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Abstract

Protein Language Models (pLM) have proven ver-
satile tools in protein design, but their internal
workings remain difficult to interpret. Here, we
implement a mechanistic interpretability frame-
work and apply it in two scenarios. First, by train-
ing sparse autoencoders (SAEs) on the model acti-
vations, we identify and annotate features relevant
to enzyme variant activity through a two-stage
process involving candidate selection and causal
intervention. During sequence generation, we
steer the model by clamping or ablating key SAE
features, which increases the predicted enzyme
activity. Additionally, we implement a interven-
tion strategy: MSA-steering, which projects SAE
latents in the multiple sequence alignment dimen-
sionality of our case study enzyme. Second, we
compare pLM checkpoints before and after three
rounds of Reinforcement Learning (RL) by exam-
ining sequence regions with high divergence of
per-token log-likelihood, detecting the residues
that most align with higher predicted affinities.
Overall, we present a strategy to apply SAE for
protein engineering.

1. Introduction

End-to-end differentiable models are complex nonlinear
functions f : X — Y that map an input space X to an
output space Y. These mapping functions are essentially
black boxes, making it difficult to explain 2ow and why a
model ends up making a particular decision. Protein lan-
guage models (pLMs), are no exception, but despite their
hermetic nature, pLMs must have nevertheless learned some
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complex sequence-to-function relationships, as evidenced
by their versatility and state-of-the-art performance in tasks
ranging from protein folding (Lin et al., 2023a) to protein
design(Yang et al., 2024; Madani et al., 2023; Bhatnagar
et al., 2025), including distant yet catalytically efficient en-
zymes (Munsamy et al., 2022; Madani et al., 2023; Johnson
et al., 2023; Parsan et al., 2025).

Mechanistic interpretability aims to provide a detailed anal-
ysis of the mechanisms underlying the predictions of deep
learning models. Sparse Autoencoders (SAE) in particular
have recently emerged as a relevant tool to extract inter-
pretable features, for the study of internal circuits from
LLMs (Marks et al., 2024). In the field of protein research,
we are witnessing applications for pLMs with promising
outcomes, especially for the understanding of encoder-only
pLMs (Parsan et al., 2025; Simon & Zou, 2024; Adams
et al., 2025; Garcia & Ansuini, 2025).

SAE models consist of an encoder-decoder architecture
that learns to produce intermediate activations of higher
dimensionality (1), incentivized to be sparse through the
training process. In particular, the encoder transforms an
input z into an intermediate vector through a function f,
ensuring the activations are sparse (i.e., present few non-zero
features) by applying a BatchTopK activation that retains
the k x n largest entries of the SAE latent within each batch,
zeroing out all the others (Bussmann et al., 2024) (Eq. 1).
The decoder learns to reconstruct the activations x as output
(Eq. 2), by applying a training loss that is formulated to both
reconstruct the model activation by the mean square error
of the vector z and 2 (Eq. 3) with the auxiliary loss that
ensures sparsity (Eq. 4):

f(x) = BatchTopK (WeneX + benc) M

% = Waee £+ buec @
L(x) = MSE (x, %) + Laux 3)
Lanx = MSE (e, &) 4)

In this work, we investigate the potential of SAEs in the
context of decoder-only pLMs. We explore their appli-



Sparse Autoencoders in Protein Engineering Campaigns

cation for interventions during inference (steering). As a
starting point, we focus on engineering c-amylase to ob-
tain enzymes with higher predicted activity. a-Amylase
(EC 3.2.1.1) is an enzyme that catalyzes the hydrolysis of
the a -d-(1,4)-glucosidic linkages in starch, glycogen, and
various oligosaccharides, releasing anomeric products (Fu-
jimoto et al., 1998). Additionally, we study the changes
induced in the internal representations of the model com-
paring the checkpoints of ZymCTRL, a conditional pLM,
before and after alignment through direct preference opti-
mization (DPO), to understand the position-dependent pat-
terns learned during RL campaigns.

The contributions of this work are threefold:

e We trained a suite of Sparse Autoencoders on
~1 billion tokens from the BRENDA enzyme
database(Chang et al., 2020). These SAEs can be ap-
plied to diverse downstream tasks, such as explainabil-
ity or enzyme design.

* We developed a protein engineering workflow by fine-
tuning these SAEs on « -amylase deep mutational scan-
ning (DMS) data, identifying features that correlate
with fitness through sparse logistic regression. We im-
plementing causal interventions (feature clamping and
ablation) with the goal of steering the model toward
the desired fitness.

* We analyze how protein language models evolve under
RL alignment by applying model diffing, revealing
both localized amino acid preference shifts and broader
changes in sequence exploration strategies between pre-
and post-alignment checkpoints.

2. Methods

2.1. Activity prediction Oracle and Dataset

Following (Schmirler et al., 2024), we trained an activity pre-
diction oracle by fine-tuning ESM-1v (Meier et al., 2021),
with LoRA adapters. The model was trained to predict
the activity of a-amylase variants using publicly available
datasets from the Protein Engineering Tournament GitHub
repository (Armer et al., 2023a). Specifically, to predict
SAPI values, which represent the ratio of the specific ac-
tivity of a variant to that of the reference enzyme. Prior to
training, we filtered out entries with no recorded activity or
with expression below 0.5. The models were trained for 57
epochs using an 80/20 split for training and validation. A
batch size of 4 and a learning rate of 3 x 10~* were applied
during training. Learning curves and Spearman correlations
are illustrated in Fig. A10.

2.2. SAE architecture and Datasets

We trained a suite of sparse autoencoders on approximately 1
billion tokens from the BRENDA enzyme database (Schom-
burg et al., 2000), injecting them into the residual stream
of ZymCTRL before the attention module. Following best
practices, we used the BatchTopK activation function during
training, which retains only the top-k x b activations per
batch, where b is the batch size (Fig. 1a).

After pretraining, we fine-tuned each SAE on our Deep Mu-
tational Scanning dataset with a reduced learning rate to
prevent overfitting. During training, the batch size was set
to 4096, with a learning rate of 3 X 104, using the Adam
optimizer with 5, = 0.9, S = 0.99, and an expansion
factor of 12. The residual stream dimension is 1280 yield-
ing 1280 x 12 = 15360 latents (decoder rows). Layer 26
was chosen based on preliminary results indicating superior
performance compared to other insertion points 8.

2.3. Feature Selection and Causal Interventions

To identify the most predictive latent features for enzyme
activity, we developed a systematic approach that combined
feature selection with causal interventions during sequence
generation (Fig. 1b).

Feature Selection Process We pooled position-wise SAE
activations into sequence-level vectors by averaging across
all sequence positions, resulting in a single feature vector
per protein variant. These aggregated vectors were then
used to train a Sparse Logistic Regression model using
the Sklearn implementation (Pedregosa et al., 2011), with
enzyme activity labels (high vs. low activity based on SAPI
thresholds ) 7 as the target variable.

The sparse regularization (L1 penalty) encourages the model
to select only the most informative features while setting
irrelevant coefficients to zero. The resulting coefficient vec-
tor 3 has as many entries as SAE decoder columns (15,360
latents), with most coefficients being zero due to the sparsity
constraint. Features with nonzero coefficients 3; # 0 were
identified as predictive of enzyme activity and subsequently
used for downstream interventions.

Causal Intervention Strategies We implemented two
complementary intervention strategies that modify SAE
activations during the forward pass at inference time:

Clamping: For features identified as positively correlated
with enzyme activity (8; > 0), we set their activations to
the maximum observed values in the training distribution
whenever these features naturally activated during genera-
tion. Formally, if feature ¢ activates with value f; > 0 at
position ¢, we replace it with f©*" oh
D

train

= max(D,.: ), where

represents all observed activations for feature 7 in the
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Figure 1. a) Schematic representation of the training process for SAEs. The SAE is inserted between the model’s layers. Embeddings x
are passed through the encoder-decoder and reconstructed as &, with sparsity enforced in a higher-dimensional space than the input vector.
This may provides a more interpretable representation, as learned features can potentially be correlated with observed features. b) Specific
application of SAEs for protein engineering, as exemplified in this work. ZymCTRL (pLM) is fed with DMS data, and correlations
between learned features and activity measurements are used to interpret and extract relevant features that are then used to steer the model.
c) Diagram of the MSA Steering process during inference. To ensure sufficient sequence context for the HMM profiler, interventions
begin after approximately 30 amino acids. At each generation step ¢, the partial sequence is aligned using the profiler to determine the
corresponding MSA column. A position-specific intervention is then selected from a pre-computed lookup table designed to increase
predicted enzymatic activity, and applied to the SAE latents with reconstruction error preservation. d) Steering is performed through
clamping and ablation. The resulting effects reveal an increase in the average predicted activity compared to the base model.

training set (Fig. 1c).

Ablation: For features negatively correlated with enzyme
activity (8; < 0), we performed ablation by setting their
activations to zero whenever they naturally activated. This
intervention removes the potentially detrimental influence
of these features on sequence generation (Fig. 2¢)).

Both intervention types preserve the sparse activation pat-
tern of the SAE while steering the model toward sequences
with higher predicted enzymatic activity.

Contrastive Activation Addition (CAA): CAA serves as
our baseline steering method (Panickssery et al., 2023). We
extract last-token activations hy,g € R%mosel gt layer 25 for all
sequences and partition them based on SAPI values relative
to threshold 7:

(&)
(6)

Hhigh = {h1 : SAPL > ’7'}
Hlow = {hz : SAPLL S 7'}

The steering vector is computed as the difference between
group means:

> h
heHiow

)

Vsteer = HMhigh — Hlow

1 1
= — h e —
[ Hhign| Z [Hiow]

heHhign

During generation, this vector is added to layer 25 acti-
vations: hgeered = Noriginal + @ - Vgeeer, Where o controls
intervention strength (Figure A9).

2.4. MSA Steering

In addition to the aforementioned causal intervention meth-
ods (ablation, clamping, and CAA steering) that modify the
forward pass at inference time, we introduce a novel steer-
ing technique: MSA Steering. Unlike previous methods
that treat all sequence positions equally, MSA Steering de-
signs targeted interventions for each position by leveraging
information from previously sampled variants.

Multiple Sequence Alignment (MSA) enables the position-
wise aggregation of sequences with different lengths into
a unified coordinate system, where each MSA column rep-
resents a homologous position across the enzyme variant
family.

MSA Steering Methodology The MSA Steering process
consists of two phases: preparation and inference-time in-
tervention.

Preparation Phase:

1. Sample and score a library of enzyme variants using
the protein language model
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2. Extract active SAE latents for each sequence (similar
to ablation and clamping)

3. Align the variant library using MSA software (Katoh
et al., 2002)

4. Re-index the extracted latents using MSA coordinates
into a tensor of shape n_variants X msa_columns x
n_latents

5. Apply Sparse Logistic Regression to identify latent
features associated with higher enzymatic activity at
each MSA column

6. Train an HMM profiler (Larralde & Zeller, 2023) on
the enzyme library to enable alignment of partial se-
quences during generation

Inference-Time Intervention: During autoregressive se-
quence generation, interventions are applied after an initial
buffer period (30 amino acids) to ensure sufficient sequence
context for reliable HMM alignment. The following steps
are applied at each time step ¢ > fpuser (Where tpysrer = 30
amino acids):

1. Sample the Next Amino Acid: At time step ¢, an
amino acid is sampled and added to the growing se-
quence (Sg, ..., St)

2. Align with HMM Profiler: The partial sequence
(so,-.-,s¢) is aligned using the HMM profiler, map-
ping it to a homologous region and producing an
aligned sequence

3. Identify MSA Column: From the aligned sequence,
we determine which MSA column corresponds to the
current position ¢

4. Apply Position-Specific SAE Intervention: Based on
the identified MSA column, we apply the correspond-
ing SAE intervention (e.g., clamping latent features
associated with higher enzymatic activity at that spe-
cific position)

This approach combines the advantages of model steering
with evolutionary information from MSA, enabling more
targeted and effective interventions for enzyme design com-
pared to position-agnostic methods.

2.5. Fine tuning and DPO-alignment

ZymCTRL was fine-tuned on 10,398 protein sequences,
as detailed in the model card available on Hugging Face
(AI4PD/ZymCTRL). Fine-tuning was performed over 28
epochs with a learning rate of 8 x 1075 on experimental
catalytic activity of a DMS library (Armer et al., 2023b).
Following fine-tuning, the model was aligned using the

Weighted DPO framework, as described in (Stocco et al.,
2024), associating this time to each sequence a measured
phenotype. The reward function was defined as the mean of
three components: (i) predicted activity, (ii) pPLDDT (score,
and (iii) TM-score (van Kempen et al., 2023) of the esm-fold
(Lin et al., 2023b) predicted protein structure. To mitigate
reward hacking and sequence length bias, the final reward
was weighted using a Gaussian length penalty centered at
425 residues, the typical length of sequences in the DMS
dataset.

2.6. Model Diffing

The pipeline described above maps two global properties of
an enzyme variant: its predicted activity and the position-
wise pooled SAE activations.

To investigate position-dependent sequence—activity rela-
tionships, we compare the next-token probability distri-
butions produced by two checkpoints of our model: the
base model and the DPO-aligned model at iteration 3, as it
showed the highest reward (Fig. A2)

At each sequence position, we compute the Kull-
back-Leibler (KL) divergence between the two models’
next-token distributions using the raw, ungapped sequences.
For comparison between the two models, we aggregate the
KL divergences by aligning the per-position KL divergence
by re-indexing based on a multiple sequence alignment
(MSA) (Fig. A2),allowing to compare sequences of differ-
ent lengths. In particular, MSAs of all generated variants are
performed using MAFFT (Katoh et al., 2002) with default
settings. We then re-index the per-sequence KL divergence
scores onto the MSA coordinate frame, so that each diver-
gence value corresponds to a consistent alignment position
across variants.

Finally, we select the top MSA columns by average KL
divergence. These top-KL positions highlight the residues
where the base and DPO-aligned models differ most strongly
in their predictive distributions.

3. Experiments and Results
3.1. Steering Interventions for Enzyme Generation

Following Chalnev et al. (Chalnev et al., 2024), we assessed
two causal interventions on feature activations during au-
toregressive generation of enzyme variants. In the abla-
tion intervention, whenever a targeted feature naturally ac-
tivated, its value was set to zero; in the clamping inter-
vention, any activation was set to its maximum observed
value in the training distribution (Fig. 1c). Both meth-
ods relied on reconstruction-error terms from a Sparse Au-
toencoder to preserve sequence quality. As a baseline, we
implemented Contrastive Activation Addition (CAA) (Pan-
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Figure 2. a) Crystal structure (PDB code 1BAG) showing the three
domains of c-amylase: Domain C (orange) contains a S-structure
with Greek-key motif important for stability, Domain B (purple)
captures metal ions and covers the catalytic pocket, and Domain A
(white) houses the TIM barrel catalytic domain. The three catalytic
residues (two aspartates and one glutamate, with the latter mutated
to Gln for crystallization) are depicted, along with the substrate
(S) GS (maltopentaose) in the active site and metal ions (metallic
spheres) (Fujimoto et al., 1998). Depicted in magenta the five
residues shown in Table 2.b) KL divergence between the DPO
and FT model superimposed on the 3d structure of the a-amylase
(PDB: 1BAG). c)Position of the transitions described in Table 1
(in purple) respect the catalytic triad (in orange) d) Visualization
of the KL divergence for the enzyme library between the FT &
DPO models, reindex with MSA column coordinates. The entries
in beige correspond to MSA gaps, while white entries correspond
to small (< 0.1) KL values.

ickssery et al., 2023), which adds a “steering vector” during
generation equal to the difference between mean activa-
tions of high-activity (> 2.5) versus low-activity (< 2.5)
o-amylase classes.

We generated large ensembles under each steering scheme
and from the unmodified base model, then predicted their
enzymatic activities using our trained oracle. Distributions
were compared to the base using the Mann—Whitney U test;
only statistically significant shifts were retained for further
analysis (Table 1).

MSA Steering produced the largest shift (median +0.94),
followed by clamping (+0.13), ablation (+0.07) and CAA
(+0.05), confirming that targeted feature manipulations can
guide predicted enzyme activity in some cases. Out of the
46 steering interventions tested (17 ablation, 15 clamping,
and 13 CAA, 1 MSA Steering, only 12 interventions devi-
ated from the base distribution in a statistically significant

Intervention \Median Predicted Activity |p-value vs. Base
Base (no steering) 1.045 —
Ablation 1.051 0.003
Clamping 1.139 < 0.001
CAA 1.058 0.015
MSA Steering 1.995 < 0.001

Table 1. Median predicted activities and significance of steering
interventions compared to the base model.

way. Among these, MSA Steering achieved the most sub-
stantial shift, highlighting its potential as a powerful tool for
optimizing enzyme activity through model steering.

3.2. Diffing Dynamics During RL Alignment and
Interpreting Model Evolution

We applied DPO for three iterations, consisting of less than
0.1% of the compute used in initial pre-training stage (Fer-
ruz & Hocker, 2022)—to align the model towards higher
activity. We generated sequences from both the base and
DPO-aligned models, performed MSA to re-index per-token
similarity metrics, and computed the KL divergence at each
MSA position.

Inspection of the highest-divergence positions (Fig. 2) re-
vealed two distinct patterns: sparse, discrete substitutions
at key residues (vertical columns on key position that span
all the enzyme variants), and broader distributional shifts
across contiguous regions of the protein .

3.3. Testing and Quantifying AA Transition Patterns

By exploiting the first type of pattern (discrete substitutions
at key residues), we can identify positions whose distribu-
tion changed the most through the alignment process with
the fitness oracle. From this analysis, five positions (94,
99, 130, 277, 285) exhibited the highest divergence. For
each site, we constructed two variant sets: one replacing
the wild-type residue with the amino acid favored by the
base model, and the other using the DPO-aligned model’s
top prediction. All other residues remained unchanged. We
then predicted activities for both sets and computed the
mean activity difference for each single-point substitution
(Table 2).

The I—L substitution at position 285 drove the largest gain
(mean +0.946), with I—F at position 99 yielding +0.716.
A moderate improvement was observed for S—H at 130
(+0.103), whereas transitions at 94 and 277 were effectively
neutral (each +0.010). These results demonstrate that a
handful of targeted amino acid changes can recapitulate
most of the alignment-induced activity enhancements.



Sparse Autoencoders in Protein Engineering Campaigns

Residue Position AA Transition A Mean Activity
94 I—-L 0.010
99 I—-F 0.716
130 S—H 0.103
277 A—L 0.010
285 I—-L 0.946

Table 2. Activity shifts for single-point mutations informed by base
vs.& DPO model preferences. The residue positions are aligned
with the WT Enzyme Variant IBAG

4. Discussion and Limitations

Reverse-enegenering to make neural networks human-
interpretable is the aim of mechanistinc interpretability
(Olah et al., 2018; Meng et al., 2022; Nanda et al., 2023).
A key challenge of mechanistic interpretability is identify-
ing the correct units of analysis, that are ideally canonical
(irreducibile, indivisible, and complete)(Leask et al., 2025).
Due to their properties, SAEs offer intriguing possibilities
for interpretability research.

In this work, we explored the application of SAEs in the
context of a protein engineering campaign. Specifically,
we trained SAEs and extracted features that correlate with
an external oracle trained to predict enzyme activity. By
ablating and clamping targetted activations, we observed it
is possible to deviate the base model distribution, although
the effect of a single intervention at a time remains mod-
est. We introduce a new intervention strategy grounded in
the multiple sequence alignment (MSA) of the engineered
protein, projecting SAE latents into MSA space to enable
precise and effective interventions that leverage evolutionar-
ily conserved features. We also computed KL divergences
between base and aligned models, to investigate how RL
alters the model’s internal representations. Through this pro-
cess, we were able to capture fine-grained differences and
identify how individual mutations contributed to measurable
improvements in generated sequences.

Interestingly, most of the substitutions occur between chemi-
cally similar residues (I—L), whereas the serine to histidine
transition (S—H) represent a shift from a polar, uncharged
side chain to a positively charged residue. All of these mu-
tations lie in the enzyme third and forth coordination shells,
highlighting once again, that the impact of mutations and
the underlying allosteric network effects are extremely not
obvious to decipher (Osuna, 2021; Gu et al., 2023). In this
context, molecular dynamics simulations can provide valu-
able insights in the mechanistic effects of these transitions,
which have been linked to improved predicted activity. In-
terestingly, these transitions are also present in the DMS
data, where they strongly correlate with increased activity.
This finding confirms that the model is properly aligned and
suggests the potential for using this tool to extrapolate key

elements solely from model-based investigations.

In future work, we envision (1) further research on specific
circuits, at different MSA-positions during sequential DPO
rounds (2) testing base and steered designs experimentally
to validate out approach.
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Figure 3. Average sequence perplexity across sequential DPO rounds.

0.075 10 20 30
Iteration

Figure 4. Average pLDDT, as measured by ESMFold, across sequential DPO rounds.
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Figure 5. Average TM-score between the reference enzyme and ESMFold-predicted structures during sequential DPO rounds.
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Figure 6. Average sequence length across sequential DPO rounds.
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Figure 7. Global distribution of sequence length versus alignment length.
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Figure 8. TSNE visualization of the embeddings of DPO sequences at different layers
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Figure 9. Overview of Contrastive Activation Addition (CAA) steering. The steering vector is computed as the mean difference in
activations between positive (desired property) and negative (undesired property) protein sets. During generation, the vector v is added to
the model activations at the same layer, the residual stream results thus modified by adding the vector v times an scalar «, that controls the
stregth of steering.
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Figure 10. Training curve of esm-1v with Lora Adapter, as reported in Chalnev et al. (Chalnev et al., 2024)
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