qwen2-57b-i
320	GAUSS (all
321	GAUSS (sts
322	
322	mistral-7b-ii

	Bios				LongFact			WildHallu				
Model / Embedding	SC	PC	UCCE	QCCE	SC	PC	UCCE	QCCE	SC	PC	UCCE	QCCE
falcon-7b-instruct GAUSS (all-mpnet-base-v2)	-0.4118	-0.3321	0.1680	0.1845	-0.6555	-0.6915	0.1817	0.2199	-0.7565	-0.7616	0.1470	0.1978
GAUSS (stsb-roberta-base)	-0.4080	-0.3321	0.1832	0.1659	-0.6727	-0.7045	0.1974	0.2501	-0.7517	-0.7570	0.1829	0.1376
llama3-8b-instruct												
GAUSS (all-mpnet-base-v2) GAUSS (stsb-roberta-base)	-0.7066 -0.7070	-0.7080 -0.7045	0.1035 0.1348	0.1426 0.1035	-0.4433 -0.5058	-0.4505 -0.5240	0.1613 0.1753	0.2535 0.2559	-0.6808 -0.6894	-0.7144 -0.7141	0.2048 0.2217	0.2624 0.2707
qwen2-7b-instruct												
GAUSS (all-mpnet-base-v2) GAUSS (stsb-roberta-base)	-0.6915 -0.6953	-0.7114 -0.7143	0.1606 0.1420	0.1505 0.1664	-0.4979 -0.5618	-0.5233 -0.5892	0.1403 0.1623	0.2362 0.2617	-0.7072 -0.7108	-0.7154 -0.7178	0.1798 0.1808	0.2212 0.2385
qwen2-57b-instruct												
GAUSS (all-mpnet-base-v2) GAUSS (stsb-roberta-base)	-0.6991 -0.6928	-0.7018 -0.6995	0.1328 0.0746	0.1092 0.0952	-0.4226 -0.4636	-0.4615 -0.5311	0.1844 0.2055	0.3111 0.3329	-0.6852 -0.6658	-0.7032 -0.7186	0.2061 0.2038	0.2043 0.2603
mistral-7b-instruct												
GAUSS (all-mpnet-base-v2) GAUSS (stsb-roberta-base)	-0.6643 -0.6648	-0.6766 -0.6663	0.1443 0.1261	0.1407 0.1453	-0.4408 -0.4820	-0.4678 -0.4754	0.2525 0.2001	0.2672 0.2819	-0.6949 -0.6963	-0.7584 -0.7596	0.1784 0.1716	0.2310 0.2250

In order to explore the robustness of GAUSS to perturbations in the embeddings, we experiment with two different embedding models with the same embedding size. These models are all-mpnet-base-v2 and stsb-roberta-base.

all-mpnet-base-v2 This model is fine-tuned on a broad mixture of semantic similarity datasets (e.g., STS, QuoraQP), and generates 768-dimensional embeddings. It is widely regarded as one of the strongest general-purpose sentence encoders in terms of semantic textual similarity (STS) performance.

stsb-roberta-base This model builds on the RoBERTa-base encoder, fine-tuned on the STS Benchmark using a Siamese-BERT (SBERT) architecture. It also produces 768-dimensional embeddings that are optimized for capturing fine-grained relational semantics between sentence pairs.

Despite architectural and training differences, Table 3 reveals that both models yield comparable performance in calibration metrics across datasets. This empirical stability highlights a key theoretical property of our framework: as formalized in **Theorem 4.1**, the proposed uncertainty measure is Lipschitz continuous in its semantic cost inputs. Hence, bounded perturbations in node embeddings (e.g., due to switching between embedding models) induce only minor, controlled changes in uncertainty scores and thereby small changes in calibration. This result not only ensures robustness to sentence encoder variations but also validates the practical reliability of GAUSS across diverse embedding backbones.

ADDITIONAL EVALUATION DATASETS: ELI5 AND SCIQA

Table 4: Calibration metrics (SC, PC, UCCE, QCCE) on ELI5 and SciQA.

		EL	15			Soil	<u> </u>	
		EL.	15			Sci(ĮA.	
Model / Method	SC	PC	UCCE	QCCE	SC	PC	UCCE	QCCE
falcon-7b-instruct								
DIS-RATING	0.1079	0.1261	0.0373	0.2185	0.0621	0.0118	0.0567	0.1140
DIS-SINGLE	0.0283	-0.0335	0.1533	0.4962	0.0430	0.0707	0.000 0	0.5490
GEN-BINARY	-0.5586	-0.5696	0.1470	0.1929	-0.5054	-0.5465	0.0828	0.1124
LUQ	-0.3164	-0.3051	0.1219	0.1622	-0.1878	-0.2671	0.0924	0.0950
GAUSS	-0.6022	-0.5704	0.1237	0.1671	-0.5503	-0.6021	0.0744	0.1568
mistral-7b-instru	ict							
DIS-RATING	-0.3568	-0.3185	0.1195	0.1577	-0.1706	-0.1657	0.1318	0.1854
DIS-SINGLE	0.1122	0.1045	0.1402	0.1927	-0.0096	-0.0969	0.1537	0.1976
GEN-BINARY	-0.3662	-0.3186	0.1480	0.1653	-0.3002	-0.4275	0.1832	0.0976
LUQ	-0.1271	-0.0755	0.1761	0.1880	-0.1071	0.0317	0.1372	0.1659
GAUSS	-0.3775	-0.3214	0.1699	0.2242	-0.3102	-0.4220	0.1177	0.0995

To further assess our uncertainty quantification framework, we experiment on two publicly available long-form QA benchmarks:

ELI5 The ELI5 dataset [1] is drawn from the "Explain Like I'm Five" subreddit. It covers a broad range of user-curated explanatory queries, making it a challenging testbed for paragraph-level UQ.

SciQA SciQA [2] is a science-focused QA collection of questions sourced from elementary and middle-school science curricula. Its domain specificity and factual rigor stress-test our uncertainty estimates in technical contexts.

We observe from Table 4 that GAUSS produces consistently better correlation with the factuality values.

7 Convergence of U(q) with Sample Size and LLM Consistency

We empirically examine the convergence behavior of the uncertainty measure U(q) as a function of the number of reference samples N. According to Theorem 4.2, U(q) concentrates around its expected value $\mathbb{E}[U(q)]$ at an exponential rate, with respect to the number of reference paragraphs (N-1) and the graph generation inconsistency factor D of the underlying LLM. As shown in Figure 2, the deviation $|U(q) - \mathbb{E}[U(q)]|$ diminishes as N increases. Convergence is also faster for some models over others.

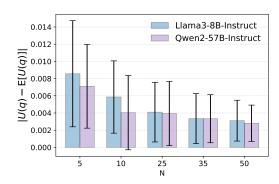


Figure 2: Convergence of the uncertainty measure U(q) to its expected value as the number of reference samples N increases.

To further quantify this behavior, we interpret the parameter D as an intrinsic property of an LLM that governs the rate at which its empirical uncertainty estimates converge to the true expected uncertainty. For a fixed failure probability i.e. $\mathbb{P}\left[|U(q)-\mathbb{E}[U(q)]|>\epsilon\right]=\delta$, sample size N, and tolerance ϵ , the high-probability upper bound on D is given by:

$$D = \epsilon \sqrt{\frac{2(N-1)}{\ln(2/\delta)}}.$$

By setting $\delta=0.05$ and averaging over multiple runs, we compute the mean upper bound of D for two representative models:

$$D_{\text{Owen-2-57B-Instruct}} \approx 0.0129$$
, $D_{\text{LLaMA3-8B-Instruct}} \approx 0.0149$.

Lower values of D indicate LLMs with reduced graph inconsistency and faster convergence of their uncertainty estimates. This formulation offers a model-agnostic metric to compare LLMs based on their consistency in generating structurally and semantically coherent outputs across sampled generations.

8 CHOICE OF ANCHOR PARAGRAPH

Our uncertainty estimation procedure requires selecting an anchor paragraph G_a to compare against the remaining generations for a given query. By default, we follow prior work [3, 4], which uses the first generated paragraph as the anchor. While simple and reproducible, this choice may introduce variability in the resulting uncertainty scores. We thereby perform experiments with different anchor paragraphs below.

EMPIRICAL STABILITY ON BIOS / LLAMA3-8B-INSTRUCT

To evaluate the robustness of our setup to anchor choice, we conduct two empirical analyses on the Bios dataset.

1. Coefficient of Variation. For each query, we compute the uncertainty score U(q) using every paragraph in the set as the anchor, and record the coefficient of variation:

$$CV = \frac{\sigma(U(q))}{\mu(U(q))}.$$

where $\mu(\cdot)$, $\sigma(\cdot)$ are the empirical mean and standard deviation across different anchor paragraphs for a given query. Averaged across queries, we find $\overline{\text{CV}} = 0.2333$, suggesting relatively low spread in uncertainty estimates.

2. Correlation-Coefficient Variability. We also assess how anchor choice affects agreement with ground-truth veracity labels by computing the variability in correlation metrics across anchors:

Metric	Mean	Std Dev
SC PC	-0.6844 -0.6826	$0.3799 \\ 0.4077$

These results show mild sensitivity to anchor selection in current settings. Nevertheless, we recognize that more principled strategies may further enhance stability.

One such alternative involves choosing the paragraph whose semantic graph is, on average, closest to all others, thereby minimizing structural deviation and reducing outlier influence:

$$G_a = \arg\min_{G \in \mathcal{G}_i} \sum_r D_{\alpha}(G, G_r).$$

Another lightweight strategy would be to select the paragraph with the median number of atomic fact nodes, which often approximates the central structure without requiring pairwise graph comparisons. We leave investigation into these and other anchor-selection strategies to future work.

9 COMPUTATIONAL ANALYSIS OF GAUSS

We analyze the computational cost and practical runtime of GAUSS. In practice, the runtime of GAUSS is dominated by three components: graph construction, entailment computation, and alignment.

Graph construction is efficient and uses lightweight embedding models such as all-mpnet-base-v2, which have modest parameter sizes and fast inference.

GAUSS performs graph alignment between the anchor paragraph and each of the N-1 sampled reference paragraphs which involves the computation of the structural cost tensor. Overall the convex optimization process to find the final alignment distance between the anchor and all references has a complexity of

$$\mathcal{O}\left(N\cdot n_a^2\cdot n_r^2\right),$$

where N-1 is the number of references, n_a is the number of atomic facts in the anchor, and n_r is the number in each reference graph. Alignment is fully parallelizable and offloaded to an an AMD EPYC 7413 CPU.

Entailment, which is common to GAUSS and all other baselines, is performed using larger models like Qwen2-32B-Instruct and constitutes the primary computational bottleneck.

We compare GAUSS with Gen-Binary, which also depends on entailment checks, under a consistent hardware setup (Nvidia A100 GPUs for embedding and entailment). The runtimes across datasets are reported below:

Dataset	# Queries	GAUSS Runtime (mins)	Gen-Binary Runtime (mins)
WildHallu	500	≈ 35	≈ 30
LongFact	500	≈ 35	≈ 30
Bios	183	≈ 10	≈ 8

Since the dominant cost for both methods lies in entailment inference, their runtimes are comparable. However, GAUSS yields stronger alignment with ground-truth veracity, achieving higher Spearman and Pearson correlations, making it more effective without added computational overhead.

10 EXTENDING GAUSS WITH CAUSAL DEPENDENCY MODELING

To extend GAUSS to paragraphs with logical flow, we integrate causal modeling into its structural alignment. Specifically, we construct a causal structure matrix $A \in \{0,1\}^{n \times n}$ over atomic facts, where:

$$A(i,k) = \begin{cases} 1 & \text{if } v_i \text{ causally precedes or leads to } v_k, \\ 0 & \text{otherwise.} \end{cases}$$

This yields a directed, non-symmetric adjacency matrix inferred via a separate language model. We define a fused structural cost tensor that incorporates both semantic and causal signals:

$$C_a(i,k) = [1 - \cos(l_f(v_i), l_f(v_k))] + [1 - A(i,k)],$$

where $l_f(v)$ denotes the embedding of atomic fact v. The first term penalizes semantic dissimilarity, and the second penalizes missing or reversed causal direction. We embed this cost tensor into Equation 4.3 in the manuscript and compute the uncertainty measure. The resulting uncertainty reflects both semantic cohesion and causal consistency across the paragraph.

To calibrate the uncertainty measure, we use a domain-specific anchor paragraph and perform the following:

- A language model rates the anchor paragraph's structural alignment with a golden reference on a scale s_{struct} ∈ [0, 1].
- The mean factuality score across atomic facts in the anchor paragraph is calculated s_{fact} ∈ [0, 1].
- The overall anchor score is: $s_{\text{anchor}} = \frac{1}{2}(s_{\text{struct}} + s_{\text{fact}})$.

We calibrate the uncertainty measure with $s_{\rm anchor}$ to obtain SC and PC values which are reported below. We perform these experiments on a small custom dataset requiring causal paragraphs. We expect that an LLM that produces structurally, logically and semantically similar paragraphs should have a high $s_{\rm anchor}$ for the anchor paragraph.

Table 5: Correlation between $s_{
m anchor}$ and uncertainty measure of <code>GAUSS</code> .

Model	SC	PC
Qwen2-7B-Instruct	-0.821	-0.987
Llama-3-8B-Instruct	-0.900	-0.867

11 ADDITIONAL EXPERIMENTAL DETAILS

All experiments were conducted using NVIDIA A100 GPUs. For generating responses from large language models (LLMs), we employed a sampling strategy with a temperature of 1.0, top-p of 0.95, and a maximum token limit of 512. Each model was prompted to produce 20 distinct responses per input, aligning with the evaluation protocols for GAUSS LUQ, and GEN-BINARY. In computing the semantic cost matrix M^r , we binarize the semantic cost matrix by setting entries with values ≥ 0.6 to 1 and the rest to 0, thereby emphasizing stronger semantic alignments. For the SAFE framework, relevant web pages were retrieved using the Serper API, a high-performance Google Search API known for delivering real-time search results with unparalleled speed.

12 PROMPT DESIGN

We illustrate the prompt design for $\mathcal{M}_{\text{atomic}}$ in Table 6.

We also illustrate the prompting approach for the $\mathcal{M}_{\mathrm{entail}}$ in Table 7.

Below is the prompt for the SAFE framework in Table 8.

Table 6: Prompt template for the $\mathcal{M}_{\mathrm{atomic}}$ fact-decomposition model.

$\mathcal{M}_{\mathrm{atomic}} \, \textbf{Prompt}$

Please break down the following passage into independent fact pieces.

Step 1: For each sentence, split it into atomic facts, each containing exactly one subject-verb-object triple. If no explicit verb appears, use "be" as the predicate.

{ passage_text }

Step 2: Output every fact piece on its own line, prefixed with ### and without any extra formatting.

Step 3: Ensure each fact is fully self-contained: avoid pronouns (he, she, it, this, that), and always repeat the original noun.

Examples

```
Michael Collins (born October 31, 1930) is a retired American astronaut and test pilot...

### Michael Collins was born on October 31, 1930.

### Michael Collins is retired.
...

• League of Legends (often abbreviated as LoL) is a multiplayer online battle arena video game...

### League of Legends is a video game.
...

• Emory University has a strong athletics program, competing in the NCAA Division I ACC...

### Emory University has a strong athletics program.
```

Return only the list of prefixed fact pieces.

Now it's your turn. Here is the passage:

Table 7: Prompt template for the $\mathcal{M}_{\mathrm{entail}}$ support-checking model.

$\mathcal{M}_{ ext{entail}}$ Prompt

```
581 | Paragraph:

{paragraph}

582 | Atomic Fact:

583 | {fact}
```

Is the above atomic fact supported by the given paragraph?

Answer solely from the context—do not rely on external knowledge. Do not provide explanations.

Output: Either yes or no.

Answer:

Table 8: Prompt template for the SAFE fact-checking model.

SAFE Fact-Checking Prompt

Your task is to fact-check the following statement.

This statement is extracted from a passage about a specific subject (e.g., a person, place, or event).

Assign a veracity label:

- 'S' if the statement is factually correct.
- 'NS' if the statement is factually incorrect.

For example, given that we have the statement and evidence as such, output the veracity label output and your brief analysis as such:

Statement: Lebron James is a basketball player.

Evidence: Lebron James is an American professional basketball player for the Los Angeles Lakers of the NBA.

Analysis: Lebron James is an American professional basketball player, so this is correct.

Output: S

Pay close attention to numbers, dates, and other details.

Now for the statement and evidence below, output your brief analysis and veracity label output in the above described format:

• Statement: {atomic_fact}

• Evidence: {retrieved_evidence}

· Output: ¡your output here;

13 LIMITATIONS AND FUTURE WORK

While GAUSS provides a principled and interpretable framework for uncertainty quantification in long-form LLM generation, there remain several areas that invite further investigation:

- Computational cost of graph alignment. The graph alignment distance involves computing the structural costs tensor with a computational cost of $O(n_a^2\,n_r^2)$ tensor, where n_a and n_r are the number of atomic facts in the anchor and reference paragraphs, respectively. This computation can be massively parallelized for fast computation for paragraphs with typical lengths.
- Unified treatment of uncertainty. At present, GAUSS captures overall variability in generated outputs without explicitly distinguishing between *epistemic* uncertainty (stemming from model limitations) and *aleatoric* uncertainty (reflecting inherent ambiguity in the input or data). Future extensions could incorporate mechanisms to disentangle and analyze these complementary aspects, providing more granular uncertainty quantification.
- Simplified graph structure. Our semantic graphs are currently constructed using undirected edges based on symmetric semantic similarity. While this captures structural coherence well, it does not yet encode directional or causal dependencies between facts such as temporal or inferential relationships. Enriching the graph representation with directed edges or causal signals may further improve uncertainty quantification.

REFERENCES

- [1] Angela Fan et al. "ELI5: Long Form Question Answering". In: ArXiv abs/1907.09190 (2019). URL: https://api.semanticscholar.org/CorpusID:196170479.
- [2] Yuwei Wan et al. "SciQAG: A Framework for Auto-Generated Science Question Answering Dataset with Fine-grained Evaluation". In: 2024. URL: https://api.semanticscholar.org/CorpusID: 269791295.
- [3] Caiqi Zhang et al. "Atomic Calibration of LLMs in Long-Form Generations". In: *arXiv preprint* arXiv:2410.13246 (2024). https://arxiv.org/abs/2410.13246.
- [4] Caiqi Zhang et al. "LUQ: Long-text Uncertainty Quantification for LLMs". In: *arXiv* preprint *arXiv*:2403.20279 (2024). https://arxiv.org/abs/2403.20279.