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ON THE PROVABLE ADVANTAGE OF UNSUPERVISED
PRETRAINING
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ABSTRACT

Unsupervised pretraining, which learns a useful representation using a large
amount of unlabeled data to facilitate the learning of downstream tasks, is a critical
component of modern large-scale machine learning systems. Despite its tremen-
dous empirical success, the rigorous theoretical understanding of why unsuper-
vised pretraining generally helps remains rather limited—most existing results are
restricted to particular methods or approaches for unsupervised pretraining with
specialized structural assumptions. This paper studies a generic framework, where
the unsupervised representation learning task is specified by an abstract class of
latent variable models Φ and the downstream task is specified by a class of predic-
tion functions Ψ. We consider a natural approach of using Maximum Likelihood
Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization
(ERM) for learning downstream tasks. We prove that, under a mild “informa-
tive” condition, our algorithm achieves an excess risk of Õ(

√
CΦ/m +

√
CΨ/n)

for downstream tasks, where CΦ, CΨ are complexity measures of function classes
Φ,Ψ, and m,n are the number of unlabeled and labeled data respectively. Com-
paring to the baseline of Õ(

√
CΦ◦Ψ/n) achieved by performing supervised learn-

ing using only the labeled data, our result rigorously shows the benefit of unsu-
pervised pretraining when m ≫ n and CΦ◦Ψ > CΨ. This paper further shows
that our generic framework covers a wide range of approaches for unsupervised
pretraining, including factor models, Gaussian mixture models, and contrastive
learning.

1 INTRODUCTION

Unsupervised pretraining aims to efficiently use a large amount of unlabeled data to learn a useful
representation that facilitates the learning of downstream tasks. This technique has been widely used
in modern machine learning systems including computer vision (Caron et al., 2019; Dai et al., 2021),
natural language processing (Radford et al., 2018; Devlin et al., 2018; Song et al., 2019) and speech
processing (Schneider et al., 2019; Baevski et al., 2020). Despite its tremendous empirical success,
it remains elusive why pretrained representations, which are learned without the information of
downstream tasks, often help to learn the downstream tasks.

There have been several recent efforts trying to understand various approaches of unsupervised
pretraining from theoretical perspectives, including language models Saunshi et al. (2020); Wei
et al. (2021), contrastive learning Arora et al. (2019); Tosh et al. (2021b;a); HaoChen et al. (2021);
Saunshi et al. (2022), and reconstruction-based self-supervised learning Lee et al. (2021). While
this line of works justifies the use of unsupervised pretraining in the corresponding regimes, many
of them do not prove the advantage of unsupervised learning, in terms of sample complexity, even
when compared to the naive baseline of performing supervised learning purely using the labeled
data. Furthermore, these results only apply to particular approaches of unsupervised pretraining
considered in their papers, and crucially rely on the specialized structural assumptions, which do not
generalize beyond the settings they studied. Thus, we raise the following question: Can we develop
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a generic framework which provably explains the advantage of unsupervised pretraining?
This paper answers this highlighted question positively.

We consider the generic setup where the data x and its label y are connected by an unobserved
representation z. Concretely, we assume (x, z) is sampled from a latent variable model ϕ∗ in an
abstract class Φ, and the distribution of label y conditioned on representation z is drawn from dis-
tributions ψ∗ in class Ψ. We consider a natural approach of using Maximum Likelihood Estimation
(MLE) for unsupervised pretraining, which approximately learns the latent variable model ϕ∗ using
m unlabeled data. We then use the results of representation learning and Empirical Risk Minimiza-
tion (ERM) to learn the downstream predictor ψ∗ using n labeled data. We remark that MLE is
one of the most important underlying principle for designing unsupervised learning algorithms—a
large number of modern unsupervised pretraining algorithms compute MLE or its proxies (such as
optimizing the variational lower bound) due to computational constraints. These examples include
contrastive learning (see Section 6), Variational AutoEncoder (VAE) (Kingma & Welling, 2013) and
diffusion model (Sohl-Dickstein et al., 2015). Investigating this generic setup allows us to bypass the
limitation of prior works that are restricted to the specific approaches for unsupervised pretraining.

We prove that, under a mild “informative” condition (Assumption 3.2), our algorithm achieves a
excess risk of Õ(

√
CΦ/m +

√
CΨ/n) for downstream tasks, where CΦ, CΨ are complexity mea-

sures of function classes Φ,Ψ, and m,n are the number of unlabeled and labeled data respectively.
Comparing to the baseline of Õ(

√
CΦ◦Ψ/n) achieved by performing supervised learning using only

the labeled data, our result rigorously shows the benefit of unsupervised pretraining when we have
abundant unlabeled data m≫ n and when the complexity of composite class CΦ◦Ψ is much greater
than the complexity of downstream task alone CΨ.

Our generic framework enables a simple and standardlized approach to understand and analyze a
wide range of unsupervised pretraining models. Consider the scenario where a new model of unsu-
pervised pretraining is proposed, and we would like to evaluate the effectiveness of this pretraining
method. We can directly apply our framework to compute the ”informative” condition presented in
this paper, providing a concrete starting point for analysis. If the ”informative” condition is satisfied,
our main results are directly applicable.

Finally, we highlight that our generic framework (including the ”informative” condition) captures
a wide range of setups for unsupervised pretraining. We underscore this applicability with three
concrete examples, including (1) factor models with linear regression as downstream tasks; (2)
Gaussian mixture models with classification as downstream tasks; and (3) Contrastive learning with
linear regression as downstream tasks.

1.1 RELATED WORK

Applications and methods for unsupervised pretraining. Unsupervised pretraining has achieved
tremendous success in image recognition (Caron et al., 2019), objective detection (Dai et al., 2021),
natural language processing (Devlin et al., 2018; Radford et al., 2018; Song et al., 2019) and speech
recognition (Schneider et al., 2019; Baevski et al., 2020). Two most widely-used pretraining ap-
proaches are (1) feature-based approaches (Brown et al., 1992; Mikolov et al., 2013; Melamud
et al., 2016; Peter et al., 2018), which pretrains a model to extract representations and directly uses
the pretrained representations as inputs for the downstream tasks; (2) fine-tuning based approaches,
(see, e.g., Devlin et al., 2018), which fine-tunes all the model parameters in the neighborhood of
pretrained representations based on downstream tasks. Erhan et al. (2010) provides the first em-
pirical understanding on the role of pretraining. They argue that pretraining serves as a form of
regularization that effectively guides the learning of downstream tasks.

A majority of settings where pretraining is used fall into the category of semi-supervised learning
(see, e.g., Zhu, 2005), where a large amount of unlabeled data and a small amount of labeled data
are observed during the training process. Semi-supervised learning methods aim to build a better
predictor by efficiently utilizing the unlabeled data. Some traditional methods include: generative
models (e.g. Ratsaby & Venkatesh, 1995), low-density separation (Joachims et al., 1999; Lawrence
& Jordan, 2004; Szummer & Jaakkola, 2002), and graph-based methods (Belkin et al., 2006). While
most works in this line propose new methods and show favorable empirical performance, they do
not provide rigorous theoretical understanding on the benefit of unsupervised pretraining.
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Theoretical understanding of unsupervised pretraining. Recent years witness a surge of theoret-
ical results that provide explanations for various unsupervised pretraining methods that extract rep-
resentations from unlabeled data. For example, (Saunshi et al., 2020; Wei et al., 2021) considers pre-
training vector embeddings in the language models, while (Arora et al., 2019; Tosh et al., 2021b;a;
HaoChen et al., 2021; Saunshi et al., 2022; Lee et al., 2021) consider several Self-Supervised Learn-
ing (SSL) approaches for pretraining. In terms of results, Wei et al. (2021) shows that linear predictor
on the top of pretrained languange model can recover their ground truth model; Arora et al. (2019);
Saunshi et al. (2020); Tosh et al. (2021b;a); Saunshi et al. (2022) show that the prediction loss of
downstream task can be bounded by the loss of unsupervised pretraining tasks. These two lines of
results do not prove the sample complexity advantage of unsupervised learning when compared to
the baseline of performing supervised learning purely using the labeled data.

The most related results are Lee et al. (2021); HaoChen et al. (2021), which explicitly show the
sample complexity advantage of certain unsupervised pretraining methods. However, Lee et al.
(2021) focuses on reconstruction-based SSL, and critically relies on a conditional independency
assumption on the feature and its reconstruction conditioned on the label; HaoChen et al. (2021)
considers contrastive learning, and their results relies on deterministic feature map and the spectral
conditions of the normalized adjacency matrix. Both results only apply to the specific setups and
approaches of unsupervised pretraining in their papers, which do not apply to other setups in general
(for instance, the three examples in Section 4, 5, 6). On the contrary, this paper develops a generic
framework for unsupervised pretraining using only abstract function classes, which applies to a wide
range of setups.

Other approaches for representation learning. There is another line of recent theoretical works
that learn representation via multitask learning. Baxter (2000) provides generalization bounds for
multitask transfer learning assuming a generative model and a shared representation among tasks.
Maurer et al. (2016) theoretically analyses a general method for learning representations from mul-
titasks and illustrates their method in a linear feature setting. Tripuraneni et al. (2021); Du et al.
(2020) provide sample efficient algorithms that solve the problem of multitask linear regression.
Tripuraneni et al. (2020) further considers generic nonlinear feature representations and shows sam-
ple complexity guarantees for diverse training tasks. Their results differ from our work because they
learn representations by supervised learning using labeled data of other tasks, while our work learns
representations by unsupervised learning using unlabeled data.

2 PROBLEM SETUP

Notation. We denote by P(x) and p(x) the cumulative distribution function and the probability
density function defined on x ∈ X , respectively. We define [n] = {1, 2, . . . , n}. The cardinality of
set A is denoted by |A|. Let ∥ · ∥2 be the ℓ2 norm of a vector or the spectral norm of a matrix. We
denote by ∥ · ∥F the Frobenius norm of a matrix. For a matrix M ∈ Rm×n, we denote by σmin(M)
and σmax(M) the smallest singular value and the largest singular value of M , respectively. For two
probability distributions P1 and P2, we denote the Total Variation (TV) distance and the Hellinger
distance between these two distributions by dTV(P1,P2) and H(P1,P2), respectively.

We denote by x ∈ X and y ∈ Y the input data and the objective of the downstream tasks, respec-
tively. Our goal is to predict y using x. We assume that x is connected to y through an unobserved
latent variable z ∈ Z (which is also considered as a representation of x). Given the latent variable z,
the data x and the objective y are independent of each other. Latent variable structure is general in
statistics (for example, the hidden categories and low dimension factors) and applies to most unsu-
pervised learning models (including contrastive learning, auto-encoder, etc). To incorporate a large
class of real-world applications, such as contrastive learning, we consider the setup where learning
can possibly have access to some side information s ∈ S. We assume that (x, s, z) ∼ Pϕ∗(x, s, z)
and y|z ∼ Pψ∗(y|z), where Pϕ∗ and Pψ∗ are distributions indexed by ϕ∗ ∈ Φ and ψ∗ ∈ Ψ. It then
holds that Pϕ∗,ψ∗(x, y) =

∫
Pϕ∗(x, z)Pψ∗(y|z) dz.

Let ℓ(·, ·) be a loss function. For any pair (ϕ, ψ) ∈ Φ × Ψ, the optimal predictor gϕ,ψ is defined as
follows,

gϕ,ψ ← argming EPϕ,ψ
[
ℓ
(
g(x), y

)]
, (1)

where the minimum is taken on all the possible functions and EPϕ,ψ := E(x,y)∼Pϕ,ψ(x,y). Our
prediction function class is therefore given by GΦ,Ψ := {gϕ,ψ|ϕ ∈ Φ, ψ ∈ Ψ}.
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Algorithm 1 Two-Phase MLE+ERM
1: Input: {xi, si}mi=1, {xj , yj}nj=1

2: Use unlabeled data and its corresponding side information {xi, si}mi=1 to learn ϕ̂ via MLE:

ϕ̂← argmaxϕ∈Φ

∑m
i=1 log pϕ(xi, si). (3)

3: Fix ϕ̂ and use labeled data {xj , yj}nj=1 to learn ψ̂ via ERM:

ψ̂ ← argminψ∈Ψ

∑n
j=1 ℓ

(
gϕ̂,ψ(xj), yj

)
. (4)

Our framework covers the standard setup (e.g., in large language models) which uses a large mount
unlabeled data to pretrain a deep neural network as a representation, and then uses a small amount
of labeled data to only fine-tunes the linear head for downstream tasks. Concretely, consider the
setting where ℓ(·, ·) is the squared loss and y = β∗T z + ε, where ε ∼ N (0, σ2) is a Gaussian
noise independent of z. Then the optimal predictor gϕ,ψ(x) = EPϕ,β [y|x] = βTEPϕ [z|x] and the
prediction function class GΦ,Ψ = {βTEPϕ [z|x] |ϕ ∈ Φ, β ∈ Ψ}. Here, EPϕ [z|x] corresponds to the
representation learned by deep networks, and β is the parameter of the linear head.

Given an estimator pair (ϕ̂, ψ̂), we define the excess risk with respect to loss ℓ(·, ·) as

Errorℓ(ϕ̂, ψ̂) := EPϕ∗,ψ∗

[
ℓ
(
gϕ̂,ψ̂(x), y

)]
− EPϕ∗,ψ∗

[
ℓ
(
gϕ∗,ψ∗(x), y

)]
, (2)

where ϕ∗ and ψ∗ are the ground truth parameters. By the definition of gϕ∗,ψ∗ , we have
Error(ϕ̂, ψ̂) ≥ 0. We aim to learn an estimator pair (ϕ̂, ψ̂) from data that achieves smallest or-
der of the excess risk.

We consider the setting where the latent variable z cannot be observed. Specifically, we are given
many unlabeled data and its corresponding side information {xi, si}mi=1 that are sampled i.i.d from
an unknown distribution Pϕ∗(x, s) and only a few labeled data {xj , yj}nj=1 that are sampled i.i.d
(also independent with the unlabeled data) from an unknown distribution Pϕ∗,ψ∗(x, y).

Learning algorithm. We consider a natural learning algorithm consisting of two phases (Algo-
rithm 1). In the unsupervised pretraining phase, we use MLE to estimate ϕ∗ based on the unlabeled
data {xi, si}mi=1. In the downstream tasks learning phase, we use ERM to estimate ψ∗ based on
pretrained ϕ̂ and the labeled data {xj , yj}nj=1. See algorithm 1 for details.

We remark that another natural learning algorithm in our setting is to use a two-phase MLE. To be
specific, in the unsupervised pretraining phase, we use MLE to estimate ϕ∗ based on the unlabeled
data {xi, si}mi=1 as (3). In the downstream tasks learning phase, we again use MLE to estimate ψ∗

based on pretrained ϕ̂ and the labeled data {xj , yj}nj=1. However, we can show that this two-phase
MLE scheme fails in the worst case. See Appendix E for the details.

Complexity measures. Sample complexity guarantee for Algorithm 1 will be phrased in terms
of three complexity measurements, i.e., bracketing number, covering number and the Rademacher
complexity, which are defined as follows. We denote by PX (Φ) := {pϕ(x) |ϕ ∈ Φ} a set of
parameterized density functions pϕ(x) defined on x ∈ X , where ϕ ∈ Φ is the parameter.

Definition 2.1 (ϵ-Bracket and Bracketing Number). Let ϵ > 0. Under ∥ · ∥1 distance, a set of
functionsN[ ](PX (Φ), ϵ) is an ϵ-bracket ofPX (Φ) if for any pϕ(x) ∈ PX (Φ), there exists a function
p̄ϕ(x) ∈ N[ ](PX (Φ), ϵ) such that: (1) p̄ϕ(x) ≥ pϕ(x), ∀x ∈ X ; (2) ∥p̄ϕ(x)−pϕ(x)∥1 =

∫
|p̄ϕ(x)−

pϕ(x)| dx ≤ ϵ. The bracketing number N[ ](PX (Φ), ϵ) is the cardinality of the smallest ϵ-bracket
needed to cover PX (Φ). The entropy is defined as the logarithm of the bracketing number.

To measure the complexity of a function class, we consider the covering number and the Rademacher
complexity defined as follows.

Definition 2.2 (ϵ-Cover and Covering Number). Let F be a function class and (F , ∥ · ∥) be a metric
space. For each ϵ > 0, a set of functions N (F , ϵ, ∥ · ∥) is called an ϵ-cover of F if for any f ∈ F ,
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there exists a function g ∈ N (F , ϵ, ∥ · ∥) such that ∥f − g∥ ≤ ϵ. The covering number N(F , ϵ, ∥ · ∥)
is defined as the cardinality of the smallest ϵ-cover needed to cover F .
Definition 2.3 (Rademacher Complexity). Suppose that x1, . . . , xn are sampled i.i.d from a proba-
bility distribution D defined on a set X . Let G be a class of functions mapping from X to R. The
empirical Rademacher complexity of G is defined as follows,

R̂n(G) := E{σi}ni=1∼Unif{±1}

[
supg∈G

2
n

∑n
i=1 σig(xi)

]
.

The Rademacher complexity of G is defined as Rn(G) := E{xi}ni=1∼D[R̂n(G)].

3 MAIN RESULTS

In this section, we first introduce a mild “informative” condition for unsupervised pretraining. We
show this “informative” condition is necessary for pretraining to benefit downstream tasks. We then
provide our main results—statistical guarantees for unsupervised pretraining and downstream tasks
for Algorithm 1. Finally, in Section 3.1, we generalize our results to a more technical but weaker
version of the “informative” condition, which turns out to be useful in capturing our third example
of contrastive learning (Section 6).

Informative pretraining tasks. We first note that under our generic setup, unsupervised pretrain-
ing may not benefit downstream tasks at all in the worst case if no further conditions are assumed.
Proposition 3.1. There exist classes (Φ,Ψ) as in Section 2 such that, regardless of unsupervised
pretraining algorithms used, pretraining using unlabeled data provides no additional information
towards learning predictor gϕ∗,ψ∗ .

Consider the latent variable model z = Ax, where x ∼ N (0, Id), A ∈ Φ is the parameter of the
model. Then, no matter how many unlabeled {xi} we have, we can gain no information of A from
the data! In this case, unsupervised pretraining is not beneficial for any downstream task.

Therefore, it’s crucial to give an assumption that guarantees our unsupervised pretraining is informa-
tive. As a thought experiment, suppose that in the pretraining step, we find an exact density estimator
ϕ̂ for the marginal distribution of x, s , i.e., pϕ̂(x, s) = pϕ∗(x, s) holds for every x, s. We should ex-
pect that this estimator also fully reveals the relationship between x and z, i.e., pϕ̂(x, z) = pϕ∗(x, z)
holds for every x, z. Unfortunately, this condition does not hold in most practical setups and is often
too strong. As an example, consider Gaussian mixture models, where z ∈ [K] is the cluster that data
point x ∈ Rd belongs to. Then in this case, it is impossible for us to ensure pϕ̂(x, z) = pϕ∗(x, z),
since a permutation of z makes no difference in the marginal distribution of x. However, notice
that in many circumstances, a permutation of the class label will not affect the downstream task
learning. In these cases, a permutation of the clusters is allowed. Motivated by this observation, we
introduce the following informative assumption which allows certain “transformation” induced by
the downstream task:
Assumption 3.2 (κ−1-informative condition). We assume that the model class Φ is κ−1-informative
with respect to a transformation group TΦ. That is, for any ϕ ∈ Φ, there exists T1 ∈ TΦ such that

dTV

(
PT1◦ϕ(x, z),Pϕ∗(x, z)

)
≤ κ · dTV

(
Pϕ(x, s),Pϕ∗(x, s)

)
. (5)

Here ϕ∗ is the ground truth parameter. Furthermore, we assume that TΦ is induced by transformation
group TΨ on Ψ, i.e., for any T1 ∈ TΦ, there exists T2 ∈ TΨ such that for any (ϕ, ψ) ∈ Φ×Ψ,

Pϕ,ψ(x, y) = PT1◦ϕ,T2◦ψ(x, y). (6)

Under Assumption 3.2, if the pretrained ϕ̂ accurately estimates the marginal distribution of x, s up
to high accuracy, then it also reveals the correct relation between x and representation z up to some
transformation TΦ which is allowed by the downstream task, which makes it possible to learn the
downstream task using less labeled data.

Proposition 3.1 shows that the informative condition is necessary for pretraining to bring advantage
since the counter example in the proposition is precisely 0-informative. We will also show this
informative condition is rich enough to capture a wide range of unsupervised pretraining methods in
Section 4, 5, 6, including factor models, Gaussian mixture models, and contrastive learning models.
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Guarantees for unsupervised pretraining. Recall that PX×S(Φ) := {pϕ(x, s) |ϕ ∈ Φ}. We
have the following guarantee for the MLE step (line 2) of Algorithm 1.

Theorem 3.3. Let ϕ̂ be the maximizer defined in (3). Then, with probability at least 1− δ, we have

dTV

(
Pϕ̂(x, s),Pϕ∗(x, s)

)
≤ 3

√
1

m
log

N[ ](PX×S(Φ),
1
m )

δ
,

where N[ ] is the bracketing number as in Definition 2.1.

Theorem 3.3 claims that the TV error in estimating the joint distribution of (x, s) decreases as
O(CΦ/m) where m is the number of unlabeled data, and CΦ = logN[ ](PX×S(Φ), 1/m) measures
the complexity of learning the latent variable models Φ. This result mostly follows from standard
analysis of MLE (Van de Geer, 2000). We include the proof in Appendix A.1 for completeness.

Guarantees for downstream task learning. In practice, we can only learn an approximate down-
stream predictor using a small amount of labeled data. We upper bound the excess risk of Algorithm
1 as follows.
Theorem 3.4. Let ϕ̂ and ψ̂ be the outputs of Algorithm 1. Suppose that the loss function ℓ : Y×Y →
R is L-bounded and our model is κ−1-informative. Then, with probability at least 1− δ, the excess
risk of Algorithm 1 is bounded as:

Errorℓ(ϕ̂, ψ̂) ≤ 2max
ϕ∈Φ

Rn(ℓ ◦ Gϕ,Ψ) + 12κL ·
√

1

m
log

2N[ ](PX×S(Φ), 1/m)

δ
+ 2L ·

√
2

n
log

4

δ
.

Here Rn(·) denotes the Rademacher complexity, and ℓ ◦ Gϕ,Ψ :=
{
ℓ
(
gϕ,ψ(x), y

)
: X × Y →

[−L,L]
∣∣ψ ∈ Ψ

}
.

Note that the Rademacher complexity of a function class can be bounded by its metric entropy. We
then have the following corollary.
Corollary 3.5. Under the same preconditions as Theorem 3.4, we have:

Errorℓ(ϕ̂, ψ̂) ≤ c̃max
ϕ∈Φ

L

√
logN(ℓ ◦ Gϕ,Ψ, L/

√
n, ∥ · ∥∞)

n
+ 2L

√
2

n
log

4

δ

+ 12κL

√
1

m
log

2N[ ](PX×S(Φ), 1/m)

δ
,

where c̃ is an absolute constant, N(F , δ, ∥ · ∥∞) is the δ−covering number of function class F with
respect to the metric ∥ · ∥∞.

By Corollary 3.5, the excess risk of our Algorithm 1 is approximately Õ(
√
CΦ/m+

√
CΨ/n), where

CΦ and CΨ are roughly the log bracketing number of class Φ and the log covering number of Ψ. Note
that excess risk for the baseline algorithm that learns downstream task using only labeled data is
Õ(
√
CΦ◦Ψ/n), where CΦ◦Ψ is the log covering number of composite function class Φ ◦Ψ. In many

practical scenarios such as training a linear predictor on top of a pretrained deep neural networks,
the complexity CΦ◦Ψ is much larger than CΨ. We also often have significantly more unlabeled data
than labeled data (m≫ n). In these scenarios, our result rigorously shows the significant advantage
of unsupervised pretraining compared to the baseline algorithm which directly performs supervised
learning without using unlabeled data.

3.1 GUARANTEES FOR WEAKLY INFORMATIVE MODELS

We introduce a relaxed version of Assumption 3.2, which allows us to capture a richer class of
examples.
Assumption 3.6 (κ−1-weakly-informative condition). We assume model (Φ,Ψ) is κ−1-weakly-
informative, that is, for any ϕ ∈ Φ, there exists ψ ∈ Ψ such that

dTV

(
Pϕ,ψ(x, y),Pϕ∗,ψ∗(x, y)

)
≤ κ ·H

(
Pϕ(x, s),Pϕ∗(x, s)

)
. (7)

Here we denote by ϕ∗, ψ∗ the ground truth parameters.
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Assumption 3.6 relaxes Assumption 3.2 by making two modifications: (i) replace the LHS of (5) by
the TV distance between the joint distribution of (x, y); (ii) replace the TV distance on the RHS by
the Hellinger distance. See more on the relation of two assumptions in Appendix A.4.1.

In fact, Assumption 3.6 is sufficient for us to achieve the same theoretical guarantee as that in
Theorem 3.4.
Theorem 3.7. Theorem 3.4 still holds under the κ−1-weakly-informative assumptions.

The proof of Theorem 3.7 requires a stronger version of MLE guarantee than Theorem 3.3, which
guarantees the closeness in terms of Hellinger distance. We leave the details in Appendix A.4.

4 PRETRAINING VIA FACTOR MODELS

In this section, we instantiate our theoretical framework using the factor model with linear regres-
sion as a downstream task. Factor model (see, e.g., Lawley & Maxwell, 1971; Forni et al., 2005;
Fan et al., 2021) is widely used in finance, computational biology, and sociology, where the high-
dimensional measurements are strongly correlated. We rigorously show how unsupervised pretrain-
ing can help reduce sample complexity in this case.

Model Setup. For the latent variable model, we consider the factor model as follows.
Definition 4.1 (Factor Model). Suppose that we have d-dimensional random vector x, whose de-
pendence is driven by r factors z (d≫ r). The factor model assumes x = B∗z + µ, where B∗ is a
d× r factor loading matrix. Here µ ∼ N(0, Id) is the idiosyncratic component that is uncorrelated
with the common factor z ∼ N(0, Ir). We assume that the ground truth parameters B∗ ∈ B, where
B := {B ∈ Rd×r | ∥B∥2 ≤ D} for some D > 0.

For the downstream task, we consider the linear regression problem y = β∗T z + ν, where ν ∼
N(0, ε2) is a Gaussian noise that is uncorrelated with the factor z and the idiosyncratic component
µ. We assume that the ground truth parameters β∗ ∈ C, where C := {β ∈ Rr | ∥β∥2 ≤ D} for some
D > 0. The latent variable model (i.e., Φ) and the the prediction class (i.e.,Ψ) are then represented
by B and C, respectively. In the sequel, we consider the case where no side information is available,
i.e., we only have access to i.i.d unlabeled data {xi}mi=1 and i.i.d labeled data {xj , yj}nj=1. For
regression models, it is natural to consider the squared loss function ℓ(x, y) := (y − x)2.

Informative condition. We first show that Assumption 3.2 holds for the factor model with linear
regression as downstream tasks. The idea of the factor model is to learn a low-dimensional repre-
sentation z, where a rotation over z is allowed since in the downstream task, we can also rotate β to
adapt to the rotated z.
Lemma 4.2. Factor model with linear regression as downstream tasks is κ−1-informative, where
κ = c1(σ

∗
max + 1)4(σ∗

min)
−3. Here c1 is some absolute constants, σ∗

max and σ∗
min are the largest

and smallest singular value of B∗, respectively.

Theoretical results. Recall that in Theorem 3.4, we assume a L-bounded loss function to guaran-
tee the performance of Algorithm 1. Thus, instead of directly applying Algorithm 1 to the squared
loss function, we consider Algorithm 1 with truncated squared loss, i.e.,

ℓ̃(x, y) := (y − x)2 · 1{(y−x)2≤L} + L · 1{(y−x)2>L}. (8)
Here L is a carefully chosen truncation level. To be more specific, in the first phase, we still use
MLE to learn an estimator B̂ as that in line 2 of Algorithm 1. In the second phase, we apply ERM to
the truncated squared loss to learn an estimator β̂. We then have the following theoretical guarantee.
Theorem 4.3. We consider Algorithm 1 with truncated squared loss (8) with L = (D2 + 1)3 log n.
Let B̂, β̂ be the outputs of Algorithm 1. Then, for factor models with linear regression as downstream
tasks, with probability at least 1− δ, the excess risk can be bounded as follows,

Errorℓ(B̂, β̂) ≤ Õ
(
κL
√
dr/m+ L

√
r/n
)
,

where D is defined in the sets B and C, and κ is specified in Lemma 4.2. Here Õ(·) omits absolute
constants and the polylogarithmic factors in m, d, r,D, 1/δ.
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Notice that the rate we obtain in Theorem 4.3 is not optimal for this specific task: by the nature of
squared loss, if we consider a direct d−dimensional linear regression (from x to y) with n data, we
can usually achieve the fast rate, where excess risk decreases as Õ(d/n). To fill this gap, we consider
Algorithm 1 with Φ = Rd×r and Ψ = Rr and denoteD := max{∥B∗∥2, ∥β∗∥2}. Following a more
refined analysis, we could achieve a sharper risk rate that scales as Õ(d/m + r/n), which is much
better than the usual linear regression when m≫ n. See Appendix B.5 for details.

5 PRETRAINING VIA GAUSSIAN MIXTURE MODELS

In this section, we show how pretraining using Gaussian Mixture Models (GMMs) can benefit the
downstream classification tasks, under our theoretical framework.

Model setup. For the latent variable model, we consider a d-dimensional GMM with K compo-
nents and equal weights. To be specific, the latent variable z that represents the cluster is sampled
uniformly from [K]. In each cluster, the data is sampled from a standard Gaussian distribution, i.e.,
x|z = i ∼ N (u∗i , Id) for any i ∈ [K]. It then holds that x ∼

∑K
i=1K

−1N (u∗i , Id). We denote by
U the parameter space with each element consisting of K centers (d-dimensional vectors).

We assume that the set of parameters U satisfies the normalization condition—there exists D > 0
such that for any u = {ui}Ki=1 ∈ U , we have ∥ui∥2 ≤ D

√
d logK, ∀i ∈ [K]. We further assume

the ground-truth centers {u∗i }Ki=1 ∈ U satisfy the following separation condition.

Assumption 5.1 (Separation condition). The true parameters {u∗i }Ki=1 ∈ U satisfies ∥u∗i − u∗j∥2 ≥
100
√
d logK, ∀i ̸= j.

For the downstream task, we consider the binary classification problems with label y ∈ {0, 1}. We
denote by Ψ the set of 2K classifiers such that for each ψ ∈ Ψ, and any i ∈ [K], we have either
Pψ(y = 1|z = i) = 1 − ε or Pψ(y = 0|z = i) = 1 − ε, where ε represents the noise. Then,
the latent variable model and the prediction class are represented by U and Ψ, respectively. In the
sequel, we consider the case where no side information is available, i.e., we only have access to i.i.d
unlabeled data {xi}mi=1 and i.i.d labeled data {xj , yj}nj=1. For classification problems, it is natural
to consider the 0− 1 loss function ℓ(x, y) := 1{x ̸=y} which is bounded by 1.

Informative condition. We prove that Assumption 3.2 for the above model. We have the follow-
ing guarantee.

Lemma 5.2. Let Ũ = {u ∈ U | dTV(pu(x), pu∗(x)) ≤ 1/(4K)}. Under Assumption 5.1, GMMs
with parameters in Ũ isO(1)-informative with respect to the transformation group induced by down-
stream classification tasks.

Theoretical results We have the following theoretical guarantee.

Theorem 5.3. Let û, ψ̂ be the outputs of Algorithm 1. Suppose that Assumption 5.1 holds and
m = Ω̃(dK3). Then, for the Gaussian mixture model with classification as downstream tasks, with
probability at least 1− δ, the excess risk can be bounded as follows,

Errorℓ(û, ψ̂) ≤ Õ
(√

dK/m+
√
K/n

)
,

Here Õ(·) omits some constants and the polylogarithmic factors in m, d,K,D, 1/δ.

Theorem 5.3 shows the power of unsupervised pretraining under this setting in the following sense:
Note that the number of parameters of a GMM is dK, therefore if we directly do classification
without unsupervised pretraining, the risk will scale as Õ(

√
dK/n). When d is large and m ≫ n,

we achieve a better risk bound than supervised learning that only uses the labeled data.

6 PRETRAINING VIA CONTRASTIVE LEARNING

In this section, we show how pretraining through contrastive learning (learning the embedding func-
tion) can benefit the downstream linear regression tasks under our theoretical framework.
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Model setup. In the setting of contrastive learning, we assume that x and x′ are sampled in-
dependently from the same distribution P(x). The similarity between x and x′ is captured by a
representation function fθ∗ : X → Rr in the following sense,

P(t = 1 |x, x′) = (1 + e−fθ∗ (x)
T fθ∗ (x

′))−1, P(t = −1 |x, x′) = (1 + efθ∗ (x)
T fθ∗ (x

′))−1.

Here t is a random variable that labels the similarity between x and x′. If the data pair (x, x′) is
similar, then t tends to be 1. If the data pair (x, x′) is not similar (negative samples), then t tends
to be −1. We assume (x, x′, t) ∼ Pfθ∗ (x, x′, t). Here, (x′, t) can be viewed as side information.
The latent variable z is defined as z := fθ∗(x) + µ, where µ ∼ N (0, Ir) is a Gaussian noise that is
uncorrelated with x. We denote (x, z) ∼ Pfθ∗ (x, z).

For the downstream task, we consider the linear regression problem y = β∗T z + ν, where ν ∼
N (0, 1) is a Gaussian noise. We assume that the true parameters θ∗ ∈ Θ and β∗ ∈ B, which satisfy a
standard normalization assumption, i.e., ∥fθ(x)∥2 ≤ 1 for any θ ∈ Θ and x ∈ X and ∥β∥2 ≤ D for
any β ∈ B. We have access to i.i.d unlabeled data {xi, x′i, ti}mi=1 and i.i.d labeled data {xj , yj}nj=1.
Here (x′i, ti) is the side information corresponding to xi. In the sequel, we consider the same form
of truncated squared loss as in (8).

Weakly informative condition. We first prove that the above model satisfies Assumption 3.6:
Lemma 6.1. Contrastive learning with linear regression as downstream tasks is κ−1-weakly-
informative, where κ = c3 · σ−1/2

min (E[fθ∗(x)fθ∗(x)T ]). Here c3 is an absolute constant.

Theoretical results. We define a set of density functions PX×S(Fθ) := {pfθ (x, x′, t) | θ ∈ Θ}.
We then have the following theoretical guarantee.
Theorem 6.2. We consider Algorithm 1 with truncated squared loss (8) where L = 36(D2 +

1) log n. Let θ̂, β̂ be the outputs of Algorithm 1. Then, for contrastive learning with linear regression
as downstream tasks, with probability at least 1− δ, the excess risk can be bounded as follows,

Errorℓ(θ̂, β̂) ≤ Õ
(
κL

√
logN[ ]

(
PX×S(Fθ), 1/m2

)
m

+ L

√
1

n

)
,

where L = 36(D2 + 1) log n and κ is specified in Lemma 6.1. Here Õ(·) omits some constants and
the polylogarithmic factors in 1/δ.

Note that the excess risk of directly training with labeled data strongly depends on the complexity of
the function class Fθ. In the case that m ≫ n, the excess risk of Theorem 6.2 scales as Õ(

√
1/n),

which beats the pure supervised learning if the complexity of Fθ is quite large. Thus, the utility of
unsupervised pretraining is revealed for contrastive learning.

When applying our generic framework to the specific context of contrastive learning, our result
morally aligns with that in HaoChen et al. (2021), albeit with differing assumptions. In Theorem
4.3 of HaoChen et al. (2021), the risk is characterized by the eigenvalues of an adjacency matrix
Ā whose elements measure the similarity between data pairs. As a counterpart, our excess risk
incorporates the quantity κ = σ

−1/2
min (E[fθ∗(x)fθ∗(x)T ]), where E[fθ∗(x)fθ∗(x)T ] also plays the

role of measuring the similarity. Notably, our generic framework covers a variety of approaches for
unsupervised pretraining, extending beyond just contrastive learning.

7 CONCLUSIONS

This paper proposes a generic theoretic framework for explaining the statistical benefits of unsu-
pervised pretraining. We study the natural scheme of using MLE for unsupervised pretraining and
ERM for downstream task learning. We identify a natural “informative” condition, under which our
algorithm achieves an excess risk bound that significantly improves over the baseline achieved by
purely supervised learning in the typical practical regimes. We further instantiate our theoretical
framework with three concrete approaches for unsupervised pretraining and provide corresponding
guarantees.
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A PROOFS FOR SECTION 3

In Section A.1, we prove Theorem 3.3, which gives a TV distance guarantee for the MLE step
in Algorithm 1. Our proof is inspired by Van de Geer (2000); Zhang (2006), and largely follows
Agarwal et al. (2020); Liu et al. (2022). In Section A.2, we prove Theorem 3.4 that guarantees
the performance of Algorithm 1 by upper bounding the excess risk. The proof relies on the fact
that the labeled data {xj , yj}nj=1 are independent of the unlabeled data {xi, si}mi=1. In Section A.3,
we prove Corollary 3.5 based on the analysis of Gaussian complexity. In Section A.4, we prove
Theorem 3.7 by first showing that the MLE step in Algorithm 1 actually guarantees an upper bound
on the Hellinger distance, which is stronger than the TV distance guarantee mentioned in Theorem
3.3.

A.1 PROOFS FOR THEOREM 3.3

In the sequel, we prove Theorem 3.3.

Proof of Theorem 3.3. For notation simplicity, we denote x := (x, s). Recall that we define
PX×S(Φ) := {pϕ(x, s) |ϕ ∈ Φ}. Let N[ ](PX×S(Φ), ϵ) be the smallest ϵ-bracket of PX×S(Φ).
We have |N[ ](PX×S(Φ), ϵ)| = N[ ](PX×S(Φ), ϵ), where N[ ](PX×S(Φ), ϵ) is the bracketing num-
ber of PX×S(Φ). By Markov inequality and Boole’s inequality, it holds with probability at least
1− δ that for all p̄ϕ(x) ∈ N[ ](PX×S(Φ), ϵ)

1

2

m∑
i=1

log
p̄ϕ(xi)

pϕ∗(xi)
≤ logE

[
e

1
2

∑m
i=1 log

p̄ϕ(xi)

pϕ∗ (xi)

]
+ log

N[ ](PX×S(Φ), ϵ)

δ
. (9)

Note that ϕ̂ is the maximizer of the likelihood function, i.e.

ϕ̂← argmax
ϕ∈Φ

m∑
i=1

log pϕ(xi),

which implies

1

2

m∑
i=1

log
p̄ϕ̂(xi)

pϕ∗(xi)
≥ 0. (10)

Then we have with probability at least 1− δ that

0 ≤ logE
[
e

1
2

∑m
i=1 log

p̄
ϕ̂
(xi)

pϕ∗ (xi)

]
+ log

N[ ](PX×S(Φ), ϵ)

δ
,

= m logE
[√

p̄ϕ̂(x)

pϕ∗(x)

]
+ log

N[ ](PX×S(Φ), ϵ)

δ
,

= m log

∫ √
p̄ϕ̂(x)pϕ∗(x) dx+ log

N[ ](PX×S(Φ), ϵ)

δ
,

≤ m
(∫ √

p̄ϕ̂(x)pϕ∗(x) dx− 1

)
+ log

N[ ](PX×S(Φ), ϵ)

δ
, (11)

where the last inequality follows from the fact that log x ≤ x − 1. By rearranging the terms, we
have

1−
∫ √

p̄ϕ̂(x)pϕ∗(x) dx ≤ 1

m
log

N[ ](PX×S(Φ), ϵ)

δ
. (12)

By the definition of bracket, we obtain∫
p̄ϕ̂(x)dx =

∫
(p̄ϕ̂(x)− pϕ̂(x))dx+

∫
pϕ̂(x)dx ≤ ϵ+ 1,
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which implies ∫ (√
p̄ϕ̂(x)−

√
pϕ∗(x)

)2
dx ≤ 2

(
1−

∫ √
p̄ϕ̂(x)pϕ∗(x)dx

)
+ ϵ (13)

and ∫ (√
p̄ϕ̂(x) +

√
pϕ∗(x)

)2
dx ≤ 2

∫
p̄ϕ̂(x) + pϕ∗(x) dx ≤ 2ϵ+ 4. (14)

Combining (12) and (13), we show that∫ (√
p̄ϕ̂(x)−

√
pϕ∗(x)

)2
dx ≤ 2

m
log

N[ ](PX×S(Φ), ϵ)

δ
+ ϵ. (15)

By Cauchy-Schwarz inequality, it then holds that(∫
|p̄ϕ̂(x)− pϕ∗(x)| dx

)2

≤
∫ (√

p̄ϕ̂(x) +
√
pϕ∗(x)

)2
dx ·

∫ (√
p̄ϕ̂(x)−

√
pϕ∗(x)

)2
dx,

≤ (2ϵ+ 4) ·
(

2

m
log

N[ ](PX×S(Φ), ϵ)

δ
+ ϵ

)
, (16)

where the last inequality follows from (14) and (15). Note that(∫
|pϕ̂(x)− pϕ∗(x)| dx

)2

−
(∫

|p̄ϕ̂(x)− pϕ∗(x)| dx
)2

=

(∫
|pϕ̂(x)− pϕ∗(x)|+ |p̄ϕ̂(x)− pϕ∗(x)| dx

)
·
(∫

|pϕ̂(x)− pϕ∗(x)| − |p̄ϕ̂(x)− pϕ∗(x)| dx
)

≤
(∫

|pϕ̂(x)− pϕ∗(x)|+ |p̄ϕ̂(x)− pϕ∗(x)| dx
)
·
∫
|pϕ̂(x)− p̄ϕ̂(x)| dx

≤ (ϵ+ 4) · ϵ. (17)

Adding (16) and (17) together, we have(∫
|pϕ̂(x)− pϕ∗(x)| dx

)2

≤ (2ϵ+ 4) ·
(

2

m
log

N[ ](PX×S(Φ), ϵ)

δ
+ ϵ

)
+ (ϵ+ 4) · ϵ, (18)

which implies

dTV

(
Pϕ̂(x),Pϕ∗(x)

)
=

1

2

∫
|pϕ̂(x)− pϕ∗(x)| dx

≤ 1

2

√
(2ϵ+ 4) ·

(
2

m
log

N[ ](PX×S(Φ), ϵ)

δ
+ ϵ

)
+ (ϵ+ 4) · ϵ. (19)

Setting ϵ = 1/m, we have with probability at least 1− δ that

dTV

(
Pϕ̂(x),Pϕ∗(x)

)
≤ 1

2

√(
2

m
+ 4

)
·
(

2

m
log

N[ ](PX×S(Φ), 1/m)

δ
+

1

m

)
+

(
1

m
+ 4

)
· 1
m

≤ 3 ·
√

1

m
log

N[ ](PX×S(Φ), 1/m)

δ
. (20)

Thus, we prove Theorem 3.3.

A.2 PROOFS FOR THEOREM 3.4

Before proving the theorem, we first present some useful results that will be used in the proof
of Theorem 3.4. Lemma A.1 upper bounds the difference between empirical loss and population
loss by an application of bounded difference inequality and a standard symmetrization argument.
Lemma A.2 relates excess risks with the total variation distance between probability distributions.
For notation simplicity, we denote E(x,y)∼Pϕ,ψ(x,y) by Eϕ,ψ in the following. We further denote by
E the expectation taken over the ground truth parameter, i.e., E := E(x,y)∼Pϕ∗,ψ∗ (x,y).
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Lemma A.1. Suppose that ℓ(·, ·) is a L-bounded loss function. For any given ϕ ∈ Φ, with proba-
bility at least 1− δ,

sup
ψ∈Ψ

∣∣∣∣E[ℓ(gϕ,ψ(x), y)]− 1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

∣∣∣∣ ≤ Rn(ℓ ◦ Gϕ,Ψ) + L

√
2 log(2/δ)

n
, (21)

where Rn(ℓ ◦ Gϕ,Ψ) is the Rademacher complexity of the function class ℓ ◦ Gϕ,Ψ defined in Theorem
3.4.

Proof of Lemma A.1. First notice that, when a pair (xj , yj) changes, since ℓ is L-bounded, the ran-
dom variable

sup
ψ∈Ψ

(
E[ℓ(gϕ,ψ(x), y)]−

1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

)
(22)

can change by no more than 2L/n. McDiarmid’s inequality implies that with probability at least
1− δ/2,

sup
ψ∈Ψ

(
E[ℓ(gϕ,ψ(x), y)]−

1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

)

≤ E
[
sup
ψ∈Ψ

(
E[ℓ(gϕ,ψ(x), y)]−

1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

)]
+ L

√
2 log(2/δ)

n
. (23)

Let {x′j , y′j}nj=1 be independent copies of {xj , yj}nj=1 and {σj}nj=1 be i.i.d. Rademacher random
variables. Using the standard symmetrization technique, we have

E
[
sup
ψ∈Ψ

(
E[ℓ(gϕ,ψ(x), y)]−

1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

)]

= E
[
sup
ψ∈Ψ

E
[
1

n

n∑
j=1

ℓ(gϕ,ψ(x
′
j), y

′
j)−

1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

∣∣∣∣{xj , yj}nj=1

]]

≤ E
[
sup
ψ∈Ψ

(
1

n

n∑
j=1

ℓ(gϕ,ψ(x
′
j), y

′
j)−

1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

)]

≤ E
[
sup
ψ∈Ψ

1

n

n∑
j=1

σj

(
ℓ(gϕ,ψ(x

′
j), y

′
j)− ℓ(gϕ,ψ(xj), yj)

)]

≤ 2E
[
sup
ψ∈Ψ

1

n

n∑
j=1

σjℓ(gϕ,ψ(xj), yj)

]
= Rn(ℓ ◦ Gϕ,Ψ). (24)

Therefore, with probability at least 1− δ/2,

sup
ψ∈Ψ

(
E[ℓ(gϕ,ψ(x), y)]−

1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)

)
≤ Rn(ℓ ◦ Gϕ,Ψ) + L

√
2 log(2/δ)

n
(25)

Similarly, with probability at least 1− δ/2,

sup
ψ∈Ψ

(
1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj)− E[ℓ(gϕ,ψ(x), y)]
)
≤ Rn(ℓ ◦ Gϕ,Ψ) + L

√
2 log(2/δ)

n
(26)

Combine these together, we prove Lemma A.1.

Lemma A.2. Suppose that ℓ(·, ·) is a L-bounded loss function. Then, it holds for any ϕ ∈ Φ, ψ ∈ Ψ
that

E[ℓ(gϕ,ψ(x), y)]− E[ℓ(gϕ∗,ψ∗(x), y)] ≤ 4L · dTV(Pϕ,ψ(x, y),Pϕ∗,ψ∗(x, y)). (27)
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Proof of Lemma A.2.

Eϕ∗,ψ∗ [ℓ(gϕ,ψ(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]

= Eϕ∗,ψ∗ [ℓ(gϕ,ψ(x), y)]− Eϕ,ψ[ℓ(gϕ,ψ(x), y)]
+ Eϕ,ψ[ℓ(gϕ,ψ(x), y)]− Eϕ,ψ[ℓ(gϕ∗,ψ∗(x), y)]

+ Eϕ,ψ[ℓ(gϕ∗,ψ∗(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]. (28)

First notice that, by definition of gϕ,ψ ,

Eϕ,ψ[ℓ(gϕ,ψ(x), y)]− Eϕ,ψ[ℓ(gϕ∗,ψ∗(x), y)] ≤ 0. (29)

For the other two terms, based on the fact that ℓ is L-bounded, we have

|Eϕ∗,ψ∗ [ℓ(gϕ,ψ(x), y)]− Eϕ,ψ[ℓ(gϕ,ψ(x), y)]|

=

∣∣∣∣∫ ℓ(gϕ,ψ(x), y)pϕ∗,ψ∗(x, y)dxdy −
∫
ℓ(gϕ,ψ(x), y)pϕ,ψ(x, y)dxdy

∣∣∣∣
=

∣∣∣∣∫ ℓ(gϕ,ψ(x), y)(pϕ∗,ψ∗(x, y)− pϕ,ψ(x, y))dxdy
∣∣∣∣

≤
∫
|ℓ(gϕ,ψ(x), y)||(pϕ∗,ψ∗(x, y)− pϕ,ψ(x, y))|dxdy

≤
∫
L|(pϕ∗,ψ∗(x, y)− pϕ,ψ(x, y))|dxdy

= 2L · dTV(Pϕ,ψ(x, y), Pϕ∗,ψ∗(x, y)). (30)

Similarly, it holds that

|Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]− Eϕ,ψ[ℓ(gϕ∗,ψ∗(x), y)]| ≤ 2L · dTV(Pϕ,ψ(x, y), Pϕ∗,ψ∗(x, y)). (31)

Combining (28), (29), (30) and (31), we obtain

Eϕ∗,ψ∗ [ℓ(gϕ,ψ(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)] ≤ 4L · dTV(Pϕ,ψ(x, y), Pϕ∗,ψ∗(x, y)). (32)

With Lemma A.1 and Lemma A.2, we are able to state our proofs for Theorem 3.4 in the following.
The main idea of the proof is decomposing the risk. And a key observation is that the labeled data
{xj , yj}nj=1 are independent of the pretrained ϕ̂, which is learned from the unlabeled data {xi}mi=1.

Proof of Theorem 3.4. Let

ψ̃ := argmin
ψ∈Ψ

dTV(Pϕ̂,ψ(x, y), Pϕ∗,ψ∗(x, y)). (33)

And for any ϕ ∈ Φ, ψ ∈ Ψ, we define

∆ϕ,ψ := Eϕ∗,ψ∗ [ℓ(gϕ,ψ(x), y)]−
1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj). (34)

Recall that the excess risk is defined in (2). It then holds that

Errorℓ(ϕ̂, ψ̂) = Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̂(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]

= Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̂(x), y)]−
1

n

n∑
j=1

ℓ(gϕ̂,ψ̂(xj), yj)

+
1

n

n∑
j=1

ℓ(gϕ̂,ψ̂(xj), yj)−
1

n

n∑
j=1

ℓ(gϕ̂,ψ̃(xj), yj) (≤ 0, by ERM in Algorithm 1)

+
1

n

n∑
j=1

ℓ(gϕ̂,ψ̃(xj), yj)− Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̃(x), y)]

+ Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̃(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]

≤ ∆ϕ̂,ψ̂ −∆ϕ̂,ψ̃ + Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̃(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]. (35)
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By lemma A.2, we have

Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̃(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]

≤ 4L · dTV(Pϕ̂,ψ̃(x, y), Pϕ∗,ψ∗(x, y))

= 4L ·min
ψ∈Ψ

dTV(Pϕ̂,ψ(x, y), Pϕ∗,ψ∗(x, y)) (by definition of ψ̃)

≤ 4κL · dTV(Pϕ̂(x, s), Pϕ∗(x, s)). (36)

The last line holds, since by Assumption 3.2, for any ϕ̂ ∈ Φ, we choose T1 that satisfies (5) and T2
that satisfies (6). Let ψ = T−1

2 ◦ ψ∗. It then holds that

min
ψ∈Ψ

dTV(Pϕ̂,ψ(x, y), Pϕ∗,ψ∗(x, y)) ≤ dTV

(
Pϕ̂,ψ(x, y),Pϕ∗,ψ∗(x, y)

)
= dTV

(
PT1◦ϕ̂,ψ∗(x, y),Pϕ∗,ψ∗(x, y)

)
≤ dTV

(
PT1◦ϕ̂(x, z),Pϕ∗(x, z)

)
≤ κ · dTV

(
Pϕ̂(x, s),Pϕ∗(x, s)

)
. (37)

Combining (35) and (36), we have

Errorℓ(ϕ̂, ψ̂) ≤ ∆ϕ̂,ψ̂ −∆ϕ̂,ψ̃ + 4κL · dTV(Pϕ̂(x, s), Pϕ∗(x, s)). (38)

We define the following events

D :=

{
dTV(Pϕ̂(x, s), Pϕ∗(x, s)) ≤ 3

√
1

m
log

2N(PX×S(Φ), 1/m)

δ

}
(39)

and

R :=

{
sup
ψ∈Ψ
|∆ϕ̂,ψ| ≤ Rn(ℓ ◦ Gϕ̂,Ψ) + L

√
2 log(4/δ)

n

}
. (40)

It holds that

P(D ∩R) = E[1D∩R] = E[E[1D1R|ϕ̂]] = E[1DE[1R|ϕ̂]] = E[1DP(R|ϕ̂)], (41)

where the third equation follows from the fact that D is ϕ̂-measurable. Note that {xj , yj}nj=1 is
independent of ϕ̂. By Lemma A.1, for any given ϕ̂, with probability at least 1− δ/2,

sup
ψ∈Ψ
|∆ϕ̂,ψ| ≤ Rn(ℓ ◦ Gϕ̂,Ψ) + L

√
2 log(4/δ)

n
, (42)

i.e.,

P(R|ϕ̂) ≥ 1− δ/2. (43)

By Lemma 3.3, with probability at least 1 − δ/2, the output of the first step of our algorithm ϕ̂,
satisfies

dTV(Pϕ̂(x, s), Pϕ∗(x, s)) ≤ 3

√
1

m
log

2N(PX×S(Φ), 1/m)

δ
(44)

i.e.,

P(D) ≥ 1− δ/2. (45)

By (41), (43) and (45), we have

P(D ∩R) ≥ (1− δ/2)2 ≥ 1− δ. (46)
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Then, under event D ∩R, by our decomposition (38), we have

Errorℓ(ϕ̂, ψ̂) ≤ ∆ϕ̂,ψ̂ −∆ϕ̂,ψ̃ + 4κL · dTV(Pϕ̂(x, s), Pϕ∗(x, s))

≤ 2 sup
ψ∈Ψ
|∆ϕ̂,ψ|+ 4κL · dTV(Pϕ̂(x, s), Pϕ∗(x, s))

≤ 2Rn(ℓ ◦ Gϕ̂,Ψ) + 2L

√
2 log(4/δ)

n
+ 12κL

√
1

m
log

2N(PX×S(Φ), 1/m)

δ

≤ 2max
ϕ∈Φ

Rn(ℓ ◦ Gϕ,Ψ) + 2L

√
2 log(4/δ)

n
+ 12κL

√
1

m
log

2N(PX×S(Φ), 1/m)

δ
.

(47)

Thus, we prove Theorem 3.4.

A.3 PROOFS FOR COROLLARY 3.5

In the following, we give the proof of Corollary 3.5, which is based on the analysis of Gaussian
complexity.

Proof. By Theorem 3.4, we have

Errorℓ(ϕ̂, ψ̂) ≤ 2max
ϕ∈Φ

Rn(ℓ ◦ Gϕ,Ψ) + 2L ·
√

2

n
log

4

δ
+ 12κL ·

√
1

m
log

2N[ ](PX×S(Φ), 1/m)

δ
.

(48)

Therefore, it remains to bound the Rademacher complexity term. By Ledoux & Talagrand (2013),
the Rademacher complexity is upper bounded by the Gaussian complexity, i.e.,

Rn(F) ≤ c ·Gn(F) = c · EĜn(F), (49)

where c is some absolute constants. Here Gn(F) is the Gaussian complexity, and it’s empirical
version is defined as

Ĝn(F) := Egi
[
sup
f∈F

∣∣∣∣ 2n
n∑
i=1

gif(xi)

∣∣∣∣ ∣∣∣∣x1, · · · , xn] (50)

where g1, · · · , gn are i.i.d. N (0, 1) random variables. By (5.36) in Wainwright (2019), we have

Ĝn(ℓ ◦ Gϕ,Ψ) ≤
1√
n
· min
δ∈[0,L]

{
δ
√
n+ 2L

√
logN(ℓ ◦ Gϕ,Ψ, δ, ∥ · ∥∞)

}
≤ 1√

n

(
L+ 2L

√
logN(ℓ ◦ Gϕ,Ψ, L/

√
n, ∥ · ∥∞)

)
(Take δ = L/

√
n)

≤ 3L

√
logN(ℓ ◦ Gϕ,Ψ, L/

√
n, ∥ · ∥∞)

n
. (51)

Combining (49) and (51), we obtain

Rn(ℓ ◦ Gϕ,Ψ) ≤ 3cL

√
logN(ℓ ◦ Gϕ,Ψ, L/

√
n, ∥ · ∥∞)

n
. (52)

By (48) and (52), we finish the proof.

A.4 PROOFS FOR THEOREM 3.7

In this section, we first show the relation of Assumption 3.2 and Assumption 3.6. We then show
that the MLE step in line 2 of Algorithm 1 guarantees an upper bound on the Hellinger distance
H(Pϕ̂(x, s),Pϕ∗(x, s)). Then, using the same techniques as that in the proof of Theorem 3.4, we
prove Theorem 3.7.
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A.4.1 RELATION OF ASSUMPTION 3.2 AND ASSUMPTION 3.6

Assumption 3.6 is actually a relaxation of Assumption 3.2. To see this, by Assumption 3.2, for any
ϕ ∈ Φ, we choose T1 that satisfies (5) and T2 that satisfies (6). Let ψ = T−1

2 ◦ψ∗. It then holds that

dTV

(
Pϕ,ψ(x, y),Pϕ∗,ψ∗(x, y)

)
= dTV

(
PT1◦ϕ,ψ∗(x, y),Pϕ∗,ψ∗(x, y)

)
≤ dTV

(
PT1◦ϕ(x, z),Pϕ∗(x, z)

)
≤ κ · dTV

(
Pϕ(x, s),Pϕ∗(x, s)

)
.

Note that the TV distance can be upper bounded by the Hellinger distance. Thus, Assumption 3.2
directly implies Assumption 3.6.

A.4.2 HELLINGER DISTANCE GUARANTEE

Suppose that ϕ̂ is the output of the MLE step in Algorithm 1, which satisfies

ϕ̂← argmax
ϕ∈Φ

m∑
i=1

log pϕ(xi, si). (53)

We have the following theoretical guarantee on the Hellinger distance between Pϕ̂(x, s) and
Pϕ∗(x, s).

Lemma A.3. Let ϕ̂ be the output of Algorithm 1. It then holds that with probability at least 1 − δ
that

H
(
Pϕ̂(x, s),Pϕ∗(x, s)

)
≤

√
2

m
log

N[ ]

(
PX×S(Φ), 1/m2

)
δ

, (54)

where we denote PX×S(Φ) := {pϕ(x, s) |ϕ ∈ Φ}.

Proof of Lemma A.3. For notation simplicity, we denote x := (x, s). Let ϵ > 0. Similar to the proof
of Theorem 3.3, we obtain with probability at least 1− δ

1−
∫ √

p̄ϕ̂(x)pϕ∗(x) dx ≤ 1

m
log

N[ ]

(
PX×S(Φ), ϵ

)
δ

. (55)

Here p̄ϕ̂(x) ∈ N[ ](PX×S(Φ), ϵ) that satisfies p̄ϕ̂(x) ≥ pϕ∗(x) for any x and∫
p̄ϕ̂(x)− pϕ∗(x) dx ≤ ϵ. (56)

Note that

1−
∫ √

pϕ̂(x)pϕ∗(x) dx−
(
1−

∫ √
p̄ϕ̂(x)pϕ∗(x) dx

)
=

∫ (√
p̄ϕ̂(x)−

√
pϕ̂(x)

)√
pϕ∗(x) dx

≤

√∫ (√
p̄ϕ̂(x)−

√
pϕ̂(x)

)2
dx

=

√∫
p̄ϕ̂(x) + pϕ̂(x)− 2

√
p̄ϕ̂(x)pϕ̂(x) dx

≤

√∫
p̄ϕ̂(x)− pϕ̂(x) dx

≤
√
ϵ. (57)
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Here the first inequality follows from Cauchy-Schwarz inequality and the second follows from the
fact that

√
p̄ϕ̂(x)pϕ̂(x) ≥ pϕ̂(x). By (55) and (57), we have

1−
∫ √

pϕ̂(x)pϕ∗(x) dx ≤
√
ϵ+

1

m
log

N[ ]

(
PX×S(Φ), ϵ

)
δ

, (58)

which implies that

H2
(
Pϕ̂(x),Pϕ∗(x)

)
= 1−

∫ √
pϕ̂(x)pϕ∗(x) dx ≤

√
ϵ+

1

m
log

N[ ]

(
PX×S(Φ), ϵ

)
δ

. (59)

Set ϵ = 1/m2. We have

H2
(
Pϕ̂(x, s),Pϕ∗(x, s)

)
≤ 2

m
log

N[ ]

(
PX×S(Φ), 1/m

2
)

δ
. (60)

A.4.3 PROOF OF THEOREM 3.7

With Lemma A.3 in hand, we are ready to prove Theorem 3.7.

Proof of Theorem 3.7. Let ϕ̂ be the output of the MLE step in Algorithm 1. And for any ϕ ∈ Φ, ψ ∈
Ψ, we define

∆ϕ,ψ := Eϕ∗,ψ∗ [ℓ(gϕ,ψ(x), y)]−
1

n

n∑
j=1

ℓ(gϕ,ψ(xj), yj). (61)

Following the same arguments as that in the proof of Theorem 3.4, we have with probability at least
1− δ,

H
(
Pϕ̂(x, s),Pϕ∗(x, s)

)
≤
√

2

m
log

2N(PX×S(Φ), 1/m2)

δ
(62)

and

sup
ψ∈Ψ
|∆ϕ̂,ψ| ≤ Rn(ℓ ◦ Gϕ̂,Ψ) + L

√
2 log(4/δ)

n
. (63)

Moreover, as mentioned in (35), we have
Errorℓ(ϕ̂, ψ̂) ≤ ∆ϕ̂,ψ̂ −∆ϕ̂,ψ̃ + Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̃(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]

≤ 2Rn(ℓ ◦ Gϕ̂,Ψ) + 2L

√
2 log(4/δ)

n
+ Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)], (64)

where ψ̃ := argminψ∈Ψ dTV(Pϕ̂,ψ(x, y),Pϕ∗,ψ∗(x, y)) and the second inequality follows from
(63). By lemma A.2, we have

Eϕ∗,ψ∗ [ℓ(gϕ̂,ψ̃(x), y)]− Eϕ∗,ψ∗ [ℓ(gϕ∗,ψ∗(x), y)]

≤ 4L · dTV(Pϕ̂,ψ̃(x, y),Pϕ∗,ψ∗(x, y))

= 4L ·min
ψ∈Ψ

dTV(Pϕ̂,ψ(x, y),Pϕ∗,ψ∗(x, y)) (by definition of ψ̃)

≤1) 4κL ·H(Pϕ̂(x, s),Pϕ∗(x, s))

≤2) 4κL

√
2

m
log

2N(PX×S(Φ), 1/m2)

δ
, (65)

where 1) follows from Assumption 3.6 and 2) follows from (62). Combining (64) and (65), we have

Errorℓ(ϕ̂, ψ̂) ≤ 2Rn(ℓ ◦ Gϕ̂,Ψ) + 2L

√
2 log(4/δ)

n
+ 4κL

√
2

m
log

2N(PX×S(Φ), 1/m2)

δ

≤ 2max
ϕ∈Φ

Rn(ℓ ◦ Gϕ,Ψ) + 2L

√
2 log(4/δ)

n
+ 4κL

√
2

m
log

2N(PX×S(Φ), 1/m2)

δ
.

(66)
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B ADDITIONAL RESULTS AND PROOFS FOR SECTION 4

In Section B.1, by analysing the total variation distance between two high-dimensional Gaussians
and applying the Davis-Kahan theorem, we show that factor model with linear regression as down-
stream tasks has κ-transferability (Lemma 4.2), where κ depends on the largest and smallest singular
value of the ground truth parameter B∗. In Section B.2 and Section B.3, we prove two lemmas that
will be used in the proof of Theorem 4.3. To be specific, in Section B.2, we upper bound the bracket-
ing number of the setP(B) by using ϵ-discretization (Lemma B.5). In Section B.3, we prove Lemma
B.6, which will be used to upper bound the Rademacher complexity of the function class ℓ ◦ GB,C .
In Section B.4, we prove Theorem 4.3. Finally, in Section B.5, we provide a refined analysis for
proving Theorem B.9.

B.1 PROOFS FOR LEMMA 4.2

First of all, we present some useful lemmas that will be used in the proof of Lemma 4.2. Given two
high-dimensional Gaussians, we can bound their total variation distance as follows.

Lemma B.1 (Theorem 1.2 and Proposition 2.1 in Devroye et al. (2018)). Suppose that d > 1. Let
µ1 ̸= µ2 ∈ Rd. Then, we have

1

200
≤
dTV

(
N (µ1, Id),N (µ2, Id)

)
min{1, ∥µ1 − µ2∥2}

≤ 1.

Lemma B.2 (Theorem 1.1 in Devroye et al. (2018)). Suppose that d > 1. Let µ ∈ Rd and Σ1 ̸= Σ2

be positive definite d× d matrices. Then, we have

1

100
≤

dTV

(
N (µ,Σ1),N (µ,Σ2)

)
min{1, ∥Σ−1/2

1 Σ2Σ
−1/2
1 − Id∥F}

≤ 3

2
.

Recall that we define B := {B ∈ Rd×r | ∥B∥2 ≤ D}. Let B ∈ B and B∗ be the ground truth
parameter. We denote by σ∗

max and σ∗
min the largest and smallest singular value of B∗, respectively.

Moreover, we denote the singular value decomposition of B and B∗ by B = UΣV and B∗ =
U∗Σ∗V ∗, respectively. Here Σ,Σ∗ ∈ Rr×r are diagonal matrices and U,U∗ ∈ Rd×r, V, V ∗ ∈
Rr×d are matrices with orthogonal columns. Let

M := BBT = UΛUT , M∗ := B∗B∗T = U∗Λ∗U∗T , (67)

where Λ := ΣΣT and Λ∗ := Σ∗Σ∗T . We define

O := argmin
O∈Or×r

∥UO − U∗∥F. (68)

Then, we have the following lemmas.

Lemma B.3. ForM,M∗ defined in (67) andO defined in (68), there exists some absolute constants
c > 1 such that

∥UO − U∗∥F ≤
c

(σ∗
min)

2
∥M −M∗∥F.

Here σ∗
min is the smallest singular value of the true parameter B∗.

Proof. An application of Davis-Kahan Theorem (Davis & Kahan, 1970).

Lemma B.4. ForM,M∗ defined in (67) andO defined in (68), there exists some absolute constants
c such that

∥Λ1/2O −OΛ∗1/2∥F ≤
4c(σ∗

max)
2

(σ∗
min)

3
∥M −M∗∥F.

Here σ∗
min is the smallest singular value of the true parameter B∗.
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Proof of Lemma B.4. Our proof is inspired by Ma et al. (2018). By Lemma 2.1 in Schmitt (1992),
we have

∥Λ1/2O −OΛ∗1/2∥F ≤
1√

σmin(M∗)
∥OTΛO − Λ∗∥F =

1

σ∗
min

∥OTΛO − Λ∗∥F. (69)

Note that Λ = UTMU and Λ∗ = U∗TM∗U∗. Thus, we have

∥OTΛO − Λ∗∥F = ∥OTUTMUO − U∗TM∗U∗∥F
≤ ∥OTUTMUO −OTUTM∗UO∥F + ∥OTUTM∗UO − U∗TM∗UO∥F
+ ∥U∗TM∗UO − U∗TM∗U∗∥F
≤ ∥M −M∗∥F + 2∥M∗∥2∥UO − U∗∥F

≤ ∥M −M∗∥F + 2c

(
σ∗
max

σ∗
min

)2

∥M −M∗∥F

≤ 4c

(
σ∗
max

σ∗
min

)2

∥M −M∗∥F, (70)

where the third inequality follows from Lemma B.3. Combing (69) and (70), we have

∥Λ1/2O −OΛ∗1/2∥F ≤
4c(σ∗

max)
2

(σ∗
min)

3
∥M −M∗∥F.

Now we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. LetOr×r := {O ∈ Rr×r |OOT = OTO = Ir}. First of all, we show that for
any (B, β,O) ∈ B × C × O, it holds that PB,β(x, y) = PBO,OT β(x, y). This can be easily seen by
the following observation,

PBO,OT β ∼ N
(
0,

[
BO(BO)T BOOTβ
βTOOTBT (OTβ)TOTβ

])
= N

(
0,

[
BBT Bβ
βTBT βTβ

])
∼ PB,β .

By Lemma B.3, it holds for some constant c > 1 that

∥UO − U∗∥F ≤
c

(σ∗
min)

2
∥BBT −B∗B∗T ∥F. (71)

By Lemma B.4, it holds for some constant c > 1 that

∥ΣO −OΣ∗∥F ≤
4c(σ∗

max)
2

(σ∗
min)

3
∥BBT −B∗B∗T ∥F. (72)

Let Ô := V −1OV ∗ ∈ Or×r. By (71) and (72), we have

∥BÔ −B∗∥F = ∥UΣOV ∗ − U∗Σ∗V ∗∥F
≤ ∥UΣO − U∗Σ∗∥F
≤ ∥UΣO − UOΣ∗∥F + ∥UOΣ∗ − U∗Σ∗∥F
≤ ∥ΣO −OΣ∗∥F + ∥UO − U∗∥F∥Σ∗∥2

≤ c ·
(
4(σ∗

max)
2

(σ∗
min)

3
+

σ∗
max

(σ∗
min)

2

)
· ∥BBT −B∗B∗T ∥F

≤ 5c(σ∗
max)

2

(σ∗
min)

3
· ∥BBT −B∗B∗T ∥F. (73)
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Note that

dTV

(
PBÔ(x, z),PB∗(x, z)

)
=

∫
|pBÔ(x | z)− pB∗(x | z)|p(z) dxdz

=

∫
dTV

(
N (BÔz, Id),N (B∗z, Id)

)
p(z) dz

≤
∫

min{1, ∥BÔz −B∗z∥2}p(z) dz

≤ min
{
1,E[∥BÔz −B∗z∥2]

}
, (74)

where the first inequality follows from Lemma B.1. We can show that

E[∥BÔz −B∗z∥2] ≤
(
E
[
∥BÔz −B∗z∥22

])1/2
=
(
E
[
zT (BÔ −B∗)T (BÔ −B∗)z

])1/2
=
(
E
[
Tr
(
(BÔ −B∗)T (BÔ −B∗)zzT

)])1/2
=
(
Tr
(
(BÔ −B∗)T (BÔ −B∗)

))1/2
= ∥BÔ −B∗∥F. (75)

By (73), (74) and (75), it holds that

dTV

(
PBÔ(x, z),PB∗(x, z)

)
≤ min

{
1, ∥BÔ −B∗∥F

}
≤ min

{
1,

5c(σ∗
max)

2

(σ∗
min)

3
· ∥BBT −B∗B∗T ∥F

}
≤ 5c(σ∗

max)
2

(σ∗
min)

3
·
(
(σ∗

max)
2 + 1

)
·min

{
1,
∥BBT −B∗B∗T ∥F

(σ∗
max)

2 + 1

}
, (76)

where the last inequality follows from c > 1 and

(σ∗
max)

2 + 1

σ∗
min

≥ 2σ∗
max

σ∗
min

> 1.

By Lemma B.2, we have

dTV(pB(x), pB∗(x))

≥ 1

100
min

{
1, ∥(B∗B∗T + Id)

−1/2(BBT −B∗B∗T )(B∗B∗T + Id)
−1/2∥F

}
. (77)

Note that

∥(B∗B∗T + Id)
−1/2(BBT −B∗B∗T )(B∗B∗T + Id)

−1/2∥F

≥ ∥BB
T −B∗B∗T ∥F

∥B∗B∗T + Id∥2
≥ ∥BB

T −B∗B∗T ∥F
(σ∗

max)
2 + 1

. (78)

Thus, by (77) and (78), it holds that

dTV(pB(x), pB∗(x)) ≥ 1

100
min

{
1,
∥BBT −B∗B∗T ∥F

(σ∗
max)

2 + 1

}
(79)

Finally, by (76) and (79), we have

dTV

(
PBÔ(x, z),PB∗(x, z)

)
≤

500c(σ∗
max)

2
(
(σ∗

max)
2 + 1

)
(σ∗

min)
3

· dTV(pB(x), pB∗(x))

≤ 500c(σ∗
max + 1)4

(σ∗
min)

3
· dTV(pB(x), pB∗(x)).
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B.2 BRACKETING NUMBER

By an application of ϵ-discretization technique, we upper bound the bracketing number of P(B) as
follows.
Lemma B.5. Let PX (B) := {N (0, BBT + Id) |B ∈ B}, where B = {B ∈ Rd×r | ∥B∥2 ≤ D} for
some D > 0. Then the entropy can be bounded as follows,

logN[ ](PX (B), 1/m) ≤ 4dr log
(
24mdr(D2 + 1)

)
.

Proof of Lemma B.5. We consider a set of Gaussian distribution

PX (B) :=
{
pΣ(x) =

1√
(2π)d|Σ|

e−
1
2x
TΣ−1x

∣∣∣∣Σ = BBT + Id, B ∈ B
}
,

where B = {B ∈ Rd×r | ∥B∥2 ≤ D}. Note that

λmax(Σ
−1) =

(
λmin(Σ)

)−1
= 1, λmin(Σ

−1) =
(
λmax(Σ)

)−1 ≥ 1

D2 + 1
. (80)

Here we denote by λmax(Σ
−1) and λmin(Σ

−1) the largest eigenvalue and the smallest eigenvalue of
Σ−1, respectively. Our goal is to find a 1/m-bracket N[ ](PX (B), 1/m) of PX (B). In other words,
for any pΣ(x) ∈ PX (B), we need to define p̄Σ(x) ∈ N[ ](PX (B), 1/m) such that

• p̄Σ(x) ≥ pΣ(x), ∀x ∈ Rd

•
∫
|p̄Σ(x)− pΣ(x)| dx ≤ 1/m.

Note that rank(BBT ) = r < d and Σ = BBT + Id. Thus, the eigendecomposition of Σ−1 has the
following form

Σ−1 = V



λ1
. . .

λr
1

. . .
1


V T = U

λ1 − 1
. . .

λr − 1

UT + Id, (81)

where V V T = V TV = Id and U ∈ Rd×r is the first r columns of V . For notation simplicity, we
denote

Λ :=

λ1 − 1
. . .

λr − 1

 .
Thus, we have Σ−1 = UΛUT + Id. For some fixed 0 < ϵ ≤ (D2 + 1)−1/2 (which we will
choose later), if λi ∈ [kϵ, (k + 1)ϵ) for some k ∈ Z, we define λ̄i := (k − 1)ϵ. Note that λi ≥
λmin(Σ

−1) ≥ (D2 + 1)−1. Thus, it holds that k ≥ 2 and λ̄i = (k − 1)ϵ ≥ ϵ > 0. Moreover, we
have ϵ ≤ λi − λ̄i ≤ 2ϵ. We define

Λ̄ :=

λ̄1 − 1
. . .

λ̄r − 1

 .
For the matrix U = (ui,j) ∈ Rd×r, if ui,j ∈ [ kϵ

3
√
dr
, (k+1)ϵ

3
√
dr

) for some k ∈ Z, we define ūi,j := kϵ
3
√
dr

and Ū := (ūi,j) ∈ Rd×r. It then holds that

∥U − Ū∥2 ≤ ∥U − Ū∥F =

√∑
i,j

|ui,j − ūi,j |2 ≤
√
dr · ϵ

3
√
dr

=
ϵ

3
. (82)
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We define

Σ−1 := Ū Λ̄ŪT + Id. (83)

Note that (D2 + 1)−1 ≤ λi ≤ 1 and |ui,j | ≤ 1. Thus, we totally have(
1− (D2 + 1)−1

ϵ

)r
·
(
6
√
dr

ϵ

)dr
=

(
D2

(D2 + 1)ϵ

)r
·
(
6
√
dr

ϵ

)dr
(84)

many Σ̄−1. Note that for any ∥x∥2 = 1, we have

xT (Σ−1 − Σ−1)x = xT (UTΛU − Ū Λ̄ŪT )x

= xTUT (Λ− Λ̄)Ux+ xT (U − Ū)T Λ̄(U + Ū)x

≥ λmin(Λ− Λ̄)− ∥(U − Ū)T Λ̄(U + Ū)∥2
≥ λmin(Λ− Λ̄)− ∥U − Ū∥2 · ∥Λ̄(U + Ū)∥2

≥ ϵ− 3

(
2ϵ+

D2

D2 + 1

)
∥U − Ū∥2

≥ ϵ− 3

(
2ϵ+

D2

D2 + 1

)
· ϵ
3
≥ 0,

where the third inequality follows from

∥Λ̄(U + Ū)∥2 ≤ ∥Λ̄∥2∥U + Ū∥2 ≤
(
2ϵ+ 1− 1

D2 + 1

)
·
(
2 +

ϵ

3

)
≤ 3

(
2ϵ+

D2

D2 + 1

)
.

and the last inequality follows from our assumption ϵ ≤ (D2 + 1)−1/2. Thus, for any x ∈ Rd, it
holds that

xT (Σ−1 − Σ−1)x ≥ 0. (85)

We consider p̄Σ(x) of the following form

p̄Σ(x) = c

√
|Σ−1|
(2π)d

e−
1
2x
TΣ−1x.

By (85), we have: p̄Σ(x) ≥ pΣ(x) holds for any x ∈ Rd if and only if

c ≥

√
|Σ−1|
|Σ−1|

=

√
λ1 . . . λr
λ̄1 . . . λ̄r

.

Note that
λi
λ̄i
≤ (k + 1)ϵ

(k − 1)ϵ
= 1 +

2

k − 1
≤ 1 +

4

k
≤ 1 + 4(D2 + 1)ϵ,

where the second inequality follows from k ≥ 2 and the last inequality follows from kϵ ≥ (D2 +
σ2)−1. We then obtain that √

λ1 . . . λr
λ̄1 . . . λ̄r

≤
(
1 + 4(D2 + 1)ϵ

)r/2
.

Let c = (1 + 4(D2 + 1)ϵ)r/2. It then holds that

c ≥

√
λ1 . . . λr
λ̄1 . . . λ̄r

,

which implies p̄Σ(x) ≥ pΣ(x) holds for any x ∈ Rd. Note that∫
|p̄Σ(x)− pΣ(x)| dx = c− 1 = (1 + 4(D2 + 1)ϵ)r/2 − 1 ≤ 4(D2 + 1)ϵr,
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where the last inequality follow from (1 + x)r/2 ≤ 1 + rx for x ≤ r−1. Let

ϵ =
1

4(D2 + 1)mr
. (86)

We have ∫
|p̄Σ(x)− pΣ(x)| dx ≤ 4(D2 + 1)ϵr =

1

m
.

By (84) and (86), we show that

N[ ](PX (B), 1/m) ≤ (4rmD2)r ·
(
24rm(D2 + 1)

√
dr
)dr

,

which implies
logN[ ](PX (B), 1/m) ≤ 4dr log

(
24mdr(D2 + 1)

)
.

B.3 RADEMACHER COMPLEXITY

Note that for fixed B the prediction function class

GB,C :=
{
gB,β(x) = βTBT (BBT + σ2Id)

−1x
∣∣β ∈ C}

belongs to a linear hypothesis class. For a linear hypothesis class H, we can bound its empirical
Rademacher complexity as follows.
Lemma B.6. For a linear hypothesis class H = {hβ(x) = βTx |β ∈ Rr, ∥β∥2 ≤ D}, where
x ∈ Rr and ∥x∥2 ≤ X , the empirical Rademacher complexity can be bounded as follows,

R̂n(H) ≤
2DX√
n
.

Proof of Lemma B.6. Note that

R̂n(H) =
2

n
Eσi
[

sup
∥β∥2≤D

n∑
i=1

σi · βTxi
]
=

2

n
Eσi
[

sup
∥β∥2≤D

βT
( n∑
i=1

σixi

)]

≤ 2

n
Eσi
[

sup
∥β∥2≤D

∥β∥2
∥∥∥∥ n∑
i=1

σixi

∥∥∥∥
2

]
≤ 2D

n
Eσi
[√∑

i,j

σiσjxTi xj

]
.

By Jensen’s inequality, we then have

R̂n(H) ≤
2D

n
Eσi
[√∑

i,j

σiσjxTi xj

]
≤ 2D

n

√√√√Eσi

[∑
i,j

σiσjxTi xj

]
=

2D

n

√√√√ n∑
i=1

∥xi∥2 ≤
2DX√
n
.

B.4 PROOFS FOR THEOREM 4.3

In this section, we verify the utility of Algorithm 1 by proving Theorem 4.3. Recall that the truncated
squared loss is defined as

ℓ̃(x, y) := (y − x)2I{(y−x)2≤L} + L · I{(y−x)2>L}, (87)

which is L−bounded and 2
√
L−Lipschitz w.r.t. the first argument. Before proving Theorem 4.3,

we need to state some core lemmas. Recall the definition of gB,β(x):
gB,β(x) := argmin

g
EB,β [ℓ(g(x), y)]. (88)

Since ℓ is the squared loss, it’s obvious that

gB,β(x) := argmin
g

EB,β [ℓ(g(x), y)] = EPB,β(x,y)[y | x] = βTBT (BBT + Id)
−1x. (89)

The next lemma shows that the optimal predictor under the squared loss ℓ and the truncated squared
loss ℓ̃ stays the same.
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Lemma B.7. We denote by g̃B,β the optimal predictor under truncated squared loss, i.e.,

g̃B,β ← argmin
g

EB,β [ℓ̃(g(x), y)]. (90)

It then holds that

g̃B,β(x) = EPB,β(x,y)[y | x] = gB,β(x). (91)

Proof of Lemma B.7. Notice that, the distribution (under parameter B, β) of y given x is a Gaussian
distribution with mean µ = EPB,β(x,y)[y | x] and variance v2 (which is of no importance). We
define function f as

f(a) := EB,β [ℓ̃(a, y) | x]

=

∫ a+
√
L

a−
√
L

(y − a)2 1

v
√
2π
e−

(y−µ)2

2v2 dy +

∫ +∞

a+
√
L

L
1

v
√
2π
e−

(y−µ)2

2v2 dy

+

∫ a−
√
L

−∞
L

1

v
√
2π
e−

(y−µ)2

2v2 dy. (92)

Then, it holds that

f ′(a) =
L

v
√
2π
e−

(a−µ+
√
L)2

2v2 − L

v
√
2π
e−

(a−µ−
√
L)2

2v2 +

∫ a+
√
L

a−
√
L

2(a− y) 1

v
√
2π
e−

(y−µ)2

2v2 dy

− L

v
√
2π
e−

(a−µ+
√
L)2

2v2 +
L

v
√
2π
e−

(a−µ−
√
L)2

2v2

=

∫ a+
√
L

a−
√
L

2(a− y) 1

v
√
2π
e−

(y−µ)2

2v2 dy

=

∫ a

a−
√
L

2(a− y) 1

v
√
2π
e−

(y−µ)2

2v2 dy +

∫ a+
√
L

a

2(a− y) 1

v
√
2π
e−

(y−µ)2

2v2 dy

=

∫ √
L

0

2z
1

v
√
2π
e−

(a−z−µ)2

2v2 dz −
∫ √

L

0

2z
1

v
√
2π
e−

(a+z−µ)2

2v2 dz

=

∫ √
L

0

2z

v
√
2π

(e−
(a−z−µ)2

2v2 − e−
(a+z−µ)2

2v2 )dz. (93)

Notice that for z ∈ [0,
√
L],

e−
(a−z−µ)2

2v2 − e−
(a+z−µ)2

2v2 > 0 when a > µ, (94)

e−
(a−z−µ)2

2v2 − e−
(a+z−µ)2

2v2 < 0 when a < µ. (95)

Therefore, we have f ′(a) < 0 when a < µ, f ′(a) > 0 when a > µ, which implies that a = µ is the
unique minimizer of f(a), i.e.,

g̃B,β(x) = EPB,β(x,y)[y | x] = gB,β(x). (96)

The following lemma shows that the truncation has no significant influence on the excess risk.

Lemma B.8. There exist c2 = (D2 + 1)3, such that

Errorℓ(B̂, β̂) ≤ EB∗,β∗ [ℓ̃(gB̂,β̂(x), y)]− EB∗,β∗ [ℓ̃(gB∗,β∗(x), y)] +

√
2Lc2
π

e−
L

2c2 . (97)
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Proof of Lemma B.8.

Errorℓ(B̂, β̂) = EB∗,β∗ [ℓ(gB̂,β̂(x), y)]− EB∗,β∗ [ℓ(gB∗,β∗(x), y)]

= EB∗,β∗ [ℓ(gB̂,β̂(x), y)]− EB∗,β∗ [ℓ̃(gB̂,β̂(x), y)]

+ EB∗,β∗ [ℓ̃(gB̂,β̂(x), y)]− EB∗,β∗ [ℓ̃(gB∗,β∗(x), y)]

+ EB∗,β∗ [ℓ̃(gB∗,β∗(x), y)]− EB∗,β∗ [ℓ(gB∗,β∗(x), y)] (≤ 0 since ℓ̃ ≤ ℓ)
≤ sup

B,β
{EB∗,β∗ [ℓ(gB,β(x), y)]− EB∗,β∗ [ℓ̃(gB,β(x), y)]}

+ EB∗,β∗ [ℓ̃(gB̂,β̂(x), y)]− EB∗,β∗ [ℓ̃(gB∗,β∗(x), y)] (98)

For the first term, we have

sup
B,β
{EB∗,β∗ [ℓ(gB,β(x), y)]− EB∗,β∗ [ℓ̃(gB,β(x), y)]}

= sup
B,β
{EB∗,β∗((gB,β(x)− y)2 − L)1{(gB,β(x)−y)2≥L}}. (99)

Notice that

gB,β(x)− y = βTBT (BBT + Id)
−1x− y ∼ N (0, λ2), (100)

where

λ2 = V arB∗,β∗ [gB,β(x)− y]
= EB∗,β∗(βTBT (BBT + Id)

−1x− y)2

= ϵ2 + βTBT (BBT + Id)
−1(B∗B∗T + Id)(BB

T + Id)
−1Bβ

+ β∗Tβ∗ − 2βTBT (BBT + Id)
−1B∗β∗

≤ ϵ2 + β∗Tβ∗ + ∥(BBT + Id)
−1∥22 · ∥B∗B∗T + Id∥2 · ∥Bβ∥22

+ 2∥(BBT + Id)
−1∥2 · ∥B∗β∗∥2 · ∥Bβ∥2

≤ ϵ2 + β∗Tβ∗ +D4∥B∗B∗T + Id∥2 + 2D2∥B∗β∗∥2
≤ 1 +D2 +D4(D2 + 1) + 2D4

≤ c2. (101)

Therefore

sup
B,β
{EB∗,β∗((gB,β(x)− y)2 − L)1{(gB,β(x)−y)2≥L}}

= sup
λ

2

∫ +∞

√
L

1

λ
√
2π

(x2 − L)e−
x2

2λ2 dx

= 2 sup
λ

{
− λ√

2π
xe−

x2

2λ2

∣∣∣∣+∞

√
L

+ (λ2 − L)
∫ +∞

√
L

1

λ
√
2π
e−

x2

2λ2 dx

}
= 2 sup

λ

{√
L

2π
λe−

L
2λ2 + (λ2 − L)

∫ +∞

√
L

1

λ
√
2π
e−

x2

2λ2 dx

}
≤ 2 sup

λ

{√
L

2π
λe−

L
2λ2

}
(since L ≥ c2 ≥ λ2)

=

√
2Lc2
π

e−
L

2c2 . (102)

The last equation holds since λe−
L

2λ2 monotone increases w.r.t. λ, and λ ≤ √c1. Combining (98),
(99) and (102), we finish the proof.

Now we are ready to prove Theorem 4.3.
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Proof of Theorem 4.3. Note that l̃ is L−bounded. By Lemma B.7, we can apply Theorem 3.4 to l̃,
which gives

EB∗,β∗ [ℓ̃(gB̂,β̂(x), y)]− EB∗,β∗ [ℓ̃(gB∗,β∗(x), y)]

≤ 2max
B∈B

Rn

(
ℓ̃ ◦ GB,C

)
+ L ·

√
2

n
log

4

δ
+ 12κL ·

√
1

m
log

2N[ ](PX (B), 1/m)

δ
. (103)

Here κ = c1(σ
∗
max + 1)4/σ∗3

min is the transferability defined in Lemma 4.2.

By Lemma B.5, we have
logN[ ](P(B), 1/m) ≤ 4dr log(24mdr(D2 + 1)). (104)

Since l̃ is 2
√
L−Lipschitz w.r.t. the first argument, the contraction principle (Theoerem 4.12 in

Ledoux & Talagrand (2013)) gives

Rn

(
ℓ̃ ◦ GB,C

)
≤ 2
√
LRn (GB,C) . (105)

Therefore it remains to bound Rn (GB,C) . By Lemma B.6, for fixed B,

Rn (GB,C) = E{xj}nj=1
E{σj}nj=1

[sup
β

2

n

n∑
j=1

σjgB,β(xj)]

= E{xj}nj=1
E{σj}nj=1

[sup
β

2

n

n∑
j=1

σjβ
TBT (BBT + Id)

−1xj ]

≤ E{xj}nj=1
[
2D√
n
sup
j
∥BT (BBT + Id)

−1xj∥2] (By Lemma B.6, since ∥β∥2 ≤ D)

=
2D√
n
E{xj}nj=1

[sup
j
∥BT (BBT + Id)

−1xj∥2]. (106)

Note that xj ∼ N (0, B∗B∗T + Id). Therefore BT (BBT + Id)
−1xj ∼ N (0,Σ), where

Σ := BT (BBT + Id)
−1(B∗B∗T + Id)(BB

T + Id)
−1B. (107)

Thus, we have

Σ− 1
2BT (BBT + Id)

−1xj ∼ N (0, Ir). (108)

Let uj := Σ− 1
2BT (BBT + Id)

−1xj , then

E{xj}nj=1
[sup
j
∥BT (BBT + Id)

−1xj∥2]

= E{xj}nj=1
[sup
j
∥Σ 1

2uj∥2]

≤ E{xj}nj=1
[sup
j
∥Σ 1

2 ∥2∥uj∥2]

≤ sup ∥Σ 1
2 ∥2E{xj}nj=1

[sup
j
∥uj∥2]. (109)

By the Theorem 3.1.1 in Vershynin (2018), ∥uj∥−
√
r is c4−subGaussian for some absolute constant

c4. Therefore, for any t > 0,

eE[t supj ∥uj∥2] ≤ E[et supj ∥uj∥2 ] (by Jensen’s inequality)

≤
n∑
j=1

E[et∥uj∥2 ]

=

n∑
j=1

E[et∥uj∥2−
√
r]et

√
r

≤
n∑
j=1

e
t2

2 c4et
√
r

= net
√
r+ t2

2 c4 . (110)
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Taking log on both sides, we have

E[sup
j
∥uj∥2] ≤

log n

t
+
√
r +

t

2
c4, (111)

which holds for any t > 0. Take t =
√

2 logn
c4

, we get

E[sup
j
∥uj∥2] ≤

√
2c4 log n+

√
r. (112)

Note that

∥Σ∥2 = ∥BT (BBT + Id)
−1(B∗B∗T + Id)(BB

T + Id)
−1B∥2

≤ ∥B∥22 · ∥(BBT + Id)
−1∥22 · ∥B∗B∗T + Id∥

≤ (D2 + 1)2, (113)

i.e., sup ∥Σ 1
2 ∥2 ≤ (D2 + 1). Combining (106), (109), (112) and (113), we have

Rn (Gϕ,Ψ) ≤
2D√
n
E{xj}nj=1

[sup
j
∥BT (BBT + Id)

−1xj∥2]

≤ 2D√
n
sup ∥Σ 1

2 ∥2E{xj}nj=1
[sup
j
∥uj∥2]

≤ 2D√
n
(D2 + 1)(

√
2c4 log n+

√
r), (114)

which implies

max
ϕ∈Φ

Rn

(
ℓ̃ ◦ Gϕ,Ψ

)
≤ 2
√
Lmax
ϕinΦ

Rn (Gϕ,Ψ) ≤ 2
√
L
2D√
n
(D2 + 1)(

√
2c4 log n+

√
r) (115)

We are now ready to bound the excess risk. By Lemma B.8, we have

Errorℓ(B̂, β̂) ≤ EB∗,β∗ [ℓ̃(gB̂,β̂(x), y)]− EB∗,β∗ [ℓ̃(gB∗,β∗(x), y)] +

√
2Lc2
π

e−
L

2c2

≤ 2max
ϕ∈Φ

Rn

(
ℓ̃ ◦ Gϕ,Ψ

)
+ L ·

√
2

n
log

4

δ

+ 12κL ·
√

1

m
log

2N[ ](PX (B), 1/m)

δ
+

√
2Lc2
π

e−
L

2c2

≤ 4
√
L
2D√
n
(D2 + 1)(

√
2c4 log n+

√
r) + L ·

√
2

n
log

4

δ

+ 12κL

√
1

m
(4dr log(24mdr(D2 + 1)) + log(2/δ)) +

√
2Lc2
π

e−
L

2c2 , (116)

where the second inequality follows from (103) and the last inequality follows from (104), (115).
Here c4 is an absolute constant. Note that c2 = (D2 + 1)3 and L = c2 log n. Thus, we have

Errorℓ(B̂, β̂) ≤ 8
√
2c4L

√
1

n
+ 8L

√
r

n
+ L ·

√
2

n
log

4

δ

+ 12κL

√
1

m
(4dr log(24mdr(D2 + 1)) + log(2/δ)) + L

√
2

πn

≤ Õ
(
κL

√
dr

m
+ L

√
r

n

)
, (117)

where L = (D2 + 1)3 log n and κ = c1(σ
∗
max + 1)4/σ∗3

min for some absolute constants c1.
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B.5 FAST RATE FOR FACTOR MODELS WITH LINEAR REGRESSION AS DOWNSTREAM TASK

In this section, we provide a refined analysis for factor model, which implies a faster rate.

Theorem B.9 (Fast rate). Let B̂, β̂ be the outputs of Algorithm 1. Then, ifm ≳ (D2+1)2d log(1/δ),
n ≳ (D2 + 1)2r log(1/δ), for factor models with linear regression as downstream tasks, with
probability at least 1− δ, the excess risk can be bounded as follows,

Errorℓ(B̂, β̂) ≤ O
(
(D2 + 1)6(D4 + σ∗−4

min )
d log(1/δ)

m
+ (D2 + 1)2

r log(4/δ)

n

)
.

Here O(·) omits some absolute constants.

Proof of Theorem B.9. First notice that we can rewrite our model (without z) as

y = β∗TC∗x+ w, (118)

where β∗ ∈ Rr×1, C∗ = B∗T (B∗B∗T + Id)
−1 ∈ Rr×d, x ∼ N(0, B∗B∗T + Id), w ∼ N(0, ϵ2 +

∥β∗∥22 − β∗TB∗T (B∗B∗T + Id)
−1B∗β∗). Here w and x are independent. Therefore we can write

our data as

Y = XC∗Tβ∗ +W, (119)

where Y = (y1, · · · , yn)T ∈ Rn×1, X = (x1, · · · , xn)T ∈ Rn×d, W = (w1, · · · , wn)T ∈ Rn×1.

In the first step (MLE), we obtain an estimator B̂ and the corresponding estimator Ĉ = B̂T (B̂B̂T +

Id)
−1. Then our estimator β̂ for the second step (ERM) is given by

β̂ = argmin
β

∥Y −XĈTβ∥22

= ((XĈT )T (XĈT ))−1(XĈT )TY

= (ĈXTXĈT )−1ĈXTY. (120)

Then our risk is given by

Errorℓ(B̂, β̂) = EPB∗,β∗ (x,y)

[(
y − gB̂,β̂(x)

)2]− EPB∗,β∗ (x,y)

[(
y − gB∗,β∗(x)

)2]
= E[(β∗TC∗x+ w − β̂T B̂T (B̂B̂T + Id)

−1x)2]− E[w2]

= E[(β∗TC∗x− β̂T Ĉx)2]
= (β∗TC∗ − β̂T Ĉ)(B∗B∗T + Id)(β

∗TC∗ − β̂T Ĉ)T

≤ ∥B∗B∗T + Id∥2∥ĈT β̂ − C∗Tβ∗∥22 (121)

Our goal is to bound ∥ĈT β̂−C∗Tβ∗∥22. Consider the SVD of C∗T and ĈT , i.e., C∗T = U∗Λ∗V ∗T ,
ĈT = Û Λ̂V̂ T . Then, we have

ĈT β̂ − C∗Tβ∗

= ĈT (ĈXTXĈT )−1ĈXTY − C∗Tβ∗

= ĈT (ĈXTXĈT )−1ĈXT (XC∗Tβ∗ +W )− C∗Tβ∗

= (ĈT (ĈXTXĈT )−1ĈXTXC∗T − C∗T )β∗ + ĈT (ĈXTXĈT )−1ĈXTW

= (Û(ÛTXTXÛ)−1ÛTXTXU∗ − U∗)Λ∗V ∗Tβ∗ + Û(ÛTXTXÛ)−1ÛTXTW. (122)

Therefore

∥ĈT β̂ − C∗Tβ∗∥22 ≤ 2∥(Û(ÛTXTXÛ)−1ÛTXTXU∗ − U∗)∥22∥Λ∗∥22∥β∗∥22
+ 2∥Û(ÛTXTXÛ)−1ÛTXTW∥22 (123)

We give two lemmas for bounding the related terms. The first lemma considers the bias term:

Lemma B.10. Let Σ := B∗B∗T + Id. If n ≳ ∥Σ∥2r log(1/δ), then with probability at least 1− δ,

∥(Û(ÛTXTXÛ)−1ÛTXTXU∗ − U∗)∥22 ≤ O(∥Σ∥2∆2), (124)

where ∆ = dist(Û , U∗) := ∥Û ÛT − U∗U∗T ∥.
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The second lemma considers the variance term:

Lemma B.11. Let Σ := B∗B∗T + Id. If n ≳ ∥Σ∥2r log(1/δ), then with probability at least 1− δ,

∥Û(ÛTXTXÛ)−1ÛTXTW∥22 ≤ O
(
σ2r log(4/δ)

n

)
, (125)

where σ2 := E(w2) = ϵ2 + ∥β∗∥22 − β∗TB∗T (B∗B∗T + Id)
−1B∗β∗ is the variance of w.

Using this two lemmas together with the decomposition (123), we have

∥ĈT β̂ − C∗Tβ∗∥22 ≤ O
(
∥β∗∥2∥Λ∗∥2∥Σ∥2∆2 +

σ2r log(4/δ)

n

)
. (126)

Now it remains to control ∆, which is related to the estimation error of the first step (MLE). The
following lemma gives an upper bound for ∆.

Lemma B.12. If m ≳ ∥Σ∥2d log(1/δ), then with probability at least 1− δ,

∆2 ≤ O
(
∥Σ∥2 d log(1/δ)

m
λ−2
r (C∗TC∗)

)
, (127)

where λr(C∗TC∗) is the r-th (smallest) nonzero eigenvalue of C∗TC∗.

By Lemma B.10, B.11, B.12, we have

Errorℓ(B̂, β̂) ≤ ∥Σ∥∥ĈT β̂ − C∗Tβ∗∥22

≤ O(∥β∗∥2∥Λ∗∥2∥Σ∥3∆2 + ∥Σ∥σ
2r log(4/δ)

n
).

≤ O(∥β∗∥2∥Λ∗∥2∥Σ∥5λ−2
r (C∗TC∗)

d log(1/δ)

m
+ ∥Σ∥σ

2r log(4/δ)

n
).

(128)

Using the assumptions that ∥β∗∥ ≤ D and ∥B∗∥ ≤ D, we can bound these terms by D and
quantities related to ground truth. First notice that Σ have eigenvalues σ∗2

1 + 1 ≥ σ∗2
2 + 1 ≥ · · · ≥

σ∗2
r + 1 ≥ 1 = · · · = 1, where σ∗

i are singular values of B∗, therefore ∥Σ∥ ≤ D2 + 1. Also, since

C∗TC∗ = (B∗B∗T + Id)
−1B∗B∗T (B∗B∗T + Id)

−1

= (B∗B∗T + Id)
−1 − (B∗B∗T + Id)

−2

= Σ−1 − Σ−2, (129)

we know that C∗TC∗ has r nonzero eigenvalues {(σ∗
i + σ∗−1

i )−2}ri=1. Therefore ∥Λ∗∥2 =
∥C∗TC∗∥ ≤ 1/4,

λ−2
r (C∗TC∗) ≤ max((σ∗

1 + σ∗−1
1 )4, (σ∗

r + σ∗−1
r )4)

≤ O(D4 + σ∗−4
r ). (130)

For σ2, we have

σ2 = ϵ2 + ∥β∗∥22 − β∗TB∗T (B∗B∗T + Id)
−1B∗β∗

≤ 1 + ∥β∗∥2∥Ir −B∗T (B∗B∗T + Id)
−1B∗∥

≤ 1 +D2. (131)

Combine all this bounds, we have

Errorℓ(B̂, β̂) ≤ O(∥β∗∥2∥Λ∗∥2∥Σ∥5λ−2
r (C∗TC∗)

d log(1/δ)

m
+ ∥Σ∥σ

2r log(4/δ)

n
).

≤ O((D2 + 1)6(D4 + σ∗−4
min)

d log(1/δ)

m
+ (D2 + 1)2

r log(4/δ)

n
). (132)
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In the sequel, we give the proofs of Lemma B.10, B.11 and B.12. We first prove some additional
technical lemmas. The following lemma, which is a simple corollary of Tripuraneni et al. (2021)
Lemma 20, shows the concentration property of empirical covariance matrix.
Lemma B.13. Let Σ ∈ Rd be a positive definite matrix. Let {xi}ni=1 be d−dimensional Gaussian
random vectors i.i.d. sample from N(0,Σ), X = (x1, · · · , xn)T ∈ Rn×d. Then for any A,B ∈
Rd×r, we have with probability at least 1− δ

∥AT (X
TX

n
)B −ATΣB∥2 ≤ O(∥A∥∥B∥∥Σ∥(

√
r

n
+
r

n
+

√
log(1/δ)

n
+

log(1/δ)

n
). (133)

Proof. We write the SVD of A and B: A = U1Λ1V
T
1 , B = U2Λ2V

T
2 , where U1, U2 ∈ Rd×r,

Λ1,Λ2, V1, V2 ∈ Rr×r. Then

∥AT (X
TX

n
)B −ATΣB∥2 = ∥V1Λ1U

T
1 (
XTX

n
)U2Λ2V

T
2 − V1Λ1U

T
1 ΣU2Λ2V

T
2 ∥2

≤ ∥V1Λ1∥∥UT1 (
XTX

n
)U2 − UT1 ΣU2∥∥Λ2V

T
2 ∥

≤ ∥A∥∥B∥∥UT1 (
XTX

n
)U2 − UT1 ΣU2∥. (134)

Now since U1, U2 ∈ Rd×r are projection matrices, we can apply Tripuraneni et al. (2021) Lemma
20, therefore

∥UT1 (
XTX

n
)U2 − UT1 ΣU2∥ ≤ O(∥Σ∥(

√
r

n
+
r

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)) (135)

which gives what we want.

The following lemma is a basic matrix perturbation result (see Tripuraneni et al. (2021) Lemma 25).
Lemma B.14. Let A be a positive definite matrix and E another matrix which satisfies ∥EA−1∥ ≤
1
4 , then F := (A+ E)−1 −A−1 satisfies ∥F∥ ≤ 4

3∥A
−1∥∥EA−1∥.

With these two technical lemmas, we are able to prove Lemma B.10, B.11.

Proof of Lemma B.10. We consider Û ∈ Rd×r and ÛT⊥ ∈ Rd×(d−r) be orthonormal projection
matrices spanning orthogonal subspaces which are rank r and rank d − r respectively, so that
range(Û) ⊕ range(Û⊥) = Rd. Then ∆ = dist(Û , U∗) = ∥ÛT⊥U∗∥2 (see Chen et al. (2021)
Lemma 2.5). Notice that Id = Û ÛT + Û⊥Û

T
⊥ , we have

Û(ÛTXTXÛ)−1ÛTXTXU∗ − U∗

= Û(ÛTXTXÛ)−1ÛTXTX(Û ÛT + Û⊥Û
T
⊥)U∗ − U∗

= Û(ÛTXTXÛ)−1ÛTXTXÛÛTU∗ + Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U

∗ − U∗

= Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U

∗ + Û ÛTU∗ − U∗

= Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U

∗ − Û⊥Û
T
⊥U

∗ (136)
Therefore
∥Û(ÛTXTXÛ)−1ÛTXTXU∗ − U∗∥22 ≤ 2∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û

T
⊥U

∗∥22 + 2∥Û⊥Û
T
⊥U

∗∥22.
(137)

For the second term,
∥Û⊥Û

T
⊥U

∗∥22 ≤ ∥Û⊥|2∥ÛT⊥U∗∥2 ≤ ∆2. (138)
For the first term,
∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û

T
⊥U

∗∥

= ∥Û(ÛT
XTX

n
Û)−1ÛT

XTX

n
Û⊥Û

T
⊥U

∗∥

= ∥Û((ÛTΣÛ)−1 + F )(ÛTΣÛ⊥Û
T
⊥U

∗ + E1)∥
≤ ∥(ÛTΣÛ)−1(ÛTΣÛ⊥Û

T
⊥U

∗)∥+ ∥(ÛTΣÛ)−1E1∥+ ∥FÛTΣÛ⊥Û
T
⊥U

∗∥+ ∥FE1∥, (139)
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where E1 = ÛT X
TX
n Û⊥Û

T
⊥U

∗− ÛTΣÛ⊥Û
T
⊥U

∗, F = (ÛT X
TX
n Û)−1− (ÛTΣÛ)−1. In order to

bound ∥F∥, let E = ÛT X
TX
n Û − ÛTΣÛ , then by Lemma B.13, with probability at least 1− δ,

∥E∥ ≤ O(∥Σ∥(
√
r

n
+
r

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)). (140)

Therefore, since λmin(Σ) = 1,

∥E(ÛTΣÛ)−1∥ ≤ ∥E∥∥(ÛTΣÛ)−1∥
≤ ∥E∥λmin(Σ)−1

≤ O(∥Σ∥(
√
r

n
+
r

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)) (141)

Notice that n ≳ ∥Σ∥2r log(1/δ) implies
√

r
n +

r
n +

√
log(1/δ)

n + log(1/δ)
n ≲ ∥Σ∥−1. Thus, we show

that when n is large enough, we have ∥E(ÛTΣÛ)−1∥ ≤ 1
4 . Therefore we can apply Lemma B.14,

which gives

∥F∥ ≤ 4

3
∥E(ÛTΣÛ)−1∥∥(ÛTΣÛ)−1∥

≤ 4

3
× 1

4
∥(ÛTΣÛ)−1∥

≤ 1

3
. (142)

As for ∥E1∥, directly applying Lemma B.13, using n ≳ ∥Σ∥2r log(1/δ), we get

∥E1∥ ≤ O(∥Σ∥∥Û⊥Û
T
⊥U

∗∥(
√
r

n
+
r

n
+

√
log(1/δ)

n
+

log(1/δ)

n
))

≤ O(∥Σ∥∆∥Σ∥−1)

≤ O(∆) (143)
Combining (139),(142)and(143), we have

∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U

∗∥
≤ ∥(ÛTΣÛ)−1(ÛTΣÛ⊥Û

T
⊥U

∗)∥+ ∥(ÛTΣÛ)−1E1∥+ ∥FÛTΣÛ⊥Û
T
⊥U

∗∥+ ∥FE1∥
≤ ∥(ÛTΣÛ)−1∥∥(ÛTΣÛ⊥Û

T
⊥U

∗)∥+ ∥(ÛTΣÛ)−1∥∥E1∥+ ∥F∥∥ÛTΣÛ⊥Û
T
⊥U

∗∥+ ∥F∥∥E1∥
≤ λmin(Σ)−1∥Σ∥∥ÛT⊥U∗∥+ λmin(Σ)

−1∥E1∥+ ∥F∥∥Σ∥∥ÛT⊥U∗∥+ ∥F∥∥E1∥

≤ λmin(Σ)−1∥Σ∥∆+ λmin(Σ)
−1O(λmin(Σ)∆) +

1

3
λmin(Σ)

−1∥Σ∥∆+
1

3
λmin(Σ)

−1O(λmin(Σ)∆)

≤ O(∥Σ∥∆) (144)
Finally, combining (137),(138) and (144), we get

∥(Û(ÛTXTXÛ)−1ÛTXTXU∗ − U∗)∥22 ≤ O(∥Σ∥2∆2), (145)
with probability at least 1− δ, which is what we want.

Proof of Lemma B.11.

∥Û(ÛTXTXÛ)−1ÛTXTW∥22 ≤ ∥(ÛTXTXÛ)−1ÛTXTW∥22
= ((ÛTXTXÛ)−1ÛTXTW )T ((ÛTXTXÛ)−1ÛTXTW )

=WT (
1

n

XÛ√
n
(ÛT

XTX

n
Û)−2 Û

TXT

√
n

)W. (146)

LetA = 1
n
XÛ√
n
(ÛT X

TX
n Û)−2 ÛTXT√

n
, W = σV , then V ∼ N(0, In). By Hanson-Wright inequality

(see Vershynin (2018) Theorem 6.2.1),

P(|V TAV − E[V TAV ]| ≥ t) ≤ 2 exp(−cmin(
t2

∥A∥2F
,

t

∥A∥2
)). (147)
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Hence with probability at least 1− δ,

V TAV ≤ E[V TAV ] +O(∥A∥F

√
log

2

δ
) +O(∥A∥2 log

2

δ
). (148)

Notice that E[V TAV ] = Tr(A), therefore it remains to bound Tr(A), ∥A∥F and ∥A∥2. If we define
B = XÛ√

n
∈ Rn×r, then A = 1

nB(BTB)−2BT . Therefore

Tr(A) = Tr(
1

n
B(BTB)−2BT )

=
1

n
Tr((BTB)−2BTB)

=
1

n
Tr((BTB)−1)

≤ r

n
∥(BTB)−1∥2 (149)

Let the SVD of B be B = PMQT , where P ∈ Rn×r, M,Q ∈ Rr×r, then

∥A∥2 =
1

n
∥B(BTB)−2BT ∥2

=
1

n
∥PMQT (QM2QT )−2QMPT ∥2

=
1

n
∥PM−2PT ∥2

≤ 1

n
∥M−2∥2

=
1

n
∥(BTB)−1∥2 (150)

Also notice that A is rank r, therefore ∥A∥F ≤
√
r∥A∥2. Thus it remains to bound ∥(BTB)−1∥2 =

∥(ÛT X
TX
n Û)−1∥2. Let F = (ÛT X

TX
n Û)−1 − (ÛTΣÛ)−1. Recall (142), which states that with

probability at least 1− δ, we have ∥F∥ ≤ 1
3λmin(Σ)

−1. Therefore

∥(ÛT X
TX

n
Û)−1∥ = ∥(ÛTΣÛ)−1 + F∥

≤ ∥(ÛTΣÛ)−1∥+ ∥F∥
≤ O(λmin(Σ)−1). (151)

Thus ∥A∥ ≤ O( 1nλmin(Σ)
−1), ∥A∥F ≤ O(

√
r
n λmin(Σ)

−1), Tr(A) ≤ O( rnλmin(Σ)
−1). There-

fore with probability at least 1− 2δ,

V TAV ≤ E[V TAV ] +O(∥A∥F

√
log

2

δ
) +O(∥A∥2 log

2

δ
)

≤ O( r
n
λmin(Σ)

−1) +O(
√
r

n
λmin(Σ)

−1

√
log

2

δ
) +O( 1

n
λmin(Σ)

−1 log
2

δ
)

≤ O( r
n
λmin(Σ)

−1 log
2

δ
)

= O( r
n
log

2

δ
). (152)

The last line holds since λmin(Σ) = 1. Recall

∥Û(ÛTXTXÛ)−1ÛTXTW∥22 =WTAW = σ2V TAV, (153)

combining this with the above bound for V TAV yields our desired result.

Finally we prove Lemma B.12 in the following.

35



Published as a conference paper at ICLR 2024

Proof of Lemma B.12. In the first step, we have m unlabeled data {xi}mi=1 i.i.d. sample from
N(0,Σ). Let Σ̂ = 1

m

∑m
i=1 xix

T
i be the empirical covariance matrix. Then by Lemma B.13, with

probability at least 1− δ,

∥Σ− Σ̂∥ ≤ O(∥Σ∥(
√
d

m
+
d

m
+

√
log(1/δ)

m
+

log(1/δ)

m
)) (154)

We claim that

∥B̂B̂T − (Σ̂− Id)∥2 ≤ ∥Σ̂− Σ∥, (155)

and the proof of this claim will be at the end of this section. With the claim,

∥B̂B̂T −B∗B∗T ∥ = ∥B̂B̂T − (Σ̂− Id) + (Σ̂− Id)− (Σ− Id)∥
≤ ∥B̂B̂T − (Σ̂− Id)∥+ ∥Σ− Σ̂∥
≤ 2∥Σ− Σ̂∥. (156)

Notice that

C∗TC∗ = (B∗B∗T + Id)
−1B∗B∗T (B∗B∗T + Id)

−1

= (B∗B∗T + Id)
−1 − (B∗B∗T + Id)

−2 (157)

Similarly

ĈT Ĉ = (B̂B̂T + Id)
−1 − (B̂B̂T + Id)

−2. (158)

Let E2 = (B̂B̂T + Id)− (B∗B∗T + Id), F2 = (B̂B̂T + Id)
−1 − (B∗B∗T + Id)

−1. Then

∥E2∥ ≤ 2∥Σ− Σ̂∥ ≤ O(∥Σ∥(
√
d

m
+
d

m
+

√
log(1/δ)

m
+

log(1/δ)

m
)). (159)

Therefore when m ≳ ∥Σ∥2d log(1/δ), ∥E2∥ ≤ O(∥Σ∥
√

d log(1/δ)
m ), ∥E2Σ

−1∥ ≤ ∥E2∥∥Σ−1∥ ≤
1/4. Then we can apply Lemma B.14, which gives

∥F2∥ ≤
4

3
∥Σ−1∥∥E2Σ

−1∥

≤ 4

3
∥Σ−1∥2∥E2∥

≤ O(λ−2
min(Σ)∥Σ∥

√
d log(1/δ)

m
)

= O(∥Σ∥
√
d log(1/δ)

m
). (160)

The last line holds since λmin(Σ) = 1. Thus

∥C∗TC∗ − ĈT Ĉ∥ = ∥(Σ−1 + F2)− (Σ−1 + F2)
2 − (Σ−1 − Σ−2)∥

= ∥F2 − Σ−1F2 − F2Σ
−1 − F 2

2 ∥
≤ ∥F2∥+ 2∥Σ−1∥∥F2∥+ ∥F2∥2

≤ O(∥Σ∥
√
d log(1/δ)

m
). (161)

Therefore by Davis-Kahan theorem,

∆ = dist(U∗, Û) ≤ O(λ−1
r (C∗TC∗)∥C∗TC∗ − ĈT Ĉ∥). (162)

Combining the above three inequalities, we have

∆2 ≤ O(∥Σ∥2 d log(1/δ)
m

λ−2
r (C∗TC∗)). (163)
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Finally we will need to prove the claim (155). Notice that the MLE estimator B̂ is given by

B̂ = argmax
B∈Rd×r

m∑
i=1

pB(xi)

= argmax
B∈Rd×r

(− log det(BBT + Id)− Tr(Σ̂(BBT + Id)
−1))

= argmin
B∈Rd×r

(log det(BBT + Id) + Tr(Σ̂(BBT + Id)
−1)) (164)

Let Σ̂ = Û Λ̂ÛT and (BBT + Id) = UΛUT , where Û and U are orthogonal matrices, Λ̂ =

diag(λ̂1, · · · , λ̂d), Λ = diag(λ1, · · · , λd) and λ̂1 ≥ . . . ≥ λ̂d, λ1 ≥ . . . ≥ λd. Since rank(BBT ) ≤
r, we have λr+1 = . . . λd = 1. By Ruhe’s trace inequality (see P341 of Marshall et al. (2011)), we
have

Tr(Σ̂(BBT + Id)
−1)) ≥

d∑
j=1

λ−1
j λ̂j , (165)

and the equality holds only when the two matrices have simultaneous ordered spectral decomposi-
tion, i.e., U = Û . Therefore

min
B∈Rd×r

(log det(BBT + Id) + Tr(Σ̂(BBT + Id)
−1))

= min
{λj}dj=1

d∑
j=1

(log λj + λ−1
j λ̂j) subject to λ1 ≥ · · · ≥ λr ≥ λr+1 = · · · = λd = 1 (166)

and the minimum is achieved when λj = λ̂j , for j = 1, · · · , r. Therefore the MLE estimator B̂
satisfies (B̂B̂T + Id) = ÛΛÛT where Λ = diag(λ̂1, · · · , λ̂r, 1, · · · , 1). Thus, we have B̂B̂T =

Û(Λ− Id)ÛT , which implies

∥B̂B̂T − (Σ̂− Id)∥2
= ∥Û(Λ− Id)ÛT − Û(Λ̂− Id)ÛT ∥
≤ ∥Λ− Λ̂∥
= max
j=r+1,··· ,d

|λ̂j − 1|

≤ max
j=1,··· ,d

|λ̂j − λj(Σ)|

≤ ∥Σ̂− Σ∥. (167)
Here the last inequality follows from Weyl’s Theorem. Thus, we prove claim (155).

C PROOFS FOR SECTION 5

In Section C.1, we show that GMM with classification as downstream tasks has c2-transferability
for some absolute constants c2 (Lemma 5.2). In Section C.2 and Section C.3, we prove two lemmas
that will be used in the proof of Theorem 5.3. To be specific, in Section C.2, we upper bound the
bracketing number of the set P(U) by using ϵ-discretization (Lemma C.5). In Section C.3, we prove
Lemma C.6, which will be used to upper bound the Rademacher complexity of the function class
ℓ ◦ Gu,Ψ. Finally, in Section C.4, we prove Theorem 5.3.

C.1 PROOFS FOR LEMMA 5.2

Before going to the proof of this theorem, we first state some basic definitions and useful lemmas.
We define the balls of radius 8

√
d logK around each u∗i and ui as

Ω∗
i :=

{
x ∈ Rd | ∥x− u∗i ∥ ≤ 8

√
d logK

}
(168)

Ωi :=
{
x ∈ Rd | ∥x− ui∥ ≤ 8

√
d logK

}
(169)

We denote the p.d.f of N (ui, Id) and N (u∗i , Id) by Pi and P ∗
i respectively.
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Lemma C.1. If

dTV (pu(x), pu∗(x)) ≤ 1

4K
, (170)

then there exists a permutation of u such that ∥u∗i − ui∥ ≤ 16
√
d logK holds for every 1 ≤ i ≤ K.

Before proving Lemma C.1, we first state a useful result of Gaussian norm concentration.
Lemma C.2. Let X ∼ N (0, Id), then

P(∥X∥ ≥ t) ≤ 2 exp(− t2

16d
). (171)

Proof. This is a simple application of Jin et al. (2019) Lemma 1.3. Notice that X is 1-subGaussian,
therefore taking σ =

√
d in Jin et al. (2019) Lemma 1.3 yields what we want.

Proof of Lemma C.1. We prove by contradiction. If the statement is not true, since the separation
satisfies 100

√
d logK ≥ 2 · 16

√
d logK, there must exist a u∗i (W.L.O.G., denote it by u∗1), such

that ∥u∗1 − uj∥ > 16
√
d logK for any 1 ≤ j ≤ K. Then

2dTV (pu(x), pu∗(x)) =

∫
Rd

∣∣∣∣ 1K
K∑
i=1

P ∗
i −

1

K

K∑
i=1

Pi

∣∣∣∣dx
≥
∫
Ω∗

1

∣∣∣∣ 1K
K∑
i=1

P ∗
i −

1

K

K∑
i=1

Pi

∣∣∣∣dx
≥
∫
Ω∗

1

1

K

K∑
i=1

P ∗
i dx−

∫
Ω∗

1

1

K

K∑
i=1

Pidx

≥
∫
Ω∗

1

1

K
P ∗
1 dx−

1

K

K∑
i=1

∫
Ω∗

1

Pidx

=
1

K
P(N (u∗1, Id) ∈ Ω∗

1)−
1

K

K∑
i=1

P(N (ui, Id) ∈ Ω∗
1) (172)

Since ∥u∗1 − ui∥ > 16
√
d logK, therefore Ω∗

1 ∩ Ωi = ∅, which implies (by Lemma C.2)

P(N (ui, Id) ∈ Ω∗
1) ≤ P(N (ui, Id) ∈ ΩC

i ) ≤ 2 exp(− (8
√
d logK)2

16d
) = 2e−4 logK (173)

Also, by Lemma C.2,

P(N (u∗1, Id) ∈ Ω∗
1) ≥ 1− 2 exp(− (8

√
d logK)2

16d
) = 1− 2e−4 logK (174)

Therefore,

2dTV (pu(x), pu∗(x)) ≥ 1

K
P(N (u∗1, Id) ∈ Ω∗

1)−
1

K

K∑
i=1

P(N (ui, Id) ∈ Ω∗
1)

≥ 1

K
(1− 2e−4 logK)− 1

K

K∑
i=1

2e−4 logK

=
1

K
− (2 +

2

K
)e−4 logK

≥ 1

K
− 3e−4 logK

=
1

K
− 3(

1

K
)4

=
1

2K
(175)

which is a contradiction.
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We then state the core lemmas of proving Lemma 5.2.
Lemma C.3. If for any i, ∥ui − u∗i ∥ ≤ 16

√
d logK, then for Ω∗

1 (corresponding results hold for
each Ω∗

i ), ∫
Ω∗

1

|P ∗
1 − P1|dx ≥ c1 min {∥u∗1 − u1∥, 1} , (176)

where c1 = 1
200 .

Lemma C.4. If for any i, ∥ui − u∗i ∥ ≤ 16
√
d logK, then for Ω∗

1 (corresponding results hold for
each Ω∗

i ), then for every j ̸= 1,∫
Ω∗

1

|P ∗
j − Pj |dx ≤

c2
K

min
{
∥u∗j − uj∥, 1

}
, (177)

where c2 = 2688
(
1
2

)69
.

With these lemmas, we are now able to prove Lemma 5.2.

Proof of Lemma 5.2. By Lemma C.1, there exists a permutation of u such that ∥u∗i − ui∥ ≤
16
√
d logK holds for every 1 ≤ i ≤ K. Therefore Lemma C.3, C.4 can be applied. Notice

that ∫
Ω∗

1

|pu(x)− pu∗(x)|dx =

∫
Ω∗

1

∣∣∣∣ 1K
K∑
i=1

P ∗
i −

1

K

K∑
i=1

Pi

∣∣∣∣dx
≥
∫
Ω∗

1

∣∣∣∣ 1KP ∗
1 −

1

K
Pi

∣∣∣∣dx− ∫
Ω∗

1

∣∣∣∣ 1K
K∑
i=2

P ∗
i −

1

K

K∑
i=2

Pi

∣∣∣∣dx
≥ 1

K

∫
Ω∗

1

|P ∗
1 − Pi|dx−

1

K

K∑
i=2

∫
Ω∗

1

|P ∗
i − Pi|dx

≥ c1
K

min {∥u∗1 − u1∥, 1} −
c2
K2

K∑
i=2

min {∥u∗i − ui∥, 1} , (178)

where the last line comes from Lemma C.3, C.4.

Sum up all the equations above for corresponding 1 ≤ i ≤ K, since {Ω∗
i }Ki=1 are disjoint, we have

dTV (pu(x), pu∗(x)) =
1

2

∫
Rd
|pu(x)− pu∗(x)|dx

≥ 1

2

K∑
i=1

∫
Ω∗
i

|pu(x)− pu∗(x)|dx

≥ 1

2

(
c1
K
− (K − 1)c2

K2

) K∑
i=1

min {∥u∗i − ui∥, 1}

≥ 1

2
(c1 − c2) ·

1

K

K∑
i=1

min {∥u∗i − ui∥, 1}

=
1

2

(
1

200
− 2688

(
1

2

)69
)
· 1
K

K∑
i=1

min {∥u∗i − ui∥, 1}

≥ 1

500
· 1
K

K∑
i=1

min {∥u∗i − ui∥, 1} . (179)

In the end, we refer to Lemma B.1, which states that

dTV(N (u∗i , Id),N (ui, Id)) ≤ min(∥u∗i − ui∥, 1). (180)
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Take σ(u) = {ui}Ki=1,

dTV

(
pσ(u)(x, z), pu∗(x, z)

)
=

K∑
i=1

P(z = i)dTV(N (u∗i , Id),N (ui, Id))

≤
K∑
i=1

1

K
min(∥u∗i − ui∥, 1)

≤ 500dTV (pu(x), pu∗(x)) . (181)

Finally we state the proof of Lemma C.3 and C.4.

Proof of Lemma C.3. W.L.O.G.,let u∗1 = 0, ∆ := ∥u1∥ ≤ 16
√
d logK, and u1 =

(−∆, 0, 0, · · · , 0). The densities are given by

P ∗
1 (x) = (

1√
2π

)de−
1
2∥x∥

2

(182)

P1(x) = (
1√
2π

)de−
1
2∥x−u1∥2

(183)

We consider an area S ⊂ Ω∗
1:

S :=

{
x = (x1, · · · , xd)

∣∣∣∣x ∈ Ω∗
1, x1 ≥

1

10

}
(184)

Then for any x ∈ S, ∥x∥2 ≤ ∥x− u1∥2, which implies P ∗
1 (x) ≥ P1(x). Therefore∫

Ω∗
1

|P ∗
1 − P1|dx ≥

∫
S

|P ∗
1 − P1|dx

=

∫
S

(
1√
2π

)d
(
e−

1
2∥x∥

2

− e− 1
2∥x−u1∥2

)
dx

=

∫
S

(
1√
2π

)de−
1
2∥x∥

2
(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
dx

≥ min
x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)∫

S

(
1√
2π

)de−
1
2∥x∥

2

dx

= min
x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
P(N (0, Id) ∈ S) (185)

For minx∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)

, notice that for any x = (x1, · · · , xd) ∈ S,

1

2
∥x∥2 − 1

2
∥x− u1∥2 = −x1∆−

1

2
∆2 ≤ − 1

10
∆ (186)

Thus

min
x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
≥ 1− e− 1

10∆ (187)

Take c3 = 1
20 . We claim that

min
x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
≥ c3 min{∆, 1}. (188)

In fact, when 0 ≤ ∆ ≤ 1,

min
x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
≥ 1− e− 1

10∆ ≥ 1

20
∆. (189)
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The last inequality holds, since if we let f(x) = e−
1
10x + 1

20x− 1, Then f(0) = 0,

f ′(x) = − 1

10
e−

1
10x +

1

20
≤ 0 (190)

for any x ∈ [0, 10 log 2]. Thus for any ∆ ∈ [0, 1],

e−
1
10∆ +

1

20
∆− 1 = f(∆) ≤ f(0) = 0. (191)

When 1 ≤ ∆ ≤ 16
√
d logK,

min
x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
≥ 1− e− 1

10∆ ≥ 1− e− 1
10 ≥ 1

20
· 1 (192)

Therefore we have shown that

min
x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
≥ c3 min{∆, 1}. (193)

where c3 = 1
20 .

As for P(N (0, Id) ∈ S), take

S′ :=

{
x = (x1, · · · , xd)

∣∣∣∣2√d log 2 ≥ x1 ≥ 1

10
, x22 + · · ·+ x2d ≤ 60d logK

}
. (194)

Then S′ ⊂ S. Therefore

P(N (0, Id) ∈ S) ≥ P(N (0, Id) ∈ S′)

= P(2
√
d log 2 ≥ x1 ≥

1

10
, x22 + · · ·+ x2d ≤ 60d logK,x ∼ N (0, Id))

= P
(
2
√
d log 2 ≥ N (0, 1) ≥ 1

10

)
P
(
∥N (0, Id−1)∥2 ≤ 60d logK

)
≥ P

(
2
√

log 2 ≥ N (0, 1) ≥ 1

10

)
P
(
∥N (0, Id−1)∥2 ≤ 60(d− 1) log 2

)
> P

(
2
√

log 2 ≥ N (0, 1) ≥ 1

10

)
· (1− 2e−2) (by Lemma C.2)

>
1

4
· (1− 2e−2)

>
1

10
(195)

Combine all these results, we have∫
Ω∗

1

|P ∗
1 − P1|dx ≥ min

x∈S

(
1− e 1

2∥x∥
2− 1

2∥x−u1∥2
)
P(N (0, Id) ∈ S)

≥ c3 min{∆, 1} · 1
10

=
1

200
min{∥u∗1 − u1∥, 1} (196)

Proof of Lemma C.4. For any i ̸= 1,∫
Ω∗

1

|P ∗
i − Pi|dx =

∫
Ω∗

1

(
1√
2π

)d|e− 1
2∥x−u

∗
i ∥

2

− e− 1
2∥x−ui∥

2

|dx. (197)

Notice that if we denote a(x) := ∥x − u∗i ∥, δ(x) := ∥x − u∗i ∥ − ∥x − ui∥ ,∆ := ∥ui − u∗i ∥, then
|δ(x)| ≤ ∆ ≤ 16

√
d logK, and for any x ∈ Ω∗

1, a(x) ≥ 92
√
d logK (due to separation condition).
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Therefore

max
x∈Ω∗

1

∣∣∣∣e− 1
2∥x−u

∗
i ∥

2

− e− 1
2∥x−ui∥

2

∣∣∣∣
= max
x∈Ω∗

1

∣∣∣∣e− 1
2a(x)

2

− e− 1
2 (a(x)−δ(x))

2

∣∣∣∣
≤ max

{∣∣∣∣e− 1
2a(x)

2

− e− 1
2 (a(x)−δ(x))

2

∣∣∣∣
∣∣∣∣∣a(x) ≥ 92

√
d logK, |δ(x)| ≤ ∆

}
≤ max
a≥92

√
d logK

{max(|e− a2

2 − e−
(a−∆)2

2 |, |e− a2

2 − e−
(a+∆)2

2 |)}

= max
a≥92

√
d logK

{max(e−
(a−∆)2

2 − e− a2

2 , e−
a2

2 − e−
(a+∆)2

2 )}

≤ max( max
a≥92

√
d logK

e−
(a−∆)2

2 − e− a2

2 , max
a≥92

√
d logK

e−
a2

2 − e−
(a+∆)2

2 ))

≤ max( max
a≥76

√
d logK

e−
a2

2 − e−
(a+∆)2

2 , max
a≥92

√
d logK

e−
a2

2 − e−
(a+∆)2

2 )). (198)

The last inequality holds since ∆ ≤ 16
√
d logK. For fixed ∆, let f(a) = e−

a2

2 − e−
(a+∆)2

2 . Then

f ′(a) = −ae− a2

2 + (a+∆)e−
(a+∆)2

2 (199)

We first show that f ′(a) ≤ 0, for any a ≥ 76
√
d logK. Notice that

f ′(a) = −ae− a2

2 + (a+∆)e−
(a+∆)2

2 ≤ 0

⇐⇒ (a+∆)e−
(a+∆)2

2 ≤ ae− a2

2

⇐⇒ 1 +
∆

a
≤ ea∆+ 1

2∆
2

(200)

The last statement is true because

ea∆+ 1
2∆

2

≥ 1 + a∆+
1

2
∆2 ≥ 1 +

∆

a
(201)

when a ≥ 76
√
d logK > 1.

Since f ′(a) ≤ 0 for any a ≥ 76
√
d logK, we have

f(a) ≤ f(76
√
d logK)

= exp(−1

2
(76
√
d logK)2)− exp(−1

2
(76
√
d logK +∆)2)

= e−
1
2 (76

√
d logK)2(1− e−76

√
d logK∆− 1

2∆
2

)

≤ e− 1
2 (76

√
d logK)2(76

√
d logK∆+

1

2
∆2)

≤ e− 1
2 (76

√
d logK)2 · 84

√
d logK∆ (since ∆ ≤ 16

√
d logK). (202)

Which shows

max
a≥76

√
d logK

e−
a2

2 − e−
(a+∆)2

2 ≤ e− 1
2 (76

√
d logK)2 · 84

√
d logK∆ (203)

Similarly

max
a≥92

√
d logK

e−
a2

2 − e−
(a+∆)2

2 ≤ e− 1
2 (92

√
d logK)2 · 100

√
d logK∆ (204)

Therefore

max
x∈Ω∗

1

∣∣∣∣e− 1
2∥x−u

∗
i ∥

2

− e− 1
2∥x−ui∥

2

∣∣∣∣ ≤ e− 1
2 (76

√
d logK)2 · 84

√
d logK∆ ≤ c4 min {∥u∗i − ui∥, 1}

(205)
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where c4 = e−
1
2 (76

√
d logK)2 · 1344d logK (Since ∆ ≤ 16

√
d logKmin {∆, 1}). Notice that

c4 = e−
1
2 (76

√
d logK)2 · 1344d logK

≤ e− 1
2 (76

√
d logK)2 · 1344kdK

≤ e− 1
2 (76

√
d logK)2 · 1344k2d

= 1344e−2886d logK

≤ 1344e−
1
2 (70

√
d logK)2 (206)

W.L.O.G., let u∗1 = 0, and define u′ = (50
√
d logK, 0, · · · , 0), then

∫
Ω∗

1

|P ∗
i − Pi|dx =

∫
Ω∗

1

(
1√
2π

)d|e− 1
2∥x−u

∗
i ∥

2

− e− 1
2∥x−ui∥

2

|dx

≤
∫
Ω∗

1

(
1√
2π

)d max
x∈Ω∗

1

|e− 1
2∥x−u

∗
i ∥

2

− e− 1
2∥x−ui∥

2

|dx

≤
∫
Ω∗

1

(
1√
2π

)d1344e−
1
2 (70

√
d logK)2 min {∥u∗i − ui∥, 1} dx

= min {∥u∗i − ui∥, 1}
∫
Ω∗

1

(
1√
2π

)d1344e−
1
2 (70

√
d logK)2dx

≤ 1344min {∥u∗i − ui∥, 1}
∫
Ω∗

1

(
1√
2π

)de−
1
2∥x−u

′∥2

dx

≤ 1344min {∥u∗i − ui∥, 1}P(N (u′, Id) ∈ Ω∗
1)

≤ 1344min {∥u∗i − ui∥, 1}P(∥N (u′, Id)− u′∥ ≥ 34
√
d logK)

≤ 1344min {∥u∗i − ui∥, 1} · 2 exp(−
(34
√
d logK)2

16d
) (by Lemma C.2)

≤ 1344min {∥u∗i − ui∥, 1} · 2 exp(−70 logK)

= 2688min {∥u∗i − ui∥, 1}
(

1

K

)70

≤ 2688

(
1

2

)69(
1

K

)
min {∥u∗i − ui∥, 1} (207)

C.2 BRACKETING NUMBER

We upper bound the bracketing number of PX (U) as follows.
Lemma C.5. Let

PX (U) :=
{ K∑
i=1

1

K
N (ui, Id)

∣∣∣∣u = {ui}Ki=1 ∈ U
}
.

We assume there exists D > 0 such that for any u = {ui}Ki=1 ∈ U , it holds that

∥ui∥2 ≤ D
√
d logK, ∀i ∈ [K].

Then the entropy can be bounded as follows,

logN
(
PX (U), 1/m

)
≤ 2dK log(6mdKD).

Proof of Lemma C.5. First of all, we consider a set of standard Gaussian distribution

PX (A) :=
{
pa(x) =

1√
2π
e−

∥x−a∥22
2

∣∣∣∣ a ∈ A},
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where A = {a ∈ Rd | ∥a∥2 ≤ D
√
d logK}. Our goal is to find a 1/m-bracket N[ ](PX (A), 1/m)

of PX (A). In other words, for any pa(x) ∈ PX (A), we need to define p̄a(x) ∈ N[ ](PX (A), 1/m)
such that

• p̄a(x) ≥ pa(x), ∀x ∈ Rd

•
∫
|p̄a(x)− pa(x)| dx ≤ 1/m.

We consider p̄a(x) of the form

p̄a(x) =
1√
2π
e−

c1∥x−ā∥22
2 +c2 .

We then specify ā ∈ Rd, c1 ∈ R and c2 ∈ R. Let a = (a1, . . . , ad) and ϵ > 0 be a parameter that
will be chosen later. If ai ∈ [kϵ, (k+1)ϵ) for some k ∈ Z, we define āi := kϵ and ā := (ā1, . . . , ād),
which implies

∥a− ā∥22 ≤ dϵ2. (208)

Note that p̄a(x) ≥ pa(x) holds for any x ∈ Rd if and only if

(c1 − 1)

∥∥∥∥x+
a− c1ā
c1 − 1

∥∥∥∥2
2

+
c1

1− c1
∥a− ā∥22 ≤ 2c2, ∀x ∈ Rd.

Let c1 = 1− ϵ. Then, we have p̄a(x) ≥ pa(x) if and only if

−ϵ
∥∥∥∥x+

a− c1ā
c1 − 1

∥∥∥∥2
2

+
1− ϵ
ϵ
∥a− ā∥22 ≤ 2c2, ∀x ∈ Rd.

Note that

−ϵ
∥∥∥∥x+

a− c1ā
c1 − 1

∥∥∥∥2
2

+
1− ϵ
ϵ
∥a− ā∥22 ≤

1− ϵ
ϵ
∥a− ā∥22 ≤ d(1− ϵ)ϵ,

where the last inequality follows from (208). Thus, by choosing c2 = d(1 − ϵ)ϵ/2, we obtain
p̄a(x) ≥ pa(x) for any x ∈ Rd. Note that∫
|p̄a(x)− pa(x)| dx =

1
√
c1
· ec2 − 1 =

e
d(1−ϵ)ϵ

2

√
1− ϵ

− 1 ≤
(
1 + d(1− ϵ)ϵ

)
· (1 + ϵ)− 1 ≤ (1 + 2d)ϵ.

Here the first inequality follows from the fact that ex ≤ 1 + 2x and 1√
1−x ≤ 1 + x for any

0 < x < 1/2. Let (1 + 2d)ϵ = m−1. It then holds that∫
|p̄a(x)− pa(x)| dx ≤ (1 + 2d)ϵ =

1

m
.

Recall that for any a ∈ A, it holds that ∥a∥2 ≤ D
√
d logK. Thus, we have

N[ ](PX (A), 1/m) ≤
(
2D
√
d logK

ϵ

)d
=
(
2mD(1 + 2d)

√
d logK

)d
.

Then, we consider a set of Gaussian mixture model

PX (U) :=
{ K∑
i=1

1

K
N (ui, Id)

∣∣∣∣u = {ui}Ki=1 ∈ U
}
,

where U = {{ui}Ki=1 | ∥ui∥2 ≤ D
√
d logK, ∀i ∈ [K]}. Our goal is to find a 1/m-bracket

N (PX (U), 1/m) of PX (U). For any pu(x) ∈ PX (U), it holds that

pu(x) =

K∑
i=1

1

K
pui(x),

where pui(x) ∈ PX (A). Note that for any i ∈ [K], there exists p̄ui(x) ∈ N[ ](PX (A), 1/m), such
that
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• p̄ui(x) ≥ pui(x), ∀x ∈ Rd

•
∫
|p̄ui(x)− pui(x)| dx ≤ 1/m.

We define

p̄u(x) =

K∑
i=1

1

K
p̄ui(x).

It then holds that

p̄u(x) =

K∑
i=1

1

K
p̄ui(x) ≥

K∑
i=1

1

K
pui(x) = pu(x), ∀x ∈ Rd

and ∫
|p̄u(x)− pu(x)| dx ≤

K∑
i=1

1

K

∫
|p̄ui(x)− pui(x)| dx ≤

K∑
i=1

1

mK
=

1

m
.

Thus, we obtain that

N[ ](PX (U), 1/m) ≤
(
N[ ](PX (A), 1/m)

)K
≤
(
2mD(1 + 2d)

√
d logK

)dK
,

which implies that

logN[ ](PX (U), 1/m) ≤ dK log
(
2mD(1 + 2d)

√
d logK

)
≤ 2dK log(6mdKD).

C.3 RADEMACHER COMPLEXITY

Given labeled data {xj , yj}nj=1 and the pretrained û, the function class{
(1gû,ψ(x1 )̸=y1 , . . . ,1gû,ψ(xn )̸=yn)

∣∣ψ ∈ Ψ
}

is a finite function class, whose Rademacher complexity can be bounded by the following lemma.
Lemma C.6. Let A = {a1, . . . , aN} be a finite set of vectors in Rn. Then, the Rademacher com-
plexity can be bounded as follows,

Rn(A) ≤ max
a∈A
∥a∥2 ·

2
√
2 logN

n
.

Proof. Note that for any λ > 0

Rn(A) = E
[
sup
a∈A

2

n

n∑
i=1

σiai

]
≤ 1

λ
logE

[
esupa∈A

2λ
n

∑n
i=1 σiai

]
≤ 1

λ
log
∑
a∈A

E
[
e

2λ
n

∑n
i=1 σiai

]
=

1

λ
log
∑
a∈A

n∏
i=1

E
[
e

2λ
n σiai

]
, (209)

where the first inequality follows from Jensen’s inequality. Recall that σi is a Rademacher random
variable. Thus, we have

E
[
e

2λ
n σiai

]
=

1

2
e

2λ
n ai +

1

2
e−

2λ
n ai ≤ e

2λ2a2i
n2 , (210)

where the last inequality follows from the fact that (ex + e−x)/2 ≤ ex
2/2. By (209) and (210), we

have

Rn(A) ≤
1

λ
log
∑
a∈A

e
2λ2∥a∥2

n2 ≤ 1

λ
log |A|e

2λ2

n2 ·maxa∈A ∥a∥2

=
1

λ
logN +

2λ

n2
·max
a∈A
∥a∥2. (211)

Let λ =
√
n logN/2maxa∈A ∥a∥2. We obtain that

Rn(A) ≤ max
a∈A
∥a∥ · 2

√
2 logN

n
.
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C.4 PROOFS FOR THEOREM 5.3

In the sequel, we prove Theorem 5.3.

Proof. Let Φ = U and Ψ be the set of 2K classifications. Recall that the loss function is defined as
ℓ(x, y) = 1{x ̸=y}, which is upper bound by 1. Let m = Ω̃(dK3). By Theorem 3.3 and Lemma C.5,
it holds that

dTV

(
Pϕ̂(x),Pϕ∗(x)

)
≲

√
1

m
log

N[ ](PX (Φ), 1/m)

δ
≲

√
dK

m
log

mdKD

δ
≲

1

K
.

Then, by Lemma 5.2, Assumption 3.2 holds for Gaussian mixture models. By Theorem 3.4, with
probability at least 1− δ, we have the following excess risk bound,

Errorℓ(ϕ̂, ψ̂) ≤ 2max
ϕ∈Φ

Rn(ℓ ◦ Gϕ,Ψ) +
√

2

n
log

4

δ
+ 12κ ·

√
1

m
log

2N(PX (Φ), 1/m)

δ
,

where κ = c2 is some absolute constants that represents the transferability of the model. By Lemma
C.5, we further have

Errorℓ(ϕ̂, ψ̂) ≤ 2max
ϕ∈Φ

Rn(ℓ ◦ Gϕ,Ψ) +
√

2

n
log

4

δ
+ 12κ ·

√
2dK

m
log

12mdKD

δ
. (212)

For any ϕ ∈ Φ, we have

Rn(ℓ ◦ Gϕ,Ψ) = E
[
sup
ψ∈Ψ

1

n

n∑
i=1

σi1{gϕ,ψ(xi )̸=yi}

]
. (213)

Note that |Ψ| = 2K . By Lemma C.6, it holds for any ϕ ∈ Φ that

Rn(ℓ ◦ Gϕ,Ψ) ≤
√
n · 2

√
2 log 2K

n
= 2

√
2K log 2

n
. (214)

By (212) and (214), we have

Errorℓ(ϕ̂, ψ̂) ≤ 4

√
2K log 2

n
+

√
2

n
log

4

δ
+ 12κ ·

√
2dK

m
log

12mdKD

δ

= O
(√

K log 1
δ

n
+ κ

√
dK log mdKD

δ

m

)
= Õ

(√
K

n
+ κ

√
dK

m

)
,

where κ = c2 is some absolute constants that represents the transferability of the model.

Thus, we prove Theorem 5.3.

D PROOFS FOR SECTION 6

In Section D.1, we show that contrastive learning with linear regression as downstream tasks is
κ−1-weakly-informative by proving Lemma 6.1. In Section D.2, we prove Theorem 6.2.

D.1 PROOFS FOR LEMMA 6.1

Recall that in the setting of contrastive learning, we assume that x and x′ are sampled independently
from the same distribution P(x). And we assume the label t that captures the similarity between x
and x′ satisfies

P(t = 1 |x, x′) = 1

1 + e−fθ∗ (x)T fθ∗ (x′)
,

P(t = −1 |x, x′) = 1

1 + efθ∗ (x)T fθ∗ (x′)
.

Lemma 6.1 directly follows from the following lemma.
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Lemma D.1. There exists O ∈ Rr×r, OTO = OOT = Ir such that

dTV

(
POfθ (x, z),Pfθ∗ (x, z)

)
≤ c ·

√
1

σmin(E[fθ∗(x)fθ∗(x)T ])
·H
(
Pfθ (x, x′, t),Pfθ∗ (x, x

′, t)
)
.

Here c is some absolute constants.

We first prove the following lemma, which is the core of the proof of Lemma D.1.
Lemma D.2. Suppose that E[fθ(x)fθ∗(x)T ] = E[fθ∗(x)fθ(x)T ] are positive semi-definite matri-
ces. Then we have

E
[(
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2] ≥ (2
√
2− 2)σmin

(
E[fθ∗(x)fθ∗(x)T ]

)
· E[∥fθ∗(x)− fθ(x)∥22].

Proof of Lemma D.2. For notation simplicity, we denote ∆(x) := fθ∗(x)−fθ(x). It then holds that

E
[(
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2]
= E

[(
fθ∗(x)

T∆(x′) + ∆(x)T fθ∗(x
′)−∆(x)T∆(x′)

)2]
= E

[(
∆(x)T∆(x′)

)2 − 2
√
2∆(x)T∆(x′)fθ∗(x

′)T∆(x) + 2fθ∗(x)
T∆(x′)fθ∗(x

′)T∆(x)
]

+ (4− 2
√
2)E[fθ(x′)T∆(x)∆(x)T fθ∗(x

′)] + (2
√
2− 2)E[fθ∗(x′)T∆(x)∆(x)T fθ∗(x

′)].
(215)

For the first term of (215), we have

E
[(
∆(x)T∆(x′)

)2 − 2
√
2∆(x)T∆(x′)fθ∗(x

′)T∆(x) + 2fθ∗(x)
T∆(x′)fθ∗(x

′)T∆(x)
]

= Tr
(
E[∆(x′)∆(x′)T∆(x)∆(x)T − 2

√
2∆(x′)fθ∗(x

′)T∆(x)∆(x)T + 2∆(x′)fθ∗(x
′)T∆(x)fθ∗(x)

T ]
)

= Tr
((

E[∆(x)∆(x)T ]
)2 − 2

√
2E[∆(x)fθ∗(x)

T ] · E[∆(x)∆(x)T ] + 2
(
E[∆(x)fθ∗(x)

T ]
)2)

= Tr
((

E[∆(x)∆(x)T ]−
√
2E[∆(x)fθ∗(x)

T ]
)2)

, (216)

where the second equation follows from our assumption that x, x′ are i.i.d. Note that
E[fθ(x)fθ∗(x)T ] = E[fθ∗(x)fθ(x)T ]. Thus, we obtain(

E[∆(x)∆(x)T ]−
√
2E[∆(x)fθ∗(x)

T ]
)T

= E[∆(x)∆(x)T ]−
√
2E[fθ∗(x)∆(x)T ]

= E[∆(x)∆(x)T ]−
√
2E[∆(x)fθ∗(x)

T ], (217)

which implies that E[∆(x)∆(x)T ]−
√
2E[∆(x)fθ∗(x)

T ] is symmetric. It then holds that

E
[(
∆(x)T∆(x′)

)2 − 2
√
2∆(x)T∆(x′)fθ∗(x

′)∆(x) + 2fθ∗(x)
T∆(x′)fθ∗(x

′)T∆(x)
]

= Tr
((

E[∆(x)∆(x)T ]−
√
2E[∆(x)fθ∗(x)

T ]
)2) ≥ 0. (218)

For the second term of (215), we have

E[fθ(x′)T∆(x)∆(x)T fθ∗(x
′)] = Tr

(
E[fθ∗(x′)fθ(x′)T ] · E[∆(x)∆(x)T ]

)
≥ 0, (219)

where the inequality follows from the fact E[fθ∗(x′)fθ(x′)T ] ≽ 0 and E[∆(x)∆(x)T ] ≽ 0.

For the third term of (215), we have

E[fθ∗(x′)T∆(x)∆(x)T fθ∗(x
′)] = Tr

(
E[fθ∗(x)fθ∗(x)T ] · E[∆(x)∆(x)T ]

)
≥ σmin

(
E[fθ∗(x)fθ∗(x)T ]

)
Tr
(
E[∆(x)∆(x)T ]

)
= σmin

(
E[fθ∗(x)fθ∗(x)T ]

)
E[∥∆(x)∥22]. (220)

Combining (215), (218), (219) and (220), we have

E
[(
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2] ≥ (2
√
2− 2)σmin

(
E[fθ∗(x)fθ∗(x)T ]

)
E[∥∆(x)∥22] (221)
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With Lemma D.2, we prove Lemma D.1 in the following.

Proof of Lemma D.1. We consider the singular value decomposition (SVD) of E[fθ(x)fθ∗(x)T ] =
U1Σ1V

T
1 and E[fθ∗(x)fθ(x)T ] = (E[fθ(x)fθ∗(x)T ])T = V1Σ1U

T
1 . We define O := V1U

T
1 ∈

Rr×r, which satisfies OTO = OOT = Ir. It then holds that

E[Ofθ(x)fθ∗(x)T ] = E
[
fθ∗(x)

(
Ofθ(x)

)T ]
= V1Σ1V

T
1 , (222)

which are positive semi-definite matrices. By Lemma D.2, we have

E
[(
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2]
≥ (2
√
2− 2)σmin

(
E[fθ∗(x)fθ∗(x)T ]

)
· E[∥fθ∗(x)−Ofθ(x)∥22]. (223)

For Hellinger distance, we have

2H2
(
Pfθ (x, x′, t),Pfθ∗ (x, x

′, t)
)

=

∫ (√
pfθ (x, x

′, t)−
√
pfθ∗ (x, x

′, t)
)2
dtdxdx′

=

∫ (√
pfθ (t = 1 |x, x′)−

√
pfθ∗ (t = 1 |x, x′)

)2
p(x, x′) dxdx′

+

∫ (√
pfθ (t = 0 |x, x′)−

√
pfθ∗ (t = 0 |x, x′)

)2
p(x, x′) dxdx′ (224)

For the first term of (224), we have∫ (√
pfθ (t = 1 |x, x′)−

√
pfθ∗ (t = 1 |x, x′)

)2
p(x, x′) dxdx′

=

∫ (√
h
(
fθ(x)T fθ(x′)

)
−
√
h
(
fθ∗(x)T fθ∗(x′)

)2
p(x, x′) dxdx′, (225)

where

h(a) :=
1

1 + e−a
. (226)

By Cauchy-Schwartz inequality, we have |fθ(x)T fθ(x′)| ≤ ∥fθ(x)∥2∥fθ(x′)∥2 ≤ 1. Note that for
any a, b ∈ [−1, 1], we have(√

h(a)−
√
h(b)

)2
=

(
h(a)− h(b)

)2(√
h(a) +

√
h(b)

)2 ≥ 1

4

(
h(a)− h(b)

)2
=

1

4
h′(ξ)2(a− b)2 ≥ 1

2 + e+ e−1
(a− b)2.

(227)

Thus, it holds that∫ (√
pfθ (t = 1 |x, x′)−

√
pfθ∗ (t = 1 |x, x′)

)2
p(x, x′) dxdx′

≥ 1

2 + e+ e−1

∫ (
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2
p(x, x′) dxdx′

=
1

2 + e+ e−1
E
[(
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2]
. (228)

Similarly, For the second term of (224), we have∫ (√
pfθ (t = 0 |x, x′)−

√
pfθ∗ (t = 0 |x, x′)

)2
p(x, x′) dxdx′

≥ 1

2 + e+ e−1
E
[(
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2]
(229)
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Combining (224), (228) and (229), we have

H2
(
Pfθ (x, x′, t),Pfθ∗ (x, x

′, t)
)
≥ 1

2 + e+ e−1
E
[(
fθ(x)

T fθ(x
′)− fθ∗(x)T fθ∗(x′)

)2]
. (230)

We choose O ∈ Rr×r that satisfies (223). For the TV distance, we have

dTV

(
POfθ (x, z),Pfθ∗ (x, z)

)
=

1

2

∫
|pOfθ (z |x)− pfθ∗ (z |x)|p(x) dx. (231)

Note that z |x ∼ N (fθ(x), Ir). By Lemma B.1, we have

dTV

(
POfθ (x, z),Pfθ∗ (x, z)

)
=

1

2

∫
|pOfθ (z |x)− pfθ∗ (z |x)|p(x) dx

≤ 1

2

∫
min{1, ∥Ofθ(x)− fθ∗(x)∥2}p(x) dx

≤ 1

2
min

{
1,

∫
∥Ofθ(x)− fθ∗(x)∥2p(x) dx

}
=

1

2
min

{
1,E[∥Ofθ(x)− fθ∗(x)∥2]

}
. (232)

Combining (223), (230) and (232), we show that

dTV

(
POfθ (x, z),Pfθ∗ (x, z)

)
≤ 1

2
E[∥Ofθ(x)− fθ∗(x)∥2]

≤ 1

2

√
E[∥Ofθ(x)− fθ∗(x)∥22]

≤ 1

2

√
1

(2
√
2− 2)σmin

(
E[fθ∗(x)fθ∗(x)T ]

)E[(fθ(x)T fθ(x′)− fθ∗(x)T fθ∗(x′))2]
≤ 1

2

√
2 + e+ e−1

(2
√
2− 2)σmin

(
E[fθ∗(x)fθ∗(x)T ]

)H(Pfθ (x, x′, t),Pfθ∗ (x, x′, t)). (233)

Thus, we prove Lemma D.1.

Lemma D.1 directly implies Lemma 6.1.

Proof of Lemma 6.1. For any θ ∈ Θ, we choose O ∈ Rr×r that satisfies Lemma D.1. It then holds
that

dTV

(
Pfθ,OT β∗(x, y),Pfθ∗ ,β∗(x, y)

)
= dTV

(
POfθ,β∗(x, y),Pfθ∗ ,β∗(x, y)

)
≤ dTV

(
POfθ (x, z),Pfθ∗ (x, z)

)
≤ c ·

√
1

σmin(E[fθ∗(x)fθ∗(x)T ])
·H
(
Pfθ (x, x′, t),Pfθ∗ (x, x

′, t)
)
.

Thus, we prove that the model is κ−1-weakly-informative, where

κ = c ·

√
1

σmin(E[fθ∗(x)fθ∗(x)T ])
. (234)

Here c is some absolute constants.
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D.2 PROOFS FOR THEOREM 6.2

In this section, we prove Theorem 6.2. Suppose that θ̂, β̂ are the outputs of Algorithm 1. Let ℓ be
the squared loss and ℓ̃ be its truncation with truncation level L. The optimal predictor defined in (1)
has the following closed form solution

gθ,β(x) = Eθ,β [y |x] = βT fθ(x). (235)

We have the following guarantees.

Lemma D.3. Let the truncation level L = 36(D2 + 1) log n. It then holds that

sup
θ,β

{
Eθ∗,β∗

[
ℓ
(
gθ,β(x), y

)]
− Eθ∗,β∗

[
ℓ̃
(
gθ,β(x), y

)]}
≤
√

18(D2 + 1) log n

πn
. (236)

Proof of Lemma D.3. Note that(
gθ,β(x)− y

)∣∣x =
(
βT fθ(x)− y

)∣∣x ∼ N (βT fθ(x)− β∗T fθ∗(x), 1
)

(237)

We denote by c(x) := βT fθ(x)− β∗T fθ∗(x). It holds that |c(x)| ≤ 2D. Thus, it holds for any θ, β
that

Eθ∗,β∗
[
ℓ
(
gθ,β(x), y

)
− ℓ̃
(
gθ,β(x), y

) ∣∣x]
= Eθ∗,β∗

[((
gθ,β(x)− y

)2 − L)1{(gθ,β(x)−y)2>L}
∣∣x]

=

∫ +∞

√
L

(u2 − L) · 1√
2π
e−

(
u−c(x)

)2
2 du

=

∫ +∞

√
L−c(x)

(
(u+ c(x))2 − L

)
· 1√

2π
e−

u2

2 du

=

√
L+ c(x)√

2π
e−

(
√
L−c(x)

)2
2 +

1 + c(x)2 − L√
2π

∫ +∞

√
L−c(x)

e−
u2

2 du

≤
√
L+ c(x)√

2π
e−

(
√
L−c(x)

)2
2 (L ≥ 4D2 + 1 ≥ c(x)2 + 1)

≤ 2(
√
L− c(x))√

2π
e−

(
√
L−c(x)

)2
2 (L ≥ 36D2 ≥ (3c(x))2)

≤ 2(
√
L− 2D)√
2π

e−

(
√
L−2D

)2
2

≤
√
L√
2π
e−

L
8 (
√
L− 2D ≥

√
L

2
) (238)

As a result, we show that

sup
θ,β

{
Eθ∗,β∗

[
ℓ
(
gθ,β(x), y

)]
− Eθ∗,β∗

[
ℓ̃
(
gθ,β(x), y

)]}
≤ Eθ∗,β∗

[
sup
θ,β

Eθ∗,β∗
[
ℓ
(
gθ,β(x), y

)
− ℓ̃
(
gθ,β(x), y

) ∣∣x]]
≤
√
L√
2π
e−

L
8

≤
√

18(D2 + 1) log n

πn
. (L = 36(D2 + 1) log n) (239)
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Lemma D.4. Suppose that θ̂, β̂ are the outputs of Algorithm 1. Let ℓ̃ be the truncated squared loss
with truncation level L. Then there exists an absolute constant c such that with probability at least
1− δ that

Eθ∗,β∗
[
ℓ̃
(
gθ̂,β̂(x), y

)]
− Eθ∗,β∗

[
ℓ̃
(
gθ∗,β∗(x), y

)]
≤ cκL ·

√
1

m
log

N[ ]

(
PX×S(Fθ), 1/m2

)
δ

+ cL

√
log 1/δ

n
+ c
√
L sup
θ∈Θ

Rn(Gθ,B), (240)

where

κ = c3

√
1

σmin

(
E[fθ∗(x)fθ∗(x)T ]

)
for some absolute constants c3. Here Rn(Gθ,B) is the Rademacher complexity defined as

Rn(Gθ,B) = E
[
sup
β∈B

2

n

n∑
i=1

σigθ,β(xi)

]
, (241)

where σi are Rademacher random variables.

Proof of Lemma D.4. With Lemma B.7 and Lemma 6.1 in hand, Lemma D.4 follows directly from
Theorem 3.7 and the fact that ℓ̃ is 2

√
L-Lipschitz.

With Lemma D.3 and Lemma D.4 in hand, we are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Note that

Errorℓ(θ̂, β̂) = Eθ∗,β∗
[
ℓ
(
gθ̂,β̂(x), y

)]
− Eθ∗,β∗

[
ℓ
(
gθ∗,β∗(x), y

)]
= Eθ∗,β∗

[
ℓ
(
gθ̂,β̂(x), y

)]
− Eθ∗,β∗

[
ℓ̃
(
gθ̂,β̂(x), y

)]
+ Eθ∗,β∗

[
ℓ̃
(
gθ̂,β̂(x), y

)]
− Eθ∗,β∗

[
ℓ̃
(
gθ∗,β∗(x), y

)]
+ Eθ∗,β∗

[
ℓ̃
(
gθ∗,β∗(x), y

)]
− Eθ∗,β∗

[
ℓ
(
gθ∗,β∗(x), y

)]
≤ sup

θ,β

{
Eθ∗,β∗

[
ℓ
(
gθ,β(x), y

)]
− Eθ∗,β∗

[
ℓ̃
(
gθ,β(x), y

)]}
+ Eθ∗,β∗

[
ℓ̃
(
gθ̂,β̂(x), y

)]
− Eθ∗,β∗

[
ℓ̃
(
gθ∗,β∗(x), y

)]
. (242)

Let the truncation level be L = 36(D2 + 1) log n. By Lemma D.3 and Lemma D.4, we have

Error(θ̂, β̂)

≤ cκL ·

√
1

m
log

N[ ]

(
PX×S(Fθ), 1/m2

)
δ

+ cL

√
log 1/δ

n
+ c
√
L sup
θ∈Θ

Rn(Gθ,B)

+

√
18(D2 + 1) log n

πn
. (243)

For the Rademacher complexity, we have

Rn(Gθ,B) = E
[
sup
β∈B

2

n

n∑
i=1

σigθ,β(xi)

]

= E
[
sup
β∈B

2

n

n∑
i=1

σiβ
T fθ(xi)

]
≤ 2D√

n
, (244)
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where the last inequality follows from Lemma B.6. Combining (243) and (244), we have

Error(θ̂, β̂)

≤ cκL ·

√
1

m
log

N[ ]

(
PX×S(Fθ), 1/m2

)
δ

+ cL

√
log 1/δ

n
+ 2cD

√
L

n

+

√
18(D2 + 1) log n

πn

= Õ
(
κL

√
logN[ ]

(
PX×S(Fθ), 1/m2

)
m

+ L

√
1

n

)
, (245)

where L = 36(D2 + 1) log n and

κ = c3

√
1

σmin

(
E[fθ∗(x)fθ∗(x)T ]

)
for some absolute constants c3.

E FAILURE OF TWO-PHASE MLE

For simplicity, in the sequel, we consider the case where no side information is available, i.e., we
have access to unlabeled data {xi}mi=1 and labeled data {xj , yj}nj=1. Another natural scheme is to
use a two-phase MLE (Algorithm 2). To be specific, in the first phase, we use MLE to estimate ϕ∗
based on the unlabeled data {xi}mi=1. In the second phase, we use MLE again to estimate ψ∗ based
on pretrained ϕ̂ and the labeled data {xj , yj}nj=1.

Algorithm 2 Two-phase MLE
1: Input: {xi}mi=1, {(xj , yj)}nj=1

2: Use unlabeled data {xi}mi=1 to learn ϕ̂ via MLE:

ϕ̂← argmax
ϕ∈Φ

m∑
i=1

log pϕ(xi).

3: Fix ϕ̂ and use labeled data {(xj , yj)}nj=1 to learn ψ̂ via MLE:

ψ̂ ← argmax
ψ∈Ψ

n∑
j=1

log pϕ̂,ψ(xj , yj).

4: Output: ϕ̂ and ψ̂.

Note that the two-phase MLE does not directly associate the learning process with the loss func-
tion. Thus, the only way to evaluate the excess risk is to study the total variation distance between
Pϕ̂,ψ̂(x, y) and Pϕ∗,ψ∗(x, y). In the pretraining phase, MLE guarantees that the estimator Pϕ̂ is
close to Pϕ∗ in the sense of total variation distance (Theorem 3.3). However, it’s still possible that
for some x, Pϕ̂(x) = 0 while Pϕ∗(x) ̸= 0. This phenomenon may result in log pϕ̂,ψ∗(xj , yj) = −∞
for some labeled data in the learning of downstream tasks, which will dramatically influence the be-
haviour of MLE for estimating ψ∗ and finally lead to the failure of the second phase. Inspired by
this idea, we give the following theorem.
Theorem E.1. There exists Φ,Ψ, ϕ∗ ∈ Φ, ψ∗ ∈ Ψ, such that for any constant c > 0, there exists
m,n ≥ c such that with probability at least 1

2 (1− e
−1)e−1, we have

dTV

(
Pϕ̂,ψ̂(x, y),Pϕ∗,ψ∗(x, y)

)
≥ 1

8
,

where ϕ̂ and ψ̂ are the outputs of Algorithm 2.
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Proof of Theorem E.1. We construct the counter example as follows. Let (x, y, z) ∈ N+×N+×N+.
We assume that the true parameter (ϕ∗, ψ∗) = (ϕ1, ψ1), which satisfies

Pϕ1
(x = k, z = k) =

1

2k
∀k ∈ N+, Pϕ1

(x = m, z = n) = 0 ∀m ̸= n,

Pψ1
(y = k|z = k) = 1, ∀k ∈ N+.

For i ≥ 2, we define Pϕi as follows,

Pϕi(x = 1, z = 1) =
1

2
+

1

2i
, Pϕi(x = k, z = k) =

1

2k
∀k /∈ {1, i}

Pϕi(x = m, z = n) = 0 ∀m ̸= n orm = n = i.

We define Pψ2 as follows, for any k ∈ N+,

Pψ2(y = 1|z = k) =
1

4
, Pψ2(y = 2|z = k) =

1

2

Pψ2(y = j|z = k) =
1

2j
∀j /∈ {1, 2}.

We denote Φ := {ϕi | i ∈ N+} and Ψ := {ψ1, ψ2}. In the sequel, we show that Algorithm 2 fails
on this case. Recall that we denote by {xi}mi=1 and {xj , yj}nj=1 the unlabeled data and labeled data,
respectively. We have the following observations:

• We define i := min{k ̸= 1 | k /∈ {xi}mi=1}. If we have 1 ∈ {xi}mi=1, then the maximizer of
likelihood function ϕ̂ satisfies ϕ̂ = ϕi.

• Suppose that ϕ̂ = ϕi for some i ̸= 1 and i ∈ {yj}nj=1. We then have ψ̂ = ψ2.

We define the event E := {∃i ̸= 1, such that ϕ̂ = ϕi and i ∈ {yj}nj=1}. Under event E , we have
ϕ̂ = ϕi for some i ̸= 1 and ψ̂ = ψ2, which implies

dTV

(
Pϕ̂,ψ̂(x, y),Pϕ∗,ψ∗(x, y)

)
=

1

2

∫ ∫
|pϕi,ψ2(x, y)− pϕ1,ψ1(x, y)| dxdy

≥ 1

2

∫ ∣∣∣∣ ∫ pϕi,ψ2(x, y)− pϕ1,ψ1(x, y) dx

∣∣∣∣ dy
=

1

2

∫
|pϕi,ψ2(y)− pϕ1,ψ1(y)| dy

≥ 1

2
|Pϕi,ψ2

(y = 2)− Pϕ1,ψ1
(y = 2)| = 1

8
(246)

In the following, we only need to lower bound the probability of event E . Note that

P(E) = P
(
∪∞i=2

{
ϕ̂ = ϕ, i ∈ {yj}nj=1

})
=

∞∑
i=2

P
(
ϕ̂ = ϕi, i ∈ {yj}nj=1

)
=

∞∑
i=2

P(ϕ̂ = ϕi) · P
(
i ∈ {yj}nj=1

)
=

∞∑
i=2

(
1−

(
1− 1

2i

)n)
· P(ϕ̂ = ϕi). (247)

Thus, it holds for any L ≥ 2 that

P(E) ≥
L∑
i=2

(
1−

(
1− 1

2i

)n)
· P(ϕ̂ = ϕi)

≥
(
1−

(
1− 1

2L

)n)
· P
(
∃2 ≤ i ≤ L, ϕ̂ = ϕi

)
. (248)
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Note that

P
(
∃2 ≤ i ≤ L, ϕ̂ = ϕi

)
= P

({
1 ∈ {xi}mi=1

}
∩
{
∃2 ≤ i ≤ L, i /∈ {xi}mi=1

})
≥ P

({
1 ∈ {xi}mi=1

}
∩
{
L /∈ {xi}mi=1

})
≥ P

(
1 ∈ {xi}mi=1

)
+ P

(
L /∈ {xi}mi=1

)
− 1

= P
(
L /∈ {xi}mi=1

)
− P

(
1 /∈ {xi}mi=1

)
=

(
1− 1

2L

)m
− 1

2m
. (249)

Combining (248) and (249), we have for any L ≥ 2

P(E) ≥
(
1−

(
1− 1

2L

)n)
·
((

1− 1

2L

)m
− 1

2m

)
. (250)

Setting 2L = m = n, we obtain that

P(E) ≥
(
1−

(
1− 1

m

)m)
·
((

1− 1

m

)m
− 1

2m

)
→ (1− e−1) · e−1, as m→∞. (251)

Thus, for any c > 0, there exists m,n ≥ c such that

P(E) ≥ 1

2
(1− e−1) · e−1.
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