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A Appendix

A.1 Nyström method

Nyström method [5] aims to calculate a low-rank approximation for a Gram matrix. For Transformers,
the self-attention matrix can be viewed as a Gram matrix S with a Gaussian kernel k applied to the
query Q, with each element Sij expressed as:

Sij = k
(
Qi,:, Qj,:

)
= exp(−‖Qi,: −Qj,:‖22
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k(x, y) means operating Gaussian kernel k to (x, y), which can be written in the feature space as:

k(x, y) =

n∑
i=1

λiφi(x)φi(y), (2)

n is the dimension of a feature space, λi denotes the eigenvalue and φi denotes the eigenfunction of
kernel k. According to the eigenfunction’s definition, we can get:∫

k(y, x)φi(x)p(x)dx = λiφi(y), (3)

where p(x) is the probability distribution of x. And {φi(x)} are p-orthogonal:∫
φi(x)φj(x)p(x)dx = δij . (4)

δij is 0 when i 6= j, 1 when i = j. To get an approximation of the eigenfunctions, we sample
{x1, x2, · · · , xq} from p(x), then:
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q

q∑
t=1

k(y, xt)φi(xt) ≈ λiφi(y), (5)

1

q

q∑
t=1

φi(xt)φj(xt) ≈ δij . (6)

This inspires us to approximate the Gram matrix S. Let S(m) be a submatrix of S, consisting of
m × m elements from S. Gram matrix is a symmetric positive semi-definite matrix, so it has a
spectral decomposition:

S(m)U (m) = U (m)Λ(m), (7)
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where U (m) is column orthogonal and Λ(m) is a diagonal matrix with the diagonal elements as the
eigenvalues of S(m). Substituting the y to xj and applying the approximation above to S, we can get:
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√
mU

(m)
j,i , λi ≈
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(m)
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m
, (8)
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√
m

λ
(m)
i

m∑
t=1

k(y, xt)φi(xt), (9)

λi is eigenvalue of S and λ(m)
i is the eigenvalue of S(m). Denote S̃ as the rank-m approximation of

S and Ũ , Λ̃ as the approximation for spectral decomposition of S. Now we can get an approximation
of S with rank m:

S̃ = Ũ Λ̃ŨT =

m∑
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t (ũ
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Similarly, we have:

φi(xj) ≈
√
nUj,i(n), λi ≈
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(n)

n
. (11)

Thus
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Then we get an approximation of S: S̃ ≈ Sn,mS
†
m,mSm,n. S has a block representation below:

S =

[
Sm,m Sm,n−m
Sn−m,m Sn−m,n−m

]
. (14)

A.2 Newton method

A.2.1 Proof of theorem 1

Proof A.1 A is a symmetric positive semi-definite matrix and Aij ≤ 1, ∀1 ≤ i, j ≤ n, Aii =
1, 1 ≤ i ≤ n in our case. A0 is chosen to be αA, so the Ak can be written as Ak = CkA = ADk

for some matrix Ck, Dk, leading to the fact that

A†AAk = Ak, AkAA
† = Ak. (15)

This is because Ak+1 = Ak(2In −AAk) = (2In −AkA)Ak and A0 = αA. We make a difference
between A† and Ak+1:

A† −Ak+1 = A† − 2Ak +AkAAk

= A† −AkAA
† −A†AAk +AkAAk

= (A† −Ak)A(A† −Ak). (16)

We norm both sides of the equation above:

‖A† −Ak+1‖ = ‖(A† −Ak)A(A† −Ak)‖
≤ ‖A† −Ak‖‖A(A† −Ak)‖. (17)

And we left multiply A on the both sides of (16), then norm the equation:

‖AA† −AAk+1‖ = ‖A(A† −Ak)A(A† −Ak)‖
≤ ‖AA† −AAk‖2. (18)

We choose α sufficiently small so that the initial value satisfy ‖AA† −AA0‖ < 1. We set α = 2
‖A‖21

to ensure it is small enough [1]. Then the ‖AA† − AAk‖ → 0, when k →∞. The inequality (17)
implies that Ak → A†, k →∞.
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A.2.2 Proof of proposition 1

Proof A.2 Note that when we multiply A on both sides of (16), the equation turns to be:

A−AAk+1A = A(A† −Ak)A(A† −Ak)A

= (AA† −AAk)(A−AAkA).
(19)

Similarly norm both sides of (19), considering that ‖AA† − AAk‖ → 0 and ‖AA† − AAk‖ < 1
always holds, ‖A−AAkA‖monotonically decreases to 0. The inequality (17) implies that ‖Ak−A†‖
decreases to 0 monotonously .

Note that although ‖A−AAkA‖ monotonically decreases to 0, ‖AkAAk −Ak‖ cannot be proved
to monotonically decrease to 0.

A.3 Non-linearized gaussian kernel attention

In our formulation, instead of directly calculating the Gaussian kernel weights, they are approximated.
More specifically, the relation between any two tokens is reconstructed via sampled bottleneck
tokens. As the number m (e.g., 49), of bottleneck tokens is much smaller than the token sequence
length, our attention matrix is of low-rank. This has two favorable consequences: (I) The model now
focuses the attentive learning on latent salient information captured by the m bottleneck tokens. (II)
The model becomes more robust against the underlying token noise due to the auto-encoder style
reconstruction [3].

This explains why the model with an approximated gram matrix performs better than the one with
a directly estimated matrix. Further, exact Gaussian kernel attention computation leads to training
difficulties. We first hypothesized that this might be due to lacking normalization (as normalization
often helps with training stability and convergence), and tested a variant with softmax on top of an
exact Gaussian kernel attention matrix. However, it turns out to suffer from a similar failure. We
cannot find a solid hypothesis so far and will keep investigate this problem.

A.4 Attention visualization

Figure 1 shows more visualization of the attention masks by various Transformers [4, 2, 6] and our
SOFT. For each model, we show the output from the first two attention heads (up and down row). It
is noteworthy that SOFT exhibits better semantic diversity of the multi-head mechanism than other
methods. Moreover, when we sample the patch at the boundary of multiple objects, SOFT is able to
more precisely capture all these objects.
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Figure 1: Comparing the attention heatmaps of a query patch (marked by the cross "+") against all
the patches of an image, produced by (a) Transformer [4], (b) Performer [2], (c) Nyströmformer [6]
and (d) Our SOFT.
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