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Abstract

In this work, we propose using mechanistic interpretability – techniques for reverse1

engineering model weights into human-interpretable algorithms – to derive and2

compactly prove formal guarantees on model performance. We prototype this3

approach by formally lower bounding the accuracy of 151 small transformers4

trained on a Max-of-k task. We create 102 different computer-assisted proof5

strategies and assess their length and tightness of bound on each of our models.6

Using quantitative metrics, we show that shorter proofs seem to require and provide7

more mechanistic understanding, and that more faithful mechanistic understanding8

leads to tighter performance bounds. We confirm these connections by qualitatively9

examining a subset of our proofs. Finally, we identify compounding structureless10

noise as a key challenge for using mechanistic interpretability to generate compact11

proofs on model performance.12

1 Introduction13

One approach to ensuring the safety and reliability of powerful AI systems is via formally verified14

proofs of model performance [36, 8]. If we hope to deploy formal verification on increasingly large15

models [18, 21] with powerful emergent capabilities [45], we will need compact proofs of global16

robustness properties. However, existing approaches tend to use proof strategies that suffer from17

bad asymptotic complexity, while verifying either local robustness properties or the correctness or18

generalization properties of training procedures instead of particular resulting models of interest.19

One key challenge is that neural network architectures are highly expressive [39, 47], and models20

with similar training procedure and performance may still have learned significantly different weights21

[28, 7]. Thus, using only knowledge of the architecture or training procedure, it can be challenging22

to develop efficient proof strategies for verifying model performance. We propose verifying model23

performance using understanding derived from mechanistic interpretability (Section 2) – that is,24

reverse engineering the specific implementation of the algorithm from the learned weights of particular25

models. Knowledge of the specific implementation allows us to construct less lossy simplifications of26

the model, and more efficiently reason about model performance over possible inputs.27

In this work, we provide a case study of translating mechanistic interpretations into compact proofs.28

We train a set of 151 attention-only transformers on a Max-of-k task (Section 3), and then reverse29

engineer the models using standard mechanistic interpretability techniques. We use our understanding30

to define a set of 102 different computer-assisted proof strategies with varying tightness of bound and31

with different asymptotic complexity and number of required floating-point operations (Section 4).32

We define a quantitative metric to assess the mechanistic understanding used in a proof strategy by33

the dimensionality of the function space that the proof strategy must consider, which we deem the34

unexplained dimensionality of the proof strategy (Subsection 5.1, Appendix L). Using this metric,35
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Figure 1: We construct proofs using different degrees of mechanistic interpretation. (Left) The models we
consider in this paper are one-layer attention-only transformers, and so contain three “paths”: the OV circuit, the
QK circuit, and the direct path. (Right) For the brute force proof (Subsubsection 4.2.1), we treat the model as a
black box and thus need to check all possible combinations of inputs. For the cubic proof (Subsubsection 4.2.1),
we decompose the model into its three corresponding paths, but still check the correctness of each path via
brute force. Finally, in some subcubic proofs (Subsection 4.2), we use all parts of the mechanistic interpretation
presented in Section 3. (Bottom) For each of the three categories of proof, we report the number of FLOPs used
in computing the certificate (lower=better), lower bound on model accuracy (higher=better), effective dimension
of the mechanistic understanding used (lower=better), and asymptotic complexity of the proof strategy as we
scale the inputs and model (lower=better). Using more mechanistic understanding leads to much shorter proofs,
but with worse bounds on accuracy (as our understanding is not fully faithful to the model internals).

we find a negative relationship between proof length and degree of understanding. We qualitatively36

examine proof strategies to confirm and explain this relationship, finding that shorter proofs both37

require and provide more mechanistic understanding. We also find suggestive evidence that the trade-38

off between proof length and tightness of bound is mediated by the faithfulness of the mechanistic39

understanding used to derive the proof (Subsection 5.2).140

However, we also identify compounding structureless noise as a key challenge for generating compact41

proofs on model behavior (Subsection 5.3). The implementation of algorithms inside of neural42

networks may contain components that defy mechanistic understanding and appear to us as “noise".43

When we don’t know how noise composes across model components, establishing a bound requires44

pessimizing over the ways the composition could occur. Worst-case noise can quickly grow over45

components even in cases when the empirical noise is small, and lead to vacuous performance bounds.46

2 Mechanistic interpretability for proofs47

In the style of mechanistic interpretability evalution work [5], we target theorem templates that48

establish bounds on the expected global performance of the model. LetM : X → Y be a model49

(here assumed to be a neural network), D be a probability distribution over inputs x ∈ X , and50

f : X × Y → R be a scoring function for evaluating the performance of the model. Then, we seek to51

establish lower bounds b on the expected s as the form:52

s := Ex∼D [f(x,M(x))] ≥ b. (1)

As f can be any metric, this is a fully general template for theorems that can capture any aspect of53

model performance for which we have a formal specification. However, in this work we restrict f to54

be the 0-1 loss, so our theorems lower bound the accuracy of the model.55

The proofs in this work have two components: a computational component C : model weights →56

R and a non-computational component Q arguing that for any model M′, C(M′) ≤57

Ex∼Df(x,M′(x)), thus implying that C generates a valid lower bound for the performance of58

M. The whole proof is Q paired with a trace of running C that certifies its output onM. Here,59

b = C(M). As even the size of the model parameters is much larger than any reasonable Q, we60

approximate the length of a proof pair C,Q by the length of a trace of C(M).61

1Code for reproducing our results can be found at https://github.com/gbmi-team/gbmi.
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Proof compactness vs. tightness of bound Different proof strategies make different tradeoffs62

between compactness and tightness of bound. For example, consider two extreme proof strategies:63

We can “prove" a vacuous bound using a null proof. On the other hand, in the brute-force proof, we64

simply run the model on the entirety of D to achieve b = s, albeit with a very long proof.65

We quantify the length of C(M) using two metrics: the asymptotic time complexity of C as we66

scale the size of the model and the input x, as well as the empirical average number of floating point67

operations required to evaluate C(M′) over a given set of models {Mi}. We measure tightness of68

bound of C(M) using the ratio of the bound to the true accuracy: b/s.69

Proof as pessimal ablation A standard way of assessing the faithfulness of mechanistic interpretabil-70

ity is by ablating the parts of the model that your interpretation does not explain [43, 5, 17]. In this71

framework, proofs can be thought of as performing a pessimal ablation over the unexplained parts of72

the model – we set the remaining components of the model (the “noise") with values drawn from D73

that minimize the performance of the model. Compact proofs will also often involve performing a74

relaxation over input sequences, such that establishing performing pessimal ablations on a smaller75

number of relaxed input sequences is sufficient to lower bound the performance on D.76

3 Experimental setting77

We study our approach to generating compact proofs in a simple toy setting: one-layer transformers78

trained to output the max of k integers.79

Model Architecture We study one-layer, one-head, attention-only transformers with no biases80

but with learned positional embeddings, with vocabulary size dvocab, model and head dimension81

d = dmodel = d, and context length nctx. The model parameters consist of the nctx × dmodel positional82

embedding P ; the dvocab × dmodel token embed E; the dmodel × dmodel query, key, value, and output83

matrices of the attention head Q, K, V , and O; as well as the dmodel × dvocab unembed matrix U . We84

assume (as is standard in language modeling) that dmodel < dvocab.85

For an nctx × dvocab one-hot encoded input sequence x = [t0, t1, ..., tnctx−1]
T , we compute the logits86

of the model as follows:87

h(0) = xE + P Initial residual stream (nctx × dmodel)

α = h(0)QKTh(0)T /
√
d Attention matrix (nctx × nctx)

h(1) = σ∗(α) · h(0)V O + h(0) Final residual stream (nctx × dmodel)

M(x) = ℓ = h
(1)
nctx−1U Final sequence position logits (dvocab)

where σ∗ is the masked softmax function used in causal attention. Because we only look at outputs88

of the model above the final sequence position i = nctx − 1, we also denote this position as the query89

position query and the value of the token in this position as tquery. The model’s prediction is the token90

corresponding to the max-valued logit ℓmax.91

Task Specifically, we study the setting with nctx = k = 4 because it is the largest sequence length for92

which we can feasibly evaluate the brute force proof. We set hidden dimension dmodel = 32 and a93

vocabulary of size dvocab = 64 comprising integers between 0 and 63 inclusive. For an input sequence94

x = [t0, t1, t2, t3]
T , we denote the true maximum of the by tmax. We trained 151 models on this task.95

Models achieved an average accuracy of 0.9992± 0.0015 over the entire data distribution.96

Path decomposition Following prior work [9], we expand the logits of the model and split the paths97

through the model into three components – the QK circuit, the OV circuit, and the direct path:98

M(x) = σ∗
(
(tqueryE + Pquery)QKT (xE + P )

T︸ ︷︷ ︸
QK circuit

/
√
d
)
· (xE + P )V OU︸ ︷︷ ︸

OV circuit

+(tqueryE + Pquery)U︸ ︷︷ ︸
direct path

Intuitively, the QK circuit determines which tokens the model attends to from a particular query token99

and sequence position, while the OV circuit processes the tokens and sequence positions that model100

attends to. The direct path is simply the skip connection around the attention head.101
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We further divide the QK and OV circuits into token (position-independent) and position-dependent102

components. Let Pavg = 1
nctx

∑
i Pi be the average position embeds across positions (of size dmodel),103

and let P̄ = 1nctx ⊗ Pavg represent the result of broadcasting Pavg back into the shape of P (that is,104

nctx × dmodel). Similarly, let Pq = 1nctx ⊗ Pquery be the result of broadcasting Pquery. Then with a105

slight abuse of notation, we can rewrite the QK and OV circuits, as well as the direct path, as follows:2106

QK circuit = tquery

(
EqQKT ĒT︸ ︷︷ ︸

EQKE

xT +EqQKT P̂T︸ ︷︷ ︸
EQKP

)
OV circuit = x ĒV OU︸ ︷︷ ︸

EVOU

+ P̂V OU︸ ︷︷ ︸
PVOU

Direct Path = tquery EqU︸︷︷︸
EU

where P̂ = P − P̄ and xĒ = xE + P̄ and xEq = xE +Pq (since h(0) = xĒ+ P̂).107

3.1 Mechanistic interpretation of learned models108

Figure 2: The models in our setting
implement max-of-K by attending ex-
ponentially more to larger tokens and
copying the attended-to tokens (Subsec-
tion 3.1).

Using standard empirical mechanistic interpretability tech-109

niques, we interpret one of our learned models (our “mainline"110

model) by independently examining the QK and OV circuits111

and the direct path. We find that the model outputs the largest112

logit on the true max token tmax by attending more to larger113

tokens via the QK circuit and copying the tokens it attends to114

via the OV circuit. We then quantitatively confirm that these115

interpretations hold for all 151 models by reporting the mean116

plus minus standard deviation for various summary statistics.117

Plots for this section are available in Appendix C.118

QK circuit By qualitatively examining the position-119

independent QK component EQKE, we find the amount of120

pre-softmax attention paid to a key token is approximately in-121

dependent of the value of the query token tquery, and increases122

monotonically based on the size of the key token. We confirm123

this hypothesis by performing a singular-value decomposition (SVD) of the EQKE matrices (Ap-124

pendix G.3), and find that it contains a single large rank-one component with singular value around125

7800± 380, around 620± 130 times larger than the second largest component with singular value126

13 ± 3. The left (query-side) singular vector is approximately constant in all dimensions, with127

value 0.1243 ± 0.0003 ≈ 1
8 = 1√

dvocab
. The right (key-side) singular vector of this component is128

monotonically increasing as we increase the size of the key token, with (1/
√
d-scaled) pre-softmax129

attention increasing by an average of 1.2176 when the key token increases by 1.3130

In comparison, each 1/
√
d-scaled entry of the position-dependent QK component EQKP has negligi-131

ble size (average 0.31± 0.18), suggesting that EQKP is unimportant to the functioning of the model.132

We confirm this by zero ablating EQKP. Combined with our interpretation of EQKE, this implies133

that the attention pattern of the model depends only on the token values and not the ordering of the134

sequence.135

OV circuit Then, by qualitatively examining the position-independent OV component EVOU, we136

see that it has large positive entries along the diagonal. In fact, the entry along the diagonal is the137

largest in the row for all rows corresponding to t > 6.6± 1.2. Since each entry in the sequence is138

uniformly sampled and dvocab = 64, this means that EVOU is a good approximation for the identity139

matrix for all but (7/64)4 ≈ 1.2× 10−4% of the sequences.140

As with the position-dependent QK component, the position-dependent OV component PVOU also141

has negligible size and is unimportant to model performance. Taken together with the above results142

on EVOU, this suggests that the attention head copies the tokens it attends to.143

2Including the mean position embed into the token (position-independent) component is a standard technique
in prior mechanistic interpretability work, see for example [28, 7].

3This implies that the ratio of attention paid to token t and t− 1 is approximately exp(1.2176) = 3.379.
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Table 1: We report the proof complexity, normalized accuracy bound, and estimated flops required (Equation 2),
as well as unexplained dimensonality (Section 5). We round the FLOP and unexplained dimension counts to the
closest power of 2, and report the mean/standard deviation of the bound averaged across all 151 models. As we
include more aspects of the mechanistic interpretation (reflected by a lower number of unexplained dimensions),
we get more compact proofs (in terms of both asymptotic complexity and FLOPs), albeit with worse bounds.
For space reasons, we use k := nctx, d := dmodel, and v := dvocab.

Description of Proof Complexity Cost Bound Est.
FLOPs

Unexplained
Dimensions

Brute force O(vk+1kd) 0.9992± 0.0015 240 230

Cubic O(v3k2) 0.9845± 0.0041 225 214

Sub-cubic O(v2 · k2 + v2 · d) 0.832± 0.011 221 213

without mean+diff 0.758± 0.039 221 213

Low-rank QK O(v2k2 + vd2 + 0.797± 0.013 222 212

SVD only (EU&OV) v2d) 0.643± 0.044 222 212

Low-rank EU O(v2k2 + vd2 + 0.662± 0.061 221 213

SVD only (QK&OV) v2d) (3.38±0.06)×10−6 221 213

Low-rank QK&EU O(v2k2 + vd2 + 0.627± 0.060 222 213

SVD only (OV) v2d) (3.38±0.06)×10−6 222 213

Direct path As with the two position-dependent components, the entries in EU have small absolute144

magnitude 2.54± 0.20,4 and contribute negligibly to model performance.145

4 Proofs of model performance146

In this section we describe intuitions for three categories of proof that are developed around different147

mechanistic interpretations and methods for using the interpretations. The strategies result in proofs148

of different complexity offering with varying bound tightness (Table 1). We provide detailed theorem149

statements, proofs, algorithms, and explanations of proof search in the appendices.150

The brute-force baseline We start by considering the brute force proof (Appendix D), which treats151

the model as a black box and evaluates it on all possible sequences. However, this proof strategy152

quickly becomes untenable as the length of inputs increases. So in subsequent sections, we use153

knowledge of the model drawn from the interpretation in Subsection 3.1 to derive shorter proofs.154

4.1 A cubic proof155

Next, we use the fact that the model is composed of the direct path and the QK and OV circuits156

(Section 3) to decrease the number of sequences that we need to consider, and the fact that only157

the position-independent components EQKE and EVOU contribute meaningfully to performance158

(Subsection 3.1) to pessimize over sequence ordering.159

First, let a pure sequence ξ be a sequence with at most three distinct tokens: the max token tmax, the160

query token tquery ≤ tmax, and optionally a third token t′ < tmax, and let Ξpure be the set of all pure161

sequences in D. For a given input sequence x, the define the adjacent pure sequences Adj(x) as the162

set of sequences that share the same max and query token, and only take on values in x:163

Adj(x) = {ξ ∈ Ξpure | max
i

ξi = tmax, ξquery = tquery, ∀i < nctx ξi ∈ x}

Using the convexity of softmax and the fact that the model contains three paths, we can show that164

one-layer attention-only transformers satisfies a variant of the following convexity property: for a165

given x, ifM(ξ) is correct for all ξ ∈ Adj(x), thenM(x) is correct. That is, for these transformers,166

we can bound the accuracy on all sequences by evaluatingM on only the O(dvocab
3(nctx − 1)!) pure167

sequences. This allows us to bound the accuracy of our actualM on all dvocab
nctx sequences, while168

evaluating it on O(dvocab
3(nctx − 1)!) sequences.169

4For comparison, the average off-diagonal element of EVOU is 21.68 ± 0.83 below the corresponding
diagonal element.
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We can reduce the number of sequences that we need to evaluate by pessimizing over the order of a170

sequence. For a given tuple of (tmax, tquery, t
′), there are (nctx − 1)! pure sequences, corresponding171

to the permutations of the tuple. Pessimizing over the order of sequences reduces the number of172

sequences to consider for each (tmax, tquery, t
′) tuple to the number of t′ in the pure sequence, and173

the total number of sequences to O(dvocab
3nctx). By precomputing the five component matrices174

EU, EQKE, EQKP, EVOU, PVOU and cleverly caching intermediate outputs, we can reduce the175

additional work of each sequence to the O(nctx) required to compute the softmax over nctx elements,176

resulting in asymptotic complexity O(dvocab
3nctx

2) (Theorem 12, additional details in Appendix E).177

4.2 Sub-cubic proof178

We now consider proofs that are more compact than O(dvocab
3). These require avoiding iterating179

over any set of size O(dvocab
3) (e.g. the set of pure sequences) and performing operations that take180

O(dvocab) time on each of O(dvocab
2) combinations. Unfortunately, some methods of avoiding these181

operations can lead to vacuous bounds (i.e. accuracy lower bounds near 0%). In order to recover182

non-vacuous bounds, we introduce two tricks: the “mean+diff" trick to better approximate the sum of183

two components with unequal variance, and the “max row diff trick" to improve upon the low-rank184

approximations for EU and EQKE. We consider applying variants of these tricks at different locations185

in the naive subcubic proof, leading to 100 distinct subcubic proof strategies. See Appendix G for a186

formal description of these strategies.187

4.2.1 Removing cubic-time computatations188

Reducing the number of cases by pessimizing over sufficiently small t′ Previously, we consider189

Θ(dvocab
3nctx) pure sequences ξ, with each ξ parameterized by (tmax, tquery, t

′, c). Recall from our190

mechanistic interpretation in Subsection 3.1 that the pre-softmax attention paid from tquery to a key191

token t′ is invariant to tquery and increases linearly with the size of t′. This allows us to pessimize192

over the OV circuit over all “sufficiently small” tokens.193

More formally, suppose we are given some gap g ∈ N. For each pure sequence ξ with max token194

tmax, query token tquery ≤ tmax − g, and c copies of the third token type t ≤ tmax − g, we pessimally195

ablate the OV circuit over the set Ξpure(tmax, tquery, c; g) of pure sequences ξ′ with the same max196

and query tokens and c copies of the third token type t′ ≤ tmax − g. If the model gets all sequences197

in Ξpure(tmax, tquery, c; g) correct, then we can conclude that it gets ξ correct, otherwise, we treat198

the model as having gotten ξ wrong. This means that it suffices to only consider the O(dvocab
2nctx)199

pessimal pure sequences of each of the O(dvocab
2nctx) sets of the form Ξpure(tmax, tquery, c; g).200

Decoupling and pessimizing computations that require O(dvocab
3) computations Many parts of201

our cubic certificate require iterating through O(dvocab
2) cases parameterized by tmax and tquery or202

tmax and t′. For example, as part of the pessimization procedure over pure sequences, for each of the203

dvocab possible tmaxs, we need to consider the relative effects on the dvocab-sized logits of attending204

to each of the O(dvocab) other tokens t′ < tmax, and for each tmax and tquery, we need to check that205

the contribution of the direct path on logits tqueryEU is not sufficiently large as to overwhelm the206

contribution from tmaxEVOU. We independently pessimize over each of these components over one207

of the dvocab-sized axes: for example, instead of computing tmaxEVOU+ tqueryEU for each tmax, tquery208

pair, we first pessimally ablate the direct path along the query token (which takes O(dvocab
2) time as209

it does not depend on the tmax, and then consider the sum tmaxEVOU +maxt′ t
′EU. Since this sum210

no longer depends on tquery, we only need to perform it O(dvocab) times, for a total cost of O(dvocab
2).211

Low rank approximations to EQKE and EU Recall from Subsection 3.1 that EQKE is approx-212

imately rank 1, where the sole direction of variation is the size of the key token. By computing213

only the rank 1 or rank 2 approximation to EQKE, we can much more cheaply compute the most214

significant component of the behavior in the QK circuit. To bound the remaining error, we can use215

the fact that after pulling off the first principle component from each of the four matrices we multiply,216

very little structure remains.217

We can find the rank 1/2 approximations by performing SVD on EQKE. We can efficiently com-218

pute the SVD in O(dvocabdmodel
2) time by using the fact that EQKE can be written as the product219
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Figure 3: For each of the proofs in Section 4, we plot the number of FLOPs used to compute the certificate,
as well as the normalized accuracy lower-bound (b/s). For clarity’s sake, we exclude The brute-force proof
(Section 4) computes the exact performance, but uses orders of magnitude more compute than other approaches.
The cubic proof (Subsection 4.2) uses a small amount of mechanistic understanding and less compute, while
still retaining good accuracy lower bounds. Finally, subcubic proofs (Subsection 4.2) use the entirety of the
mechanistic interpretation of the model, which further reduces compute costs, but achieve worse bounds.

of a dvocab × dmodel matrix and a dmodel × dvocab matrix. This allows us to avoid performing the220

O(dvocab
2dmodel)-cost matrix multiplications to explicitly compute EQKE.221

Similarly, we can more efficiently check that the direct path EU contributes negligibly to the model222

outputs, by using SVD to decompose EU into a sum of rank 1 products (which we can evaluate223

exactly) and a high-rank error term that we can cheaply bound.224

4.3 Additional subcubic proof strategies225

Tighter bounds for sums of variables with unequal variance via the “mean+diff trick" Suppose226

we want to lower bound the minimum of the sum of two functions over three variables h(x, y, z) =227

f(x, y) + g(y, z), while only iterating over two variables at a time. The naive way is to minimize228

f(x, y) and g(x, y) independently:229

min
x,y,z

h(x, y, z) ≥ min
x,y

f(x, y) + min
y,z

g(y, z)

Here, the error comes from setting the ys in f and g to different values. But in cases where g(y, z)230

varies only by ε with z but more with y, then rewriting g as a sum of a component that is independent231

of z (and only varies along y), as well a component that depends on z, yields a better lower bound:232

min
x,y,z

h(x, y, z) ≥ min
x,y

(f(x, y) + E′
zg(y, z

′)) + min
y,z

(g(y, z)− E′
zg(y, z

′))

This estimate will have error at most ε, while the naive estimator can have arbitrarily large error. We233

refer to this rewrite as the “mean+diff trick".5 From the mechanistic interpretation in Subsection 3.1,234

we know that some of the components barely vary among one or more axes. So we can apply the235

mean+diff trick to get tighter lower bounds.236

Avoiding matrix multiplications using the “max row-diff trick" Using properties of linear algebra,237

we derive a cheap approximation to the max row-diff for the product of matrices AB in terms of the238

product of the max-row diff of B and the absolute value of A, we deem the “max row-diff" trick. We239

apply this trick to get a better cheap bound on the error terms of low-rank approximations, without240

having to multiply out the full matrices. See Appendix F for more details.241

5 Results242

We run each of 151 transformers on the various proof strategies of different asymptotic complexity,and243

analyze these proofs to empirically examine the relationship between proof length, bound tightness,244

and degree of understanding. For each proof on each transformer, we approximate the length of the245

proof by estimating the number of FLOPs used, and plot this against the ratio of certified bound the246

true accuracy b/s (Equation 2) in Figure 3. There exists a clear trade-off between bound tightness247

and compactness of the proof – more compact proofs yield looser bounds, and tighter bounds are248

associated with more expensive proofs.249

5In fact, this is the motivation behind the standard rewrites of QK and OV into position-independent and
position-dependent components, in cases where the behavior does not vary much across positions(Section 3).
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Figure 4: To study whether more faithful interpretations lead to tighter bounds even holding proof length fixed,
we plot the normalized accuracy bound versus the ratio of first and second singular values of EQKE, for various
types of subcubic proofs that depend on a rank-1 approximation EQKE. The closer EQKE is to rank-1, the
tighter the accuracy bound.

5.1 Shorter proofs both require and provide mechanistic understanding250

Quantifying mechanistic understanding using unexplained dimensionality We first quantify the251

amount of mechanistic understanding used in a proof by measuring its unexplained dimensionality252

– the number of free parameters required to fully describe model behavior, assuming the structural253

assumptions of the proof are correct. More detailed mechanistic interpretations will leave fewer free254

parameters that need to be filled in via empirical observation. (Details in Appendix L). In Figure 5,255

we plot the two axes and find a suggestive correlation – that is, proofs based on less mechanistic256

understanding are longer.257

More mechanistic understanding allows for more compact proofs In addition to the constructions258

in Section 4, the parts of proofs we were unable to compact seem to correspond to components that259

we do not mechanistically understand. For example, we could not cheaply bound the behavior of260

EVOU without multiplying out the matrices, and this seems in part because we do have a mechanistic261

understanding of how EVOU implements low-rank copying.262

Compact proofs seem to provide understanding By examining compact proofs, we can extract263

understanding about the model. For example, the fact that replacing each row of EU with its average264

across rows has little effect on the bound implies that EU does not vary much based on tquery.265

5.2 The trade-off between proof length and bound tightness is mediated by faithfulness of266

interpretation267

Compact proofs are less faithful to model internals To derive more compact proofs, we use our268

mechanistic understanding to simplify the model computation in ways that diverge from the original269

model internals. For example, in some subcubic proofs (Subsection 4.2), we approximate EQKE270

with a rank-1 approximation corresponding to the “size direction". However, while other components271

are small, they’re nonzero, and this approximation harms model internals.272

Less faithful interpretations lead to worse bounds on performance To confirm that faithfulness of273

understanding affects the tightness of bound independent of proof length, we plot the normalized274

accuracy bound of subcubic proofs that perform a rank-1 approximation to EQKE, versus the ratio275

of the first two singular components. A larger ratio between the components implies that the rank-1276

approximation is more faithful. From the results in Figure 4, we see a positive correlation between277

the two axes – that is, when the interpretation is more faithful, the bounds are tighter, even at a fixed278

proof length.279

5.3 Compounding structureless noise poses a serious challenge to compacting proofs of global280

behavior281

Pessimal error terms compound in the absence of known structure Approximating EQKE with282

a rank-1 matrix has small error. However, when approximating each of the constituent matrices283

E,Q,K with rank-1 approximations, pessimizing over the worst way to composing the individual284

small error terms leads to a bound on the error term of EQKE that is orders of magnitude larger285

than the actual error term. Because we don’t understand the matrices compose in a way that doesn’t286

cause noise to compound (without just multiplying out the matrices), this approximation leads to a287

trivial bound on performance. We speculate that in many cases, there is no short human-interpretable288
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Figure 5: For each proof, we plot the approximate number of flops required to evaluate the proofs, versus
the unexplained dimensionality (Subsection 5.1). Shorter proofs seem to related to proofs that contain more
mechanistic understanding (and thus leave fewer dimensions unexplained).

description for why random noise or approximation errors do not compound across layers of neural289

networks (e.g., see the error correction results on randomly initialized neural networks from Vaintrob290

et al. [40]), and thus that compounding structureless noise may be an issue in practice.291

6 Related Work292

Generalization Bounds Prior work in the PAC-Bayes framework [47, 26] proves generalization293

bounds over learning procedures, which are similar to the global performance bounds we consider294

in this work. These proofs tend to provide statistical guarantees [19] about the outputs of a known295

stochastic training procedure, while we seek to bound the performance of particular trained models.296

Formally verifying neural networks Most prior work formally verifies neural networks either via297

model checking [22, 6] or by relaxing the problem setting and taking an automated theorem proving298

approach [13, 38, 14, 25, 32] to verify local robustness properties. These proof strategies tend to be299

derived by examining only the network architecture. We take an approach more akin to interactive300

theorem proving [16] and verify global performance properties by reverse-engineering the neural301

network weights.302

Mechanistic Interpretability Finally, mechanistic interpretability is the subfield of the broader field303

of understanding model internals [34], which is too large to faithfully summarize. Our work takes304

most direct inspiration from efforts to deeply understand how either toy models [28, 7, 42, 2] or small305

pretrained text transformers [43, 15] implement algorithmic tasks, generally by performing ablations306

and SVD. In contrast, we formally prove that a transformer implements an algorithm.307

[29] proves that, in a significantly simplified 2-layer, 1-head attention-only transformer model and for308

the task of in-context bigram statistics, gradient descent will create induction heads [30]. Our results309

concern transformers with fixed weights. In concurrent work, Michaud et al. [24] use techniques310

inspired by mechanistic interpretability to perform automated program synthesis on 2-dimensional311

RNNs, while our work works with significantly larger transformer models.312

7 Conclusion and Future Work313

Summary In this work, we used a max-of-k setting to prototype using mechanistic interpretability314

to derive compact proofs of model behavior. Using varying amounts of understanding, we derive315

more efficient proof computations lower bounding model accuracy. We find suggestive evidence that316

mechanistic understanding can compactify proofs, and that we can use the tightness of the lower317

bound to assess the faithfulness our understanding. Finally, we identify compounding structureless318

noise as a key obstacle to deriving compact proofs of model behavior.319

Limitations and future work We study one-layer attention-only transformers on a toy algorithmic320

tasks. Future work should explore the viability of deriving proofs via interpretability using larger321

models featuring MLPs or layernorm on more complex domains. In addition, we were unable to322

significantly compact the part of the proof involving the OV circuit, which future work can explore.323

The proofs we explored in this work also did not lead to qualitatively novel insights; future work324

may be able to derive such insights with improved techniques. Finally, future work can address the325

problem of compounding structureless noise, perhaps by relaxing the worst-case assumption used in326

our pessimal ablations.327
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A Training details489

To train each model, we generate 384,000 random sequences of 4 integers picked uniformly at random,490

corresponding to less than 2.5% of the input distribution. We use AdamW with batch_size = 128,491

lr = 0.001, betas = (0.9, 0.999), weight_decay left at the default 0.01. We train for 1 epoch (3000492

steps). Over our 151 seeds, models trained with this procedure achieve (99.92 ± 0.15)% train493

accuracy and a loss of 0.004 ± 0.008. (Numbers reported as mean across training runs ± std dev494

across training runs of mean accuracy and loss.) When qualitatively examining a single model (for495

example in Subsection 3.1 or Appendix C), we use the model with config seed 123, model seed496

613947648 (which is deterministically pseudorandomly derived from 123).497

As our models as sufficiently small, we did not have to use any GPUs to accelerate training our498

inference. Each training run takes less than a single CPU-hour to complete. In total, the experiments499

in this paper took less than 1000 CPU-hours in total.500

We use the folllowing software packages in our work: [31, 20, 27, 35, 41? , 44]501
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B Mathematical defintions502

On the following page, we provide a detailed breakdown of the mathematical notation used in the503

appendix. Note that while in the main body,M(x) referred to the pre-softmax output logits, in the504

appendix we abuse notation and occasionally use it to refer to maximum token indicated by the logits505

where appropriate.506
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Figure 6: Definitions of the model behavior

Let d =
√
d, et = (E)t, pi = (P )i, α be the pre-softmax attention scores, ℓEU be the contribution

to the logits from the skip connection, ℓk be the contributions to the logits via attention to the input
token at index k, ℓ be the logits of the model, ∆ℓt be the difference between the logit of token t and
the maximum token, andM be the model output:

EQKE(x−1, xi) :=
1√
d
(ex−1

+ p−1)QKTeTxi

EQKP(x−1, i) :=
1√
d
(ex−1 + p−1)QKTpT

i

α(x−1, xi, i) := EQKE(x−1, xi) + EQKP(x−1, i)

α∗
k(x) :=

1∑
i e

α(x−1,xi,i)
eα(x−1,xk,k)

EVOU(xk) := exk
V OU

PVOU(k) := pkV OU

EPVOU(xk, k) := EVOU(xk) + PVOU(k)

ℓEU(x−1) := (ex−1 + p−1)U

ℓk(x) := α∗
k(x)EPVOU(xk, k)

ℓEVOU,k(x) := α∗
k(x)EVOU(xk)

ℓPVOU,k(x) := α∗
k(x)PVOU(k)

M(x) := ℓ(x) := ℓEU(x−1) +
∑nctx−1

k=0 ℓk(x)

∆ℓt(x) := ℓ(x)t − ℓ(x)maxi xi

∆ℓEU
t (x−1,max

i
xi) := ℓEU(x−1)t − ℓEU(x−1)maxi xi

∆ℓkt (x) := ℓk(x)t − ℓk(x)maxi xi

∆ℓEVOU,k
t (x) := ℓEVOU,k(x)t − ℓEVOU,k(x)maxi xi

∆ℓPVOU,k
t (x) := ℓPVOU,k(x)t − ℓPVOU,k(x)maxi xi

∆ℓ(x) := max
i ̸=maxj xj

∆ℓi(x)

∆ℓEU(x−1,max
i

xi) := max
j ̸=maxi xi

∆ℓEU
i (x−1,max

i
xi)

∆ℓk(x) := max
i ̸=maxj xj

∆ℓki (x)

∆ℓEVOU,k(x) := max
i ̸=maxj xj

∆ℓEVOU,k
i (x)

∆ℓPVOU,k(x) := max
i ̸=maxj xj

∆ℓPVOU,k
i (x)

We might also inline the equations and write

α(x−1, xi, i) :=
1√
d
(ex−1

+ p−1)QKT (exi
+ pi)

T

M(x) := ℓ(x) :=
1∑

i e
α(x−1,xi,i)

nctx−1∑
k=0

[
eα(x−1,xk,k)(exk

+ pk)V OU
]
+ (ex−1

+ p−1)U
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C Additional details supporting our mechanistic interpretation of the model.507

We provide heatmaps of the matrices corresponding to the five components described/defined in 3,508

for the mainline model.
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Figure 7: The QK circuit can be decomposed into the position-independent and position-dependent components
EQKE and EQKP, and computes the pre-softmax attention score for the model. The positional contribution to
the attention score, as shown in (b), is minimal. In figure (a), the gradient from left to right along the key axis
indicates that the single attention head pays more attention to larger tokens. The uniformity along the query axis
suggests that this behavior is largely independent of the query token. Further, the light and dark bands imply that
some queries are better than others at focusing more on larger tokens.
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Figure 8: The OV circuit is a sum of EVOU and PVOU. In figure (a) we see that EVOU “copies” — with the
exception of input tokens 5 and under — by virtue of the fact that above 5, the diagonal is larger than all the
other elements in the same row. We see that the range on figure (b) is much smaller than figure (a), incidcating
that positional contribution to the copying is minimal.
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Figure 9: Direct Path = tquery(EqU). These values matter a bit more that PVOU, being only ≈ 10× smaller
than the typical EVOU difference. They don’t matter that much, though, being so small. Additionally, the
vertical banding indicates that the primary effect of this is a largely-query-independent bias towards larger
numbers, reflecting the fact that the input distribution is biased towards larger numbers being the maximum. The
weak diagonal pattern indicates a slight bias towards upweighting the query token itself as a (possible) maximum
token.

D Brute-force proof510

Theorem 1.

Ex∼U(0,1,...,dvocab−1)nctx

[
M(x) = max

i
xi

]
≥ BRUTE-FORCE(dvocab, nctx)

Proof. By definition and reflexivity of ≥.511

Algorithm 1 Counting Correct Sequences By Brute Force

1: function CORRECTNESS(input-sequence)
2: return MODEL-BEHAVIOR(input-sequence) == MAX(input-sequence)
3: end function
4: function BRUTE-FORCE(dvocab, nctx)
5: return SUM(CORRECTNESS(tokens) for tokens ∈ (RANGE(dvocab))

nctx ) / dvocab
nctx

6: end function

E Details of cubic proof512

In this section, we prove formally the result used in Subsection 4.1, A cubic proof.513

At its heart, the convexity of softmax is an extension to a simple idea: a weighted average of scalar514

values is extremized by putting 100% of the weight on an extremal value.515

Using this simple version of the theorem, however, gives a useless bound of 0% accuracy: if we pay516

no attention to the maximum of the sequence, of course we’re going to get the wrong answer. Since517

in fact the space of possible weightings we may see in practice is much smaller (finite, in fact, with518

at most dvocab
nctx values), we may look for a more general version of this idea that gives us tighter519

bounds that still cover the space of possible weightings.520

Since the weights are not linearly independently choosable (softmax is non-linear), extremal values521

do not necessarily result from putting maximal attention on the worst token: it may be, when trying522

to find the worst case, that some positions are so dis-preferred that it makes more sense to choose a523

token that is “less bad” for those positions, if it draws enough attention away from the correct token.524

See Lemma 3 for details.525

We thus spend this section characterizing a relaxation of the constraints on weights:526
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1. that contains all actually possible weightings,527

2. that is extremized at weights that still correspond to some notion of “put the most weight on528

the extremal tokens”, and529

3. for which computing the extremal weightings is computationally efficient.530

Before diving in, let’s recall the proof that a weighted average of scalar values is extremized by531

putting 100% of the weight on extremal values:532

Theorem 2 (Extremizing weighted averages). Fix a set of values vi ∈ R. The weighted average is533

bounded by the extremal values: for any wi such that
∑

i wi = 1 and 0 ≤ wi ≤ 1,534

min
i

vi ≤
∑
i

wivi ≤ max
i

vi

Proof. The proof is simple. We have535 ∑
i

wivi −min
i

vi =
∑
i

wi(vi −min
j

vj) ≥ 0

and536

max
i

vi −
∑
i

wivi =
∑
i

wi(max
j

vj − vi) ≥ 0

so the result follows.537

E.1 Proof strategy538

Outputting the correct behavior is equivalent to outputting logits ℓ such that ∆ℓt′ := ℓt′ − ℓmax < 0539

for all t′ ̸= max. As a result, it suffices to lower-bound the proportion of sequences where (an upper540

bound on) the logit difference is negative for all non-max outputs. In particular, we will upper-bound541

the contribution from incorrect tokens t to the logit difference between incorrect (t′) and correct542

(max) tokens ∆ℓt′ = ℓtt′ − ℓtmax.543

We do this by arguing that the logit difference ∆ℓt′ satisfies a certain notion of convexity over the544

space of a relaxation of sequences (Theorem 6), and constructing a set of Θ(dvocab
3nctx) “extremal”545

relaxed sequences where the position and token embedding components of attention are pessimized546

independently.547

We start by first rewriting the contribution of each token through the attention head to the logit548

difference into the contributions involving PVOU and EVOU:549

∆ℓkt (x) = ∆ℓPVOU,k
t (x) + ∆ℓEVOU,k

t (x)

We then upper bound ∆ℓPVOU,k
t (x) by noting that because the softmax attention is a weighted average550

of PVOU,551

∆ℓPVOU,k
t (x) = ℓPVOU,k(x)t − ℓPVOU,k(x)maxj xj

= α∗
k(x)PVOUk,t − α∗

k(x)PVOUk,maxj xj

= α∗
k(x)

(
PVOUk,t − PVOUk,maxj xj

)
≤ α∗

k(x)max
k

(
PVOUk,t − PVOUk,maxj xj

)
Since

∑
k α

∗
k(x) = 1, we have552

nctx−1∑
k=0

∆ℓPVOU,k
t (x) ≤ max

k

(
PVOUk,t − PVOUk,maxj xj

)
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We then construct a set Ξ of “pure sequences" consisting of only three types of tokens in one of two553

orders, and show that for each input sequence x and readoff logit t, we bound the logit difference554

from the token embeddings ∆ℓEVOU,k
t (x) using a small subset X of Ξ:555

nctx−1∑
k=0

∆ℓEVOU,k
t (x) ≤ max

ξ∈X

nctx−1∑
k=0

∆ℓEVOU,k
t (ξ)

We construct a setRrelaxed of relaxed sequences, where each relaxed sequence consists of a sequence556

and a position r = (x, i), where ∆ℓt(x, i) is evaluated by separately considering the positional557

contribution through attention (that is, the attention weighted PVOU) and the token contribution558

(that is, the attention-weighted EVOU) and direct contribution (the logit difference through the skip559

connection (etquery + p−1)U ).560

Note that i indicates the position that pay 100% of the attention to for the PVOU contribution.561

We argue that ∆ℓt(x, i) satisfies a certain notion of convexity over mixtures of sequences, such562

that we can evaluate it only on a set of Θ(dvocab
3nctx) “extremal” sequences in a way that takes563

O(dvocab
3nctx) total time to bound ∆ℓt(x, i) for every possible input sequence.564

We then use the extremal sequences that the model gets correct to lower bound the proportion of all565

sequences that the model will get correct.566

Specifically, we argue that Algorithm 3 provides a valid lower bound on the proportion of sequences567

the model gets correct.568

E.2 Proof outline569

We now proceed to the main results of this section.570

Math fact: For each token t, the logit difference ∆ℓt for any sequence x can be decomposed into the571

direct contribution from the embeds ℓEU, the attention-weighted position contribution (PVOU), and572

the attention-weighted token contribution (EVOU). Therefore, it suffices to upper bound each of the573

three components independently, since summing these upper bounds gives a valid upper bound on574

the logit difference.575

We can compute the direct contribution ℓEU exactly by first computing (etquery +p−1)U = (P +E)U576

and then, for each max, subtracting the logit of the max token from each row of the matrix. No577

theorems needed.578

For each max token, we can bound the position contribution by its maximum over positions (Theo-579

rem 6).580

In order to upper bound the token contribution, we argue that any mixed sequence will be upper581

bounded by the maximum of the corresponding pure sequences (Theorem 7). We then argue that for582

pure sequences, it suffices to consider orderings where same tokens appear contiguously (Theorem 4).583

E.3 Formal proof584

For this subsection, all theorems are parameterized over the following quantities. Fix a token value585

function (à la a row difference in EVOU) v : N → R and a token attention function (à la EQKE586

for a fixed query token) a : N→ R. Fix a position value function (à la a row difference in PVOU)587

w : N→ R and a position attention function (à la EQKP for a fixed query token) b : N→ R.588

Definition 1. We can define a sequence of tokens via sorted tokens and a position permutation589

by specifying a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N<dvocab paired with a590

permutation σ : N<nctx → N<nctx .591

Definition 2. Given a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N<dvocab and a592

permutation σ : N<nctx → N<nctx define the sequence score st0,...,tnctx−1,σ as:593

st0,...,tnctx−1,σ :=
∑

0≤i<nctx

vtie
ati

+bσ(i)

/ ∑
0≤i<nctx

eati
+bσ(i)

We will drop the token subscript, writing only sσ , when the token values are unambiguous by context.594
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Definition 3. Given a permutation σ : N<nctx → N<nctx of the nctx positions and two indices595

0 ≤ i, j < nctx, define the swap permutation σi↔j to be the permutation that is σ except swapping i596

and j:597

σi↔j(k) =


σ(i) if k = j

σ(j) if k = i

σ(k) otherwise

Lemma 3 (Characterization of swapping tokens). Fix a non-decreasing sequence of tokens t0 ≤598

· · · ≤ tnctx−1 ∈ N. Fix σ : N→ N be a permutation of the nctx positions. Fix indices 0 ≤ i, j < nctx.599

Define ∆σ,i↔j to be the difference in sequence scores when you swap i and j:600

∆σ,i↔j := sσi↔j − sσ

Then there are two cases for sign (∆σ,i↔j):601

1. If ati = atj then sign (∆σ,i↔j) = − sign
(
bσ(i) − bσ(j)

)
sign

(
vti − vtj

)
.602

2. Otherwise, sign (∆σ,i↔j) = sign
(
ati − atj

)
sign

(
bσ(i) − bσ(j)

)
sign

(
sσ −

vtie
ati −vtj e

atj

e
ati −e

atj

)
.603

Intuitively, Lemma 3 says that, if the token contribution to attention is equal between tokens ti and604

tj , then the impact of swapping their positions σ(i) and σ(j) is entirely determined by how much605

attention is paid to the positions of i and j and the relative difference in their value. (Notably, by606

swapping these tokens, we don’t affect the attention paid on other tokens, and so the effect of the607

change does not depend on the values of the other tokens.) Alternatively, if the attentions are not608

equal, then swapping the positions changes the allocation of attention to other tokens in the sequence,609

and so it may the case that this change in allocation in attention dominates the attention-weighted610

values of these two tokens.611

Proof. First note that the theorem is trivial for i = j.612

For the rest of the proof, we take i ̸= j.613

The proof proceeds just by algebraic manipulation with no deep insight. We first list the facts we use,614

the proceed to computing sign (∆σ,i↔j). We abbreviate σi↔j as σ′ for brevity.615

sign
(
ebσ(i) − ebσ(j)

)
= sign

(
bσ(i) − bσ(j)

)
616

sign (∆σ,i↔j) = sign (sσ′ − sσ)

= sign

(∑
0≤p<nctx

vtpe
atp+bσ′(p)∑

0≤p<nctx
eatp+bσ′(p)

− sσ

)
Now multiply through by the denominator, which is positive617

= sign

 ∑
0≤p<nctx

vtpe
atp+bσ′(p) − sσ

∑
0≤p<nctx

eatp+bσ′(p)


= sign

 ∑
0≤p<nctx

vtpe
atp+bσ(p) − vtie

ati

(
ebσ(i) − ebσ′(i)

)
− vtje

atj
(
ebσ(j) − ebσ′(j)

)

− sσ
∑

0≤p<nctx

eatp+bσ(p) + sσe
ati

(
ebσ(i) − ebσ′(i)

)
+ sσe

atj
(
ebσ(j) − ebσ′(j)

)
= sign


���������∑
0≤p<nctx

vtpe
atp+bσ(p) − vtie

ati

(
ebσ(i) − ebσ(j)

)
− vtje

atj
(
ebσ(j) − ebσ(i)

)
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−
���������∑
0≤p<nctx

vtpe
atp+bσ(p) + sσe

ati

(
ebσ(i) − ebσ(j)

)
+ sσe

atj
(
ebσ(j) − ebσ(i)

)
= sign

((
vtje

atj − vtie
ati

) (
ebσ(i) − ebσ(j)

)
+ sσ (e

ati − eatj )
(
ebσ(i) − ebσ(j)

))
= sign

(
ebσ(i) − ebσ(j)

)
sign

((
vtje

atj − vtie
ati

)
+ sσ (e

ati − eatj )
)

= sign
(
bσ(i) − bσ(j)

)
sign

(
sσ (e

ati − eatj )−
(
vtie

ati − vtje
atj
))

Divide through by non-zero values when possible618

= sign
(
bσ(i) − bσ(j)

)
·

sign
(
vti − vtj

)
if ati = atj

sign (eati − eatj ) sign

(
sσ −

vtie
ati−vtj e

atj

e
ati −e

atj

)
otherwise

=

− sign
(
bσ(i) − bσ(j)

)
sign

(
vti − vtj

)
if ati = atj

sign
(
ati − atj

)
sign

(
bσ(i) − bσ(j)

)
sign

(
sσ −

vtie
ati−vtj e

atj

e
ati−e

atj

)
otherwise

619

Definition 4. Fix a set of fixed indices F ⊆ N<nctx and an assigment of token values to each of the620

fixed positions tF : F → N<dvocab . Fix a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N.621

Given a permutation σ : N<nctx → Nnctx , say that σ fixes F (relative to t0, . . . , tnctx−1) if ti = tF (σ(i))622

whenever σ(i) ∈ F .623

Definition 5. Fix a set of fixed indices F ⊆ N<nctx and an assigment of token values to each of the624

fixed positions tF : F → N<dvocab .625

Define the position-sorting permutation fixing indices in F σs : N<nctx → N<nctx to be the permutation626

that sorts the indices not in F according to b: for 0 ≤ i, j < nctx with i, j ̸∈ F , bi ≤ bj whenever627

σs(i) < σs(j); and σs(i) = i for i ∈ F .628

Theorem 4 (Pessimization over sequence ordering is possible and results in contiguous sequences).629

Fix a set of fixed indices F ⊆ N<nctx and an assigment of token values to each of the fixed positions630

tF : F → N<dvocab . Fix a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N.631

Let σmin, σmax : N→ N be permutations of the nctx positions, fixing positions in F , satisfying the632

following property: For all σ : N→ N a permutation fixing F , we have633

sσmin ≤ sσ ≤ sσmax (2)

(Such permutations are guaranteed to exist because the permutation group on nctx elements is finite.)634

Then σmax and σmin may be taken to be contiguous on equal tokens. That is, there exist σmax and σmin635

satisfying the property of Equation 2 which additionally satisfy the property that for 0 ≤ i, j, k < nctx636

with ti = tj ̸= tk and i, j, k ̸∈ σ−1(F ), it is never the case that σs(σ(i)) < σs(σ(k)) < σs(σ(j))637

for σ ∈ {σmax, σmin}.638

The basic idea is that we will assume that one of σmax and σmin cannot be contiguous on equal639

tokens and derive a contradiction. We will pick the extremal permutation that is closest to being640

contiguous, take a contiguity violation, and then show that either we can correct the contiguity641

violation without changing the score—thus violating the presumption that the permutation is closest642

to being contiguous—or we will find one swap of indices that decreases the score and another swap643

of indices that increases the score, thus violating the presumption of extremality.644

In slightly more detail, but still informally, we will consider the sign of the difference between645

scores of our purported extremal permutation and a permutation that has swapped some indices. The646

theorem follows from showing that there exists a triple of indices i, j, k such that the sign of the score647

difference from swapping i and j is different from the sign of the score difference from swapping j648

and k.649

First, a definition and some helpful facts about it.650
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Definition 6. Fix a set of fixed indices F ⊆ N<nctx and an assigment of token values to each of the651

fixed positions tF : F → N<dvocab . Fix a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N.652

Say that a permutation σ is contiguous on equally-attended positions if, for all 0 ≤ i < nctx with653

i ̸∈ σ−1(F ), the sorting order according σs on the contiguous block of positions with contribution654

to the attention score equal to that of σ(i),
{
σ(j)

∣∣ bσ(j) = bσ(i) and σ(j) ̸∈ F
}

, is the same as the655

sorting order according to the fraction of tokens equal to tj with b-values greater than bσ(i), with ties656

broken by the value of tj . Equationally, this second sorting order is defined by the score657 (∣∣{k ∣∣ tk = tj and bσ(k) > bσ(i) and σ(k) ̸∈ F
}∣∣+ tj

dvocab

)/
|{k | tk = tj and σ(k) ̸∈ F}| .

Most importantly, any permutation that is contiguous on equally-attended positions has the property658

that for any indices 0 ≤ i, j, k < nctx with i, j, k ̸∈ σ−1(F ) and ti = tj ̸= tk and σs(σ(i)) <659

σs(σ(k)) < σs(σ(j)), we will have the strict inequality bσ(i) < bσ(k) < bσ(j). Additionally, we660

may always sort equally-attended positions to make any permutation contiguous on equally-attended661

positions.662

We will define an additional notion of contiguity-violations which we avoid up-front by arbitrarily663

swapping involved indices without changing the score sσ .664

Definition 7. Fix a set of fixed indices F ⊆ N<nctx and an assigment of token values to each of the665

fixed positions tF : F → N<dvocab . Fix a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N.666

Say that a permutation σ is needlessly non-contiguous at i, j, k (for i, j, k ̸∈ σ−1(F )) if ∆σ,i↔k = 0667

or ∆σ,j↔k = 0, for 0 ≤ i, j, k < nctx with i, j, k ̸∈ σ−1(F ) with ti = tj ̸= tk and σs(σ(i)) <668

σs(σ(k)) < σs(σ(j)).669

Say that a permutation σ is needlessly non-contiguous if it is needlessly non-contiguous at any670

i, j, k ̸∈ σ−1(F ).671

Lemma 5. Fix a set of fixed indices F ⊆ N<nctx and an assigment of token values to each of the fixed672

positions tF : F → N<dvocab . Fix a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N.673

Any needlessly non-contiguous sequence σ which fixes F can be made into a sequence σ′ which674

still fixes F and is both simultaneously contiguous on equally-attended positions and not needlessly675

non-contiguous, and for which sσ = sσ′ .676

Proof. First, sort regions of equally-attended positions to make σ contiguous on equally-attended677

positions. If the resulting permutation is not needlessly non-contiguous, then we are done.678

Otherwise, we have ∆σ,i↔k = 0 or ∆σ,j↔k = 0 for some i, j, k, for 0 ≤ i, j, k < nctx with679

i, j, n ̸∈ σ−1(F ) and ti = tj ̸= tk and σs(σ(i)) < σs(σ(k)) < σs(σ(j)). Since the sequence is680

contiguous on equally-attended positions, we have the strict inequality bσ(i) < bσ(k) < bσ(j).681

By Lemma 3, we have two cases. Noting that ti = tj , we can write them as682

1. vtk = vti and ati = atk683

2. ati ̸= atk and sσ =
vtie

ati −vtke
atk

e
ati−e

atk
684

In the first case, we may fully freely interchange tokens equal to ti with tokens equal to tk without685

changing the score; in this case we may use the token value as a sorting tie-breaker and swap tokens686

until there are no more needlessly non-contiguous triples falling into case (1).687

In the second case, since swapping tokens does not change sσ , the property will continue to hold for688

these tokens after the swap. We may then swap tokens, again using token value as a tie-breaker, until689

there are no more needlessly non-contiguous triples falling into case (2).690

We can now finally make our argument for Theorem 4 more precise.691

Proof of Theorem 4. Choose σmax and σmin to be contiguous on equally-attended positions and692

not needlessly non-contiguous, and suppose that we have σ ∈ {σmax, σmin} such that for some693
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0 ≤ i, j, k < nctx with i, j, k ̸∈ σ−1(F ) and ti = tj ̸= tk, we have bσ(i) < bσ(k) < bσ(j). We will694

derive a contradiction with the presumption that σ is extremal by showing that we can swap i and k695

to change the score in one direction and that we can swap j and k to change the score in the other696

direction.697

Take σ′
0 to be σ but swapping i and k, and take σ′

1 to be σ but swapping j and k.698

Now we will consider the cases for the sign of the score difference ∆0 := sσ′
0
−sσ and ∆1 := sσ′

1
−sσ .699

By the presumption of not being needlessly non-contiguous, ∆z ̸= 0 for z ∈ {0, 1}. If we can show700

that the sign of ∆0 is distinct from the sign of ∆1, then we will have a contradiction with extremality701

because we will have either sσ′
0
< sσ < sσ′

1
or sσ′

1
< sσ < sσ′

0
. That is, we would be able to swap702

i↔ k and j ↔ k to get a lower and higher score, making σ not extremal.703

Noting that ti = tj ,704

sign (∆0) = sign
(
bσ(i) − bσ(k)

){sign (vtk − vti) if ati = atk

sign (ati − atk) sign
(
sσ − vtie

ati−vtke
atk

e
ati −e

atk

)
otherwise

sign (∆1) = sign
(
bσ(j) − bσ(k)

){sign (vtk − vti) if ati = atk

sign (ati − atk) sign
(
sσ − vtie

ati−vtke
atk

e
ati −e

atk

)
otherwise

Noting that the product is non-zero by presumption, that right multiplicand is equal for ∆0 and ∆1,705

and sign
(
bσ(i) − bσ(k)

)
= −1 and sign

(
bσ(j) − bσ(k)

)
= 1, we have our desired contradiction.706

Note that the proof of Theorem 4 does not go through if we include the position value function w in707

the score, because we may trade off the position value function against the token value function. We708

now show that we can independently pessimize over positional attention.709

Definition 8. Given a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N<dvocab and a710

permutation σ : N<nctx → N<nctx define the full sequence score s′t0,...,tnctx−1,σ as:711

st0,...,tnctx−1,σ :=
∑

0≤i<nctx

(vti + wσ(i))e
ati

+bσ(i)

/ ∑
0≤i<nctx

eati
+bσ(i)

We will drop the token subscript, writing only s′σ , when the token values are unambiguous by context.712

Theorem 6 (Independent pessimization over positional contributions is possible). Fix a set of fixed713

indices F ⊆ N<nctx and an assigment of token values to each of the fixed positions tF : F → N<dvocab .714

Fix a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N. Let σmin, σmax : N→ N be as in715

Theorem 4.716

Define relaxed extremal sequence scores rσmax
, rσmin

:717

rσmin
:= sσmin

+ min
0≤i<nctx

wi

rσmax
:= sσmax

+ max
0≤i<nctx

wi

Then rσmin ≤ s′σmin
and s′σmax

≤ rσmax .718

Proof. This proof follows straightforwardly from the softmax weighting being an affine weighting.719

s′σ =
∑

0≤i<nctx

(vti + wσ(i))e
ati

+bσ(i)

/ ∑
0≤i<nctx

eati
+bσ(i)

=

∑
i vtie

ati
+bσ(i)∑

i e
ati

+bσ(i)
+

∑
i wσ(i)e

ati
+bσ(i)∑

i e
ati

+bσ(i)

= sσ +

∑
i wσ(i)e

ati
+bσ(i)∑

i e
ati

+bσ(i)
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= sσ +
∑
i

wσ(i)
eati

+bσ(i)∑
j e

ati
+bσ(i)

720

sσ +
∑
i

wσ(i)
eati

+bσ(i)∑
j e

ati
+bσ(i)

= s′σ = sσ +
∑
i

wσ(i)
eati

+bσ(i)∑
j e

ati
+bσ(i)

sσ +min
k

wσ(k)

∑
i

eati
+bσ(i)∑

j e
ati

+bσ(i)
≤ s′σ ≤ sσ +max

k
wσ(k)

∑
i

eati
+bσ(i)∑

j e
ati

+bσ(i)

Since721 ∑
i

eati
+bσ(i)∑

j e
ati

+bσ(i)
=

∑
i e

ati
+bσ(i)∑

j e
ati

+bσ(i)
= 1

we get722

sσ +min
k

wσ(k) ≤ s′σ ≤ sσ +max
k

wσ(k)

and hence rσmin
≤ s′σmin

and s′σmax
≤ rσmax

as desired.723

Theorem 7 (For a fixed ordering, softmax is convex over token counts and only pure sequences need724

be considered). Fix a set of fixed indices F ⊆ N<nctx and an assigment of token values to each of the725

fixed positions tF : F → N<dvocab . Let n denote the number of fixed positions: n := |F |. Fix a set726

S ⊆ N<dvocab of valid other tokens in the sequence.727

Define a comparison on non-negative integers less than dvocab:728

c :=
∑
i∈F

vtF (i)e
atF (i)+bi d :=

∑
i∈F

eatF (i)+bi f :=
∑

0≤i<nctx
i ̸∈F

ebi

729

cmp(x, y) := sign
(
d(eaxvx − eayvy)− c(eax − eay ) + feax+ay

(
vxe

ax+ay − vye
ax+ay

))
Let tmin and tmax be the minimum and maximum elements of S according to cmp.6730

For a given choice of a non-decreasing sequence of tokens t0 ≤ · · · ≤ tnctx−1 ∈ N compatible with F731

and S and a given choice of permutation σ : N→ N of the nctx positions fixing F (ti = tF (σ(i)) for732

σ(i) ∈ F ; and ti ∈ S for σ(i) ̸∈ F ): let sσ,min (and sσ,max) denote st0,...,tnctx−1,σ when ti = tmin733

for all σ(i) ̸∈ F (or tmax, respectively).734

Then for all such choices of sequence-permutation pairs,735

sσ,min ≤ st0,...,tnctx−1,σ ≤ sσ,max.

This theorem follows by chaining two lemmas: that scores are extremized by considering pure736

sequences, and that the extremal pure sequences match the comparison function defined in the737

theorem statement.738

Lemma 8 (Sequences scores are extremized on purer sequences). Fix all the same quantities as in739

Theorem 7.740

For any indices 0 ≤ i < j < nctx, token values x, y ∈ S, the score for a sequence with ti = x ̸= y =741

tj is bounded on both sides by sequences with ti = tj = x and ti = tj = y.742

Proof. Let sα,β be the sequence score with ti = α and tj = β, and define the score differences743

∆x := sx,x − sx,y and ∆y := sy,y − sx,y. It sufficies to show that sign(∆x∆y) ≤ 0. To show this,744

we must only compute the sign of ∆α for α ∈ {x, y} and show that whenever both ∆x and ∆y are745

non-zero, they have opposite signs.746

We proceed by computation after defining some convenience variables for brevity:747

C :=
∑

0≤k<nctx
k ̸=i,j

vtke
atk

+bσ(k) D :=
∑

0≤k<nctx
k ̸=i,j

eatk
+bσ(k)

6We will prove that cmp is transitive in the process of proving this theorem.
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748

α̃ :=

{
x if α = y

y if α = x
iα :=

{
i if α = x

j if α = y
iα̃ :=

{
i if α̃ = x

j if α̃ = y
749

sign (∆α) = sign

(
vαe

aα+bσ(i) + vαe
aα+bσ(j) + C

eaα+bσ(i) + eaα+bσ(j) +D
− vxe

ax+bσ(i) + vye
ay+bσ(j) + C

eax+bσ(i) + eay+bσ(j) +D

)
= sign

(
vαe

aα+bσ(iα) + vαe
aα+bσ(iα̃) + C

eaα+bσ(iα) + eaα+bσ(iα̃) +D
− vαe

aα+bσ(iα) + vα̃e
aα̃+bσ(iα̃) + C

eaα+bσ(iα) + eaα̃+bσ(iα̃) +D

)
Multiply through by positive denominators and simplify750

= sign
(
C
(
e
aα̃+bσ(iα̃) − e

bσ(iα̃)+aα

)
+D

(
vαe

bσ(iα̃)+aα − vα̃e
aα̃+bσ(iα̃)

)
+ vα

(
e
bσ(iα̃) + ebσ(iα)

)
e
aα̃+bσ(iα̃)+aα − vα̃

(
e
bσ(iα̃) + ebσ(iα)

)
e
aα̃+bσ(iα̃)+aα

)
Pulling out ebσ(iα̃)751

= sign
(
eaα̃+aα

(
e
bσ(iα̃) + ebσ(iα)

)
(vα − vα̃) + C (eaα̃ − eaα) +D (eaαvα − eaα̃vα̃)

)
Note that swapping α and α̃ negates the sign. Hence, we have sign(∆x) = − sign(∆y) and hence752

sx,x ≤ sx,y ≤ sy,y or sy,y ≤ sx,y ≤ sx,x as desired.753

Lemma 9 (Pure sequences are sorted according to cmp in Theorem 7). Fix all the same quantities as754

in Theorem 7.755

Fix tokens x, y ∈ S. Let n := |F | be the number of non-fixed tokens. Fix sequences with n copies756

of x and y respectively: fix tx,0 ≤ · · · ≤ tx,nctx−1 ∈ N and ty,0 ≤ · · · ≤ ty,nctx−1 ∈ N compatible757

with F and S and given choices of permutations σx, σy : N → N of the nctx positions fixing F :758

tx,i = tF (σx(i)) for σx(i) ∈ F ; ty,i = tF (σy(i)) for σy(i) ∈ F ; tx,i = x for σx(i) ̸∈ F ; and759

ty,i = y for σy(i) ̸∈ F .760

Then761

sign((sσx,tx,0,...,tx,nctx−1
)− (sσy,ty,0,...,ty,nctx−1

)) = cmp(x, y)

Proof. The proof goes by straightforward computation.762

sign((sσx,tx,0,...,tx,nctx−1
)− (sσy,ty,0,...,ty,nctx−1

))

= sign

(
vxe

axf + c

eaxf + d
− vye

ayf + c

eayf + d

)
Multiply through by non-negative denominators763

= sign ((vxe
axf + c) (eayf + d)− (vye

ayf + c) (eaxf + d))

= sign
(
−cfeax + cfeay + dfvxe

ax − dfvye
ay + f2vxe

ax+ay − f2vye
ax+ay

)
Use f > 0764

= sign
(
−ceax + ceay + dvxe

ax − dvye
ay + fvxe

ax+ay − fvye
ax+ay

)
= sign

(
c (eay − eax) + d (vxe

ax − vye
ay ) + f

(
vxe

ax+ay − vye
ax+ay

))
= cmp(x, y)

765

Corollary 10. Define the relation ≤cmp by x ≤cmp y if and only if cmp(x, y) ∈ {−1, 0}. The766

relation ≤cmp is always transitive.767

Proof. Note that by Lemma 9, cmp is comparing two sequence scores. Since ≤ is transitive over the768

reals, the relation ≤cmp is also transitive.769
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Figure 10: Recapitualtion of some relevant definitions from Figure 6

Let d =
√
d, et = (E)t, pi = (P )i:

EQKE(x−1, xi) :=
1√
d
(ex−1 + p−1)QKTeTxi

EQKP(x−1, i) :=
1√
d
(ex−1

+ p−1)QKTpT
i

EVOU(xk) := exk
V OU

PVOU(k) := pkV OU

ℓEU(x−1) := (ex−1 + p−1)U

∆ℓEU
t (x−1,max

i
xi) := ℓEU(x−1)t − ℓEU(x−1)maxi xi

Finally, we combine the previous lemmas to complete our proof of Theorem 7:770

Proof of Theorem 7. Extremal sequences with scores sσ,min and sσ,max are guaranteed to exist771

because there are only finitely many elements of S and therefore only finitely many sequences.772

By Lemma 8, the extremal sequences must be pure (have ti = tj whenever σ(i), σ(j) ̸∈ F ). By773

Lemma 9, the extremal sequences must have tokens that are extremal according to cmp.774

Algorithm 2 Counting Correct Sequences in Cubic Time, Full Version: Preliminaries

1: function CORRECTNESS(input-sequence)
2: return MODEL-BEHAVIOR(input-sequence) == MAX(input-sequence)
3: end function
4: function MODEL-BEHAVIOR(input-sequence)

Require: input-sequence is a tensor of shape (nctx, ) with values in N<dvocab

5: tmax ← MAX(input-sequence) ▷ tmax ← max-token
6: x← input-sequence
7: skip-scoret ← ∆ℓEU

t (xnctx−1, tmax)
8: attn-weights-unscaledk ← EQKE(xnctx−1, xk) + EQKP(xnctx−1, k)
9: attn-weights← SOFTMAX(attn-weights-unscaled)

10: vk ← EVOU(xk)
11: wk ← PVOU(k)
12: ∆vk,i ← vk,i − vk,tmax

13: ∆wk,i ← wk,i − wk,tmax

14: return maxi̸=tmax(skip-scorei +
∑nctx−1

k=0 (∆vk,i +∆wk,i) · attn-weightsk)
15: end function
16: function CORRECTNESS-PESSIMIZING-OVER-POSITION-SLOW(input-sequence)
17: x← input-sequence
18: return ALL(CORRECTNESS(perm + [x−1]) for all perm ∈ PERMUTATIONS(x0:−1))
19: end function

Theorem 11.

Ex∼U(0,1,...,dvocab−1)nctx

[
M(x) = max

i
xi

]
≥ CUBIC(dvocab, nctx)

Proof. (sketch) Apply the previous theorems and lemmas to Algorithm 3.775

Theorem 12. The running time of Algorithm 3, after using caching to avoid duplicate computations,776

is O(dvocab
3nctx

2).777

Proof. The nested loops in CUBIC execute the innermost body O(dvocab
2nctx) times, and the778

summation on Line 42 costs O(nctx) per iteration. What remains is to show that the call779
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Algorithm 3 Counting Correct Sequences in Cubic Time, Full Version. Lines are annotated with
comments indicating the parameters for a cache to avoid duplicate computations.

1: function MODEL-BEHAVIOR-RELAXED(query-tok, max-tok, non-max-tok, n-copies-nonmax)
2: tquery ← query-tok, tmax ← max-tok, t′ ← non-max-tok, c← n-copies-nonmax

Require: 0 ≤ tquery ≤ tmax < dvocab, 0 ≤ t′ ≤ tmax < dvocab, 0 ≤ c < nctx
Require: if n-copies-nonmax = 0 then non-max-tok = max-tok
Require: if query-tok ̸= max-tok then n-copies-nonmax < nctx − 1
Ensure: return ≥ MODEL-BEHAVIOR(x) for all x with specified tquery, c copies of t′ in non-query

positions, and the remainder of the tokens equal to tmax
3: skip-scoret ← ∆ℓEU

t (tquery, tmax) ▷ Cache by tmax, tquery, t
4: wk ← PVOU(k) for 0 ≤ k < nctx ▷ Cache by k
5: ∆wmax,i ← max0≤k<nctx(wk,i − wk,tmax) ▷ Cache by tmax, i
6: vk ← EVOU(k), ∆vk,i ← vk,i − vk,tmax for k ∈ {tquery, tmax, t

′} ▷ Cache by tmax, k, i
7: ak ← EQKE(tquery, k) for k ∈ {tquery, tmax, t

′} ▷ Cache by tquery, k
8: bnctx−1 ← EQKP(tquery, nctx − 1) ▷ Cache by tquery
9: b:−1 ← SORT(EQKP(tquery, : −1)) ▷ Cache by tquery, k

10: attn-weights-unscaled:,nctx−1 ← atquery + bnctx−1 ▷ Cache by tquery
11: attn-weights-unscaled0,k ← atmax + bk−c for c ≤ k < nctx − 1 ▷ Cache by tquery, tmax, k, c
12: attn-weights-unscaled1,k ← atmax + bk for c ≤ k < nctx − 1 ▷ Cache by tquery, tmax, k, c
13: attn-weights-unscaled0,k ← at′ + bc+k for 0 ≤ k < nctx − 1− c ▷ Cache by tquery, t′, k, c
14: attn-weights-unscaled1,k ← at′ + bk for 0 ≤ k < nctx − 1− c ▷ Cache by tquery, t′, k, c
15: attn-weights0 ← SOFTMAX(attn-weights-unscaled0) ▷ Cache by tquery, tmax, t′, k, c
16: attn-weights1 ← SOFTMAX(attn-weights-unscaled1) ▷ Cache by tquery, tmax, t′, k, c
17: if c = 0 then ▷ In this case, attn-weights0,k = attn-weights1,k, so we drop the first subscript
18: return maxi ̸=tmax(skip-scorei +∆wmax,i +

∑nctx−1
k=0 ∆vk,i · attn-weightsk)

19: else
20: ∆vk,i ← ∆vtquery,i for c ≤ k < nctx − 1
21: ∆vk,i ← ∆vt′,i for c ≤ k < nctx − 1
22: ∆vnctx−1,i ← ∆vtquery,nctx−1

23: return maxi ̸=tmax skip-scorei+max

{∑nctx−1
k=0 maxi ̸=tmax(∆wmax,i +∆vk,i) · attn-weights0,k∑nctx−1
k=0 maxi ̸=tmax(∆wmax,i +∆vk,i) · attn-weights1,k

24: end if
25: end function
26: function RELAXED-CORRECTNESS-PESSIMIZING-OVER-POSITION(tquery, tmax, t′, c)
27: ▷ runs the model on a relaxed variant of input sequences compatible with the arguments
Ensure: return is False if CORRECTNESS-PESSIMIZING-OVER-POSITION-SLOW(x) is False for

any x with specified tquery, c copies of t′ in non-query positions, and the remainder of the tokens
equal to tmax

28: return MODEL-BEHAVIOR-RELAXED(tquery, tmax, t
′, c) < 0

29: end function
30: function CUBIC(dvocab, nctx)
31: count← 0 ▷ # of correct sequences
32: for tmax ∈ RANGE(dvocab) do ▷ tmax ← max-token
33: for 0 ≤ tquery ≤ tmax do ▷ tquery ← query-token
34: cmax ← nctx − 1 if tquery = tmax else nctx − 2 ▷ maximum copies of nonmax
35: for 0 ≤ c ≤ cmax do ▷ number of valid choices for the non-max token
36: RCPOP(χ⃗)← RELAXED-CORRECTNESS-PESSIMIZING-OVER-POSITION(χ⃗)
37: if c = 0 then
38: t-count← 1 if RCPOP(tquery, tmax, tmax, 0) else 0
39: else
40: t-count←∑tmax−1

t′=0 1 if RCPOP(tquery, tmax, t
′, c) else 0

41: end if
42: count← count +

∑c
i=0

(
nctx−1

i

)
· (t-count)i ▷ taking 00 = 1 conventionally

43: end for
44: end for
45: end for
46: return count
47: end function
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to RELAXED-CORRECTNESS-PESSIMIZING-OVER-POSITION(tquery, tmax, t
′, c) costs O(nctx) when780

c ̸= 0 and at most O(dvocabnctx) when c = 0 and t′ = tmax.781

The matrix multiplications in EQKE, EQKP, EVOU, PVOU, and ℓEU can be cached upfront, costing782

O(max(dvocab, dmodel, nctx)
2dmodel) ≤ O(dvocab

3) since we assume dvocab > dmodel and dvocab > nctx.783

The sorting on Line 9 can also be cached upfront (per tquery), costing O(dvocabnctx log nctx).784

Note that each variable assignment in RELAXED-CORRECTNESS-PESSIMIZING-OVER-POSITION can785

be cached into a table parameterized over at most three variables which range over dvocab and over at786

most two variables that range over nctx.787

What remains is the return statements.788

When c = 0, we have on Line 18: return maxi ̸=tmax(skip-scorei + ∆wmax,i +
∑nctx−1

k=0 ∆vk,i ·789

attn-weightsk). This is O(dvocabnctx) as desired.790

When c ̸= 0, we have on Line 23:791

return max
i̸=tmax

skip-scorei +max

{∑nctx−1
k=0 maxi ̸=tmax(∆wmax,i +∆vk,i) · attn-weightsmin,k∑nctx−1
k=0 maxi ̸=tmax(∆wmax,i +∆vk,i) · attn-weightsmax,k

We can cache maxi̸=tmax skip-scorei per tmax and tquery, costing O(dvocab
3nctx). We can cache792

maxi̸=tmax(∆wmax,i + ∆vk,i) per tmax and k costing O(dvocab
2nctx). Finally, we can compute the793

summation in cost O(nctx) per loop iteration, as required.794

F Details of sub-cubic proof795

In this section we fill in the details lacking from Subsection 4.2.796

In Appendix E we proved an intricate version of convexity of softmax where, modulo pessimizing in797

unrealistic ways over the attention paid to positions for the computation done on positional encodings,798

all extremal relaxed sequences correspond to actual sequences.799

When we only get a budget of O(dvocab
2nctx) extremal relaxed cases to consider, though, we must800

pessimize more, which gives us a simpler version of the convexity theorem and proof. Notably, when801

we restrict our sequences to have only two tokens (the max token tmax and the non-max token t′),802

most of the theorems from Appendix E.3 get significantly simpler.803

Additionally, we must pessimize separately over the token value (v) and token attention (b) computa-804

tions in order to allow efficient computation (Theorem 15).805

F.1 Proof of baseline sub-cubic result806

For this subsection, all theorems are parameterized over the following quantities. Fix a token value807

function (à la a row difference in EVOU) v : N → R and a token attention function (à la EQKE808

for a fixed query token) a : N→ R. Fix a position value function (à la a row difference in PVOU)809

w : N→ R and a position attention function (à la EQKP for a fixed query token) b : N→ R. Fix a810

total number of tokens nctx.811

Definition 9. We can define a sequence of tokens via mapping from positions by specifying a subset812

of valid tokens S ⊆ N<dvocab paired with a function T : N<nctx → S specifying which token is in each813

position.814

Definition 10. Given a subset of valid tokens S ⊆ N<dvocab and a function T : N<nctx → S specifying815

which token is in each position, define the sequence score816

sT :=
∑

0≤i<nctx

vT (i)e
aT (i)+bi

/ ∑
0≤i<nctx

eaT (i)+bi

Definition 11. Given a subset of valid tokens S ⊆ N<dvocab and a function T : N<nctx → S specifying817

which token is in each position and two indices 0 ≤ i, j < nctx, define the swaped mapping Ti↔j be818

the function that is T except swapping i and j:819

Ti↔j(k) =


T (i) if k = j

T (j) if k = i

T (k) otherwise
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Lemma 13 (Characterization of swapping tokens in a two-token sequence). Fix two tokens t0 <820

t1 ∈ N and a function T : N<nctx → {t0, t1} specifying which token is in each position.821

Define ∆T,i↔j to be the difference in sequence scores when you swap i and j:822

∆T,i↔j := sTi↔j
− sT

Then823

sign (∆T,i↔j) = − sign (bi − bj) sign
(
vT (i) − vT (j)

)
Proof. Lemma 3 gives us the result directly when aT (i) = aT (j). Otherwise, we get824

sign (∆T,i↔j) = sign
(
aT (i) − aT (j)

)
sign (bi − bj) sign

(
sT −

vT (i)e
aT (i) − vT (j)e

aT (j)

eaT (i) − eaT (j)

)
Hence all that remains is to show that825

sign
(
sT (eaT (i) − eaT (j))− vT (i)e

aT (i) + vT (j)e
aT (j)

)
= − sign

(
vT (i) − vT (j)

)
Define v̄ := 1

2 (vT (i) + vT (j)) and define ∆v := 1
2 (vT (i) − vT (j)) so that vT (i) = v̄ + ∆v and826

vT (j) = v̄ −∆v. Assume WLOG that T (i) = 0 and T (j) = 1 so that vT (p) = v̄ + (−1)T (p)∆v for827

all p.828

Then we have829

sign
(
sT (eaT (i) − eaT (j))− vT (i)e

aT (i) + vT (j)e
aT (j)

)
= sign (sT (eaT (i) − eaT (j))− v̄ (eaT (i) − eaT (j))−∆veaT (i) −∆veaT (j))

= sign


∑

0≤p<nctx

vT (p)e
aT (p)+bp

∑
0≤p<nctx

eaT (p)+bp
(eaT (i) − eaT (j))− v̄ (eaT (i) − eaT (j))−∆v (eaT (i) + eaT (j))



= sign


∑

0≤p<nctx

(
�̄v + (−1)T (p)∆v

)
eaT (p)+bp

∑
0≤p<nctx

eaT (p)+bp
(eaT (i) − eaT (j))−((((((((

v̄ (eaT (i) − eaT (j))−∆v (eaT (i) + eaT (j))



= sign(∆v) sign


eaT (i)

∑
0≤p<nctx
T (p)=T (i)

ebp − eaT (j)

∑
0≤p<nctx
T (p)=T (j)

ebp

∑
0≤p<nctx

eaT (p)+bp
(eaT (i) − eaT (j))− eaT (i) − eaT (j)



= sign(vT (i) − vT (j)) sign


eaT (i)

∑
0≤p<nctx
T (p)=T (i)

ebp − eaT (j)

∑
0≤p<nctx
T (p)=T (j)

ebp

∑
0≤p<nctx

eaT (p)+bp
(eaT (i) − eaT (j))− eaT (i) − eaT (j)


Define

Pi :=
∑

0≤p<nctx
T (p)=T (i)

ebp Pj :=
∑

0≤p<nctx
T (p)=T (j)

ebp

so that we get830

sign
(
sT (eaT (i) − eaT (j))− vT (i)e

aT (i) + vT (j)e
aT (j)

)
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= sign(vT (i) − vT (j)) sign

(
eaT (i)Pi − eaT (j)Pj

eaT (i)Pi + eaT (j)Pj
(eaT (i) − eaT (j))− eaT (i) − eaT (j)

)
Multiply through by the positive denominator and expand out so that we get831

= sign(vT (i) − vT (j)) sign
(
−2eaT (i)+aT (j)Pi − 2eaT (i)+aT (j)Pj

)
= − sign(vT (i) − vT (j)) sign

(
eaT (i)+aT (j)Pi + eaT (i)+aT (j)Pj

)
= − sign(vT (i) − vT (j))

832

Theorem 14 (Pessimization over sequence ordering for two-token sequences is simple). Let σs :833

N→ N denote a permutation of the nctx positions that sorts them according to b: for 0 ≤ i, j < nctx,834

bi ≤ bj whenever σs(i) < σs(j). Fix two tokens t0 < t1 ∈ N.835

Let nt0 be the number of p ∈ [0, nctx) with T (p) = t0 and let n1 be the number of p ∈ [0, nctx) with836

T (p) = tt1 . Note that nt0 + nt1 = nctx.837

Define tmin := argmint∈{t0,t1} vt and define tmax := argmaxt∈{t0,t1} vt.838

Define Tmin, Tmax : N<nctx → {t0, t1} to be the assignment of tokens to positions that pays the least839

(respectively, most) attention to tmax:840

Tmin(i) :=

{
tmax if 0 ≤ σs(i) < ntmax

tmin if ntmax ≤ σs(i) < nctx

Tmax(i) :=

{
tmin if 0 ≤ σs(i) < ntmin

tmax if ntmin
≤ σs(i) < nctx

Then we have that841

sTmin
≤ sT ≤ sTmax

Proof. The extremality of sTmin
and sTmax

follows straightforwardly from Theorem 4.842

All that remains is sTmin
≤ sTmax

.843

This follows from noting by Lemma 13 that swapping two tokens in Tmin increases the sequence844

score, while the reverse is true of sTmax
, thus showing that it must be sTmin

that is the minimum and845

sTmax
that is the maximum and not vice versa.846

Definition 12. Given a subset of valid tokens S ⊆ N<dvocab and a function T : N<nctx → S specifying847

which token is in each position define the full sequence score s′T :848

s′T :=
∑

0≤i<nctx

(vT (i) + wi)e
aT (i)+bi

/ ∑
0≤i<nctx

eaT (i)+bi

Theorem 15 (Independent pessimization over positional contributions and token attention and token849

value is possible). Fix two tokens t0 < t1 ∈ N. Let Tmin, Tmax : N<nctx → {t0, t1} and tmax, tmin850

be as in Theorem 14. Fix a set S of valid tokens with t0, t1 ∈ S.851

Define relaxed versions T ′
max, T

′
min : N<nctx → S of Tmax and Tmin:852

T ′
max(i) :=

{
Tmax(i) if Tmax(i) = tmax

argminj∈S
j ̸=tmax

aj otherwise

T ′
min(i) :=

{
Tmin(i) if Tmax(i) = tmax

argmaxj∈S
j ̸=tmax

aj otherwise

That is, T ′
max replaces tmin with whatever token in S draws the least attention away from tmax, while853

T ′
min replaces tmin with whichever token in S draws the most attention away from tmax.854
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Define relaxed extremal sequence scores rTmax , rTmin :855

rTmin
:= min

0≤i<nctx

wi +

 ∑
0≤i<nctx

vTmin(i)e
aT ′

min
(i)+bi

/ ∑
0≤i<nctx

e
aT ′

min
(i)+bi


rTmax

:= max
0≤i<nctx

wi +

 ∑
0≤i<nctx

vTmin(i)e
aT ′

max(i)+bi

/ ∑
0≤i<nctx

eaT ′
max(i)+bi


Then rTmin

≤ s′Tmin
and s′Tmax

≤ rTmax
.856

Proof. (sketch) Essentially the same as the proof of Theorem 6.857

Note that in practice, we take S to be the set of all tokens less than tmax − g for some minimum858

gap g. This allows us to share computation across the various maximum tokens to reduce overall859

computational complexity.860

Algorithm 4 Counting Correct Sequences in Subcubic Time, Preliminaries

1: function INPUT-SEQUENCE-COMPATIBLE-WITH(input-sequence, dvocab, nctx, tmax, tquery, c, g)
2: x← input-sequence
3: return False if x ̸∈ (N<dvocab)nctx ▷ the sequence is not made of valid tokens
4: return False if x−1 ̸= tquery ▷ wrong query token
5: return False if maxi xi ̸= tmax ▷ wrong max token
6: return False if |{i ∈ N<nctx |xi ̸= tmax}| ≠ c ▷ wrong count of non-max toks
7: return ALL(xi = tmax or tmax − xi ≥ g for 0 ≤ i < nctx) ▷ check gap on non-max toks
8: end function
9: function CORRECTNESS-PESSIMIZING-OVER-GAP-SLOW(dvocab, nctx, tmax, tquery, c, g)

10: return ALL(CORRECTNESS(x) for all x s.t. INPUT-SEQUENCE-COMPATIBLE-WITH(x,
dvocab, nctx, tmax, tquery, c, g))

11: end function
12: function SUBCUBIC(dvocab, nctx, G)
13: count← 0 ▷ # of correct sequences
14: Gtmax,tquery,c ← MIN(tmax, MAX(1, Gtmax,tquery,c)) ▷ Clip G to valid range
15: G∗

tmax,c ← mint≤tmax Gtmax,t,c ▷ Cache running minima
16: for tmax ∈ RANGE(dvocab) do ▷ tmax ← max-token
17: for 0 ≤ tquery ≤ tmax do ▷ tquery ← query-token
18: cmax ← 0 if tquery = tmax else 1 ▷ minimum copies of nonmax

19: cmax ←


0 if tmax = 0

nctx − 1 if tmax = tquery

nctx − 2 else
▷ maximum copies of nonmax

20: for cmin ≤ c ≤ cmax do ▷ number of valid choices for the non-max token
21: g ← Gtmax,tquery,c

22: g∗ ← G∗
tmax,c

23: q-gap← tmax − tquery
24: RCPOG(χ⃗)← RELAXED-CORRECTNESS-PESSIMIZING-OVER-GAP(χ⃗)
25: if (q-gap = 0 or q-gap ≥ g) and RCPOG(dvocab, nctx, tmax, tquery, c, g, g

∗) then
26: c′ ← c if tquery = tmax else c− 1 ▷ # of non-max non-query tokens
27: count← count +

(
nctx−1

c′

)
(tmax − g)c

′
▷ taking 00 = 1 conventionally

28: end if
29: end for
30: end for
31: end for
32: return count
33: end function

Theorem 16. For all G,861

Ex∼U(0,1,...,dvocab−1)nctx

[
M(x) = max

i
xi

]
≥ SUBCUBIC(dvocab, nctx, G)
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Algorithm 5 Counting Correct Sequences in Subcubic Time

1: function MODEL-BEHAVIOR-RELAXED-OVER-GAP(tmax, tquery, c, g, g∗)
Ensure: CORRECTNESS-PESSIMIZING-OVER-GAP-SLOW is False =⇒ result is False
Require: 0 ≤ g∗ ≤ G ≤ tmax
Require: if c = 0 then tquery = tmax

2: skip-score← maxi ℓ
EU(tquery)i −mini ℓ

EU(tquery)i ▷ Cache by tquery
3: vk ← EVOU(k)
4: wk ← PVOU(k)
5: ∆wmax,i ← maxp wp,i − wp,tmax ▷ Cache by tmax, i
6: ∆wmax,max ← maxi ∆wmax,i ▷ Cache by tmax
7: ∆vk ← maxi vk,i −mini vk,i ▷ Cache by k
8: ∆vmax ← max0≤k≤tmax−g∗ ∆vk ▷ Cache by tmax, c
9: ∆vtmax

i ← vtmax,i − vtmax,tmax ▷ Cache by tmax

10: ∆vtmax
max ← maxi̸=tmax ∆vtmax

i ▷ Cache by tmax
11: if c = 0 then
12: ℓi ← ℓEU(tmax)i + vtmax,i +∆wmax,i

13: return maxi ̸=tmax (ℓi − ℓtmax)
14: end if
15: b:,nctx−1 ← EQKP(tquery, nctx − 1) ▷ Cache by tquery
16: b0,:−1 ← SORT(EQKP(tquery, : −1)) ▷ Cache by tquery, k
17: b1,:−1 ← REVERSE(b0,:−1)
18: ak ← EQKE(tquery, k) ▷ Cache by tquery, k
19: amin,k ← min0≤i≤k ai ▷ Cache by tquery, k, compute in amortized O(dvocab

2)

20: amax,k ← max0≤i≤k ai ▷ Cache by tquery, k, compute in amortized O(dvocab
2)

21: ∆amax ← atmax − amin,tmax−g ▷ Cache by tquery, tmax, c
22: ∆amin ← atmax − amax,tmax−g ▷ Cache by tquery, tmax, c
23: idx-set← {0, . . . , nctx − c− 1} if tmax ̸= tquery else {0, . . . , nctx − c− 2, nctx − 1}
24: attn-weights-unscaled0,k ← ∆amin + b0,k if k ∈ idx-set
25: attn-weights-unscaled1,k ← ∆amax + b0,k if k ∈ idx-set ▷ Cache by tquery, tmax, k, c
26: attn-weights0 ← SOFTMAX(attn-weights-unscaled0) ▷ Cache by tquery, tmax, k, c
27: attn-weights1 ← SOFTMAX(attn-weights-unscaled1) ▷ Cache by tquery, tmax, k, c
28: attn-max0 ←

∑
i∈idx-set attn-weights0,i

29: attn-max1 ←
∑

i∈idx-set attn-weights1,i
30: attn-max← attn-max0 if vtmax

max ≥ ∆vmax else attn-max1
31: return skip-score +∆wmax,max + attn-maxvtmax

max + (1− attn-max)∆vmax

32: end function
33: function RELAXED-CORRECTNESS-PESSIMIZING-OVER-GAP(dvocab, nctx, tmax, tquery, c, g, g∗)
34: ▷ runs the model on a relaxed variant of input sequences compatible with the arguments
Ensure: CORRECTNESS-PESSIMIZING-OVER-GAP-SLOW is False =⇒ result is False
Ensure: return is False if CORRECTNESS-PESSIMIZING-OVER-GAP-SLOW(x) is False for any x

with specified tmax, tquery, and c tokens not equal to tmax
35: return MODEL-BEHAVIOR-RELAXED-OVER-GAP(tmax, tquery, c, g, g

∗) < 0
36: end function
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Proof. (sketch) Apply preceding lemmas and theorems to Algorithm 5862

Theorem 17. The running time of Algorithm 5, after using caching to avoid duplicate computations,863

is O(dvocab
2dmodel + dvocab

2nctx
2).864

Proof. (sketch) Sum the complexities indicated along the right side of Algorithm 3. The dvocab
2dmodel865

term comes from the precomputing EV OU , EU , and EQKP. The dvocab
2nctx

2 term comes from the866

softmax over nctx tokens for O(dvocab
2nctx) pessimized pure sequences. Confirming that none of the867

complexities on the right side exceeds O(dvocab
2dmodel + dvocab

2nctx
2) completes the proof.868

869

F.2 The mean+diff trick870

Suppose we have quantities fx,y and gy,z and we want to pessimize (WLOG, suppose minimize) the871

quantity fx,y + gy,z over x, y, and z in time less than O(nxnynz), say we allow O(nxny + nynz +872

nxnz). Also suppose the variation of f over the y axis is much larger than the variation of f over the873

x-axis.874

We can of course say
min
x,y

fx,y +min
y,z

gy,z ≤ fx,y + gy,z

But we can do better!875

Note that
fx,y = Exfx,y + (fx,y − Exfx,y)

Suppose that fx,y varies much less over x than it does over y, and much less than gy,z varies over876

either of y and z. This will make the following bound a good approximation, though the bound is877

sound even without this assumption. We can write878

fx,y + gy,z ≥ min
x,y,z

[fx,y + gy,z]

= min
x,y,z

[Exfx,y + gy,z + fx,y − Exfx,y]

≥ min
x,y,z

[Exfx,y + gy,z] + min
x,y,z

[fx,y − Exfx,y]

= min
y,z

[Exfx,y + gy,z] + min
x,y

[fx,y − Exfx,y]

By averaging the variation over certain axes, we have879

Theorem 18 (Mean+Diff).

min
x,y,z

fx,y + gy,z ≥ min
y,z

[Exfx,y + gy,z] + min
x,y

[fx,y − Exfx,y]

max
x,y,z

fx,y + gy,z ≤ max
y,z

[Exfx,y + gy,z] + max
x,y

[fx,y − Exfx,y]

and the RHSs can be computed in time O(nxny + nynz + nxnz) for nx, ny, and nz the number of880

possible values of x, y, and z, respectively.881

Example for how this helps with small variation:882

Take any function k(y) and then take883

fx,y := k(y) + ε1(x, y)

gy,z := −k(y) + ε2(y, z)

Then we have884

min
x,y,z

[fx,y + gy,z] = min
x,y,z

[ε1(x, y) + ε2(y, z)]

min
x,y

fx,y +min
y,z

gy,z = min
y

k(y) + min
y
−k(y) + min

x,y
ε1(x, y) + min

y,z
ε2(y, z)

= min
y

k(y)−max
y

k(y) + min
x,y

ε1(x, y) + min
y,z

ε2(y, z)
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min
x,y

[fx,y − Exfx,y] + min
y,z

[gy,z + Exfx,y] = min
x,y

ε1(x, y) + min
y,z

[ε2(y, z) + Exε1(x, y)]

If ε1 and ε2 are small compared to miny k(y)−maxy k(y), then using Exfx,y gives a much better885

bound.886

Note, though, that this could be a worse bound if the assumption of small variation does not hold.887

Note also that this trick is not restricted to adding and subtracting Exfx,y . If f is a matrix indexed by888

x and y, we might also try taking SVD and using the first principle component instead. Compactly,889

the more general theorem is:890

A basic application of the triangle inequality gives the following result:891

Theorem 19 (Summarize+Diff). For any hy which can be computed in time O(nh),892

min
x,y,z

fx,y + gy,z ≥ min
y,z

[hy + gy,z] + min
x,y

[fx,y − hy]

max
x,y,z

fx,y + gy,z ≤ max
y,z

[hy + gy,z] + max
x,y

[fx,y − hy]

and the RHSs can be computed in time O(nxny + nynz + nh) for nx, ny, and nz the number of893

possible values of x, y, and z, respectively.894

We see that if the variation of f in the x-axis is indeed much smaller than the variation in the y-axis,895

then letting896

fx,y = hy + εx,y
|min
x,y,z

fx,y + gy,z −min
y,z

[hy + gy,z]−min
x,y

[fx,y − hy]|

≤ |min
x,y,z

[fx,y + gy,z]−min
y,z

[hy + gy,z]|+ |min
x,y

[εx,y]|

≤ 2max
x,y
|εx,y|

so indeed this bound doesn’t worsen too much and we are able to compute it in quadratic rather than897

cubic time.898

G Details of SVD of QK proof899

As discussed in Subsubsection 4.2.1, to further reduce the computation cost of proof, we need to900

avoid computing the residual stream, EVOU, and EPQKE matrices fully. Using mechanistic insight901

or otherwise, we observe that these matrices (apart from EVOU) can be well-approximated by rank 1902

matrices. This will remove the dominant computation cost of O(dvocab
2 · dmodel).903

G.1 Comments on relationship between mechanistic insight and proof size904

Up to this point, we haven’t really said much about what the model is doing. All the mechanistic905

insight has been of the form “the model varies more along this axis than this other axis” or “the input906

data is distributed such that handling these inputs is more important than handling these other inputs”907

or, at best, “the model computes the answer by attending to the maximum token of the sequence;908

everything else is noise”.909

Here, finally, our proof-size constraints are tight enough that we will see something that we could910

plausibly call “how the model pays attention to the maximum token more than anything else”, i.e., (if911

we squint a bit) “the model pays more attention to larger tokens in general.912

G.2 The max row diff trick913

As stated above, we are breaking matrices into their rank 1 approximation and some noise. To bound914

the noise, i.e. to bound expressions of the form
∏

i(Ai + Ei)−
∏

i Ai, where Ei denote the matrix915

errors, we can use the following trick:916

Lemma 20 (Max Row Diff (vector-matrix version)). For a row vector a and a matrix B,917

max
i,j

((aB)i − (aB)j) ≤
∑
k

|ak|max
i,j

(Bk,i −Bk,j)
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Moreover, for a collection of n row vectors Ar, if the shape of B is m× p, the right hand side can be918

computed for all r in time O(nm+mp).919

Proof.

max
i,j

(aB)i − (aB)j

= max
i,j

∑
k

ak (Bk,i −Bk,j)

≤
∑
k

max
i,j

ak (Bk,i −Bk,j)

=
∑
k

ak

{
maxi,j (Bk,i −Bk,j) if ak ≥ 0

mini,j (Bk,i −Bk,j) if ak < 0

=
∑
k

ak

{
maxi,j (Bk,i −Bk,j) if ak ≥ 0

−maxi,j (Bk,i −Bk,j) if ak < 0

=
∑
k

|ak|max
i,j

(Bk,i −Bk,j)

The asymptotic complexity of computing the result follows from caching the computation of920

maxi,j (Bk,i −Bk,j) for each k independently of r, as the computation does not depend on Ar.921

Theorem 21 (Max Row Diff). For matrices A and B,922

max
r,i,j

((AB)r,i − (AB)r,j) ≤ max
r

∑
k

|Ar,k|max
i,j

(Bk,i −Bk,j)

Proof. By taking the max of Lemma 20 over rows r of A.923

Lemma 20 can also be applied recursively for a product of more than two matrices.924

Lemma 22 (Max Row Diff (vector-matrix recursive version)). For a row vector a and a sequence of925

n matrices Bp of shapes rp × cp,926

max
i,j

(a∏
p

Bp

)
i

−
(
a
∏
p

Bp

)
j

 ≤∑
k0

|ak0
| · · ·

∑
kn

∣∣(Bn)kn−1,kn

∣∣max
i,j

(Bkn,i −Bkn,j)

Moreover, for a collection of q row vectors Aα, the right hand side can be computed for all α in time927

O(qr0 +
∑

p rpcp).928

Proof. We proceed by induction on n.929

For n = 1, the statement is identical to Lemma 20.930

Suppose the theorem holds for all positive n = s; we show the theorem holds for n = s + 1. We931

reassociate the matrix multiplication as932

max
i,j

(a s+1∏
p=1

Bp

)
i

−
(
a

s+1∏
p=1

Bp

)
j


= max

i,j

(aB1)

(s+1∏
p=2

Bp

)
i

−
(

s+1∏
p=2

Bp

)
j


Using the induction hypothesis gives933

≤
∑
k1

∣∣∣∣∣∑
k0

ak0(B1)k0,k1

∣∣∣∣∣∑
k2

|(B2)k1,k2 | · · ·
∑
ks+1

∣∣(Bs+1)ks,ks+1

∣∣max
i,j

(
Bks+1,i −Bks+1,j

)
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The triangle inequality gives934

≤
∑
k1

∑
k0

|ak0
(B1)k0,k1

|
∑
k2

|(B2)k1,k2
| · · ·

∑
ks+1

∣∣(Bs+1)ks,ks+1

∣∣max
i,j

(
Bks+1,i −Bks+1,j

)
and algebra gives935

=
∑
k0

|ak0
|
∑
k1

|(B1)k0,k1
|
∑
k2

|(B2)k1,k2
| · · ·

∑
ks+1

∣∣(Bs+1)ks,ks+1

∣∣max
i,j

(
Bks+1,i −Bks+1,j

)
The asymptotic complexity of computing the right hand side also follows straightforwardly by936

induction.937

Theorem 23 (Max Row Diff (recursive)). For a sequence of n+ 1 matrices A0, . . . , An,938

max
r,i,j

(∏
p

Ap

)
r,i

−
(∏

p

Ap

)
r,j

 ≤ max
r

∑
k0

|(A0)r,k0
| · · ·

∑
kn

∣∣(An−1)kn−1,kn

∣∣max
i,j

((An)kn,i − (An)kn,j)

Proof. By taking the max of Lemma 22 over rows r of A0.939

Note that Theorem 21 is compatible with the mean+diff trick of Appendix F.2.940

Theorem 24 (Combined Mean+Diff and Max Row Diff). For matrices A and B, and any column-941

wise summary vector Hk of A (for example we may take Hk := ErAr,k)942

max
r,i,j

((AB)r,i − (AB)r,j) ≤
(
max
i,j

∑
k

Hk (Bk,i −Bk,j)

)
+max

r

∑
k

|Ar,k −Hk|max
i,j

(Bk,i −Bk,j)

Proof.

max
r,i,j

((AB)r,i − (AB)r,j)

= max
r,i,j

∑
k

Ar,k (Bk,i −Bk,j)

= max
r,i,j

∑
k

(Hk + (Ar,k −Hk)) (Bk,i −Bk,j)

= max
i,j

(∑
k

Hk (Bk,i −Bk,j) + max
r

∑
k

(Ar,k −Hk) (Bk,i −Bk,j)

)

≤
(
max
i,j

∑
k

Hk (Bk,i −Bk,j)

)
+max

r

∑
k

max
i,j

(Ar,k −Hk) (Bk,i −Bk,j)

≤
(
max
i,j

∑
k

Hk (Bk,i −Bk,j)

)
+max

r

∑
k

|Ar,k −Hk|max
i,j

(Bk,i −Bk,j)

943

G.3 Exploring rank 1 approximation via SVD944

Let us first look at

EQKE[q, k] := (E[q] + P [−1])QK(E[k] + Edim=0P [: −1]T .

From Figure 7a, we see that there is not much variation along long query token direction. We945

can confirm this by performing a singular value decomposition (SVD) on EQKE, and plotting the946

resulting matrices, scaled by singular value:947
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948

The first singular value is just over 7440, while the second singular value is just under 15. There’s949

really not much going on here beyond the first singular component.7950

Call the first singular component of EQKE the “query direction” dq and the “size direction” dk on951

the query-side and key-side, respectively.952

There are two ways that we can decompose EQKE into a low-rank component that we can compute953

exactly, and a full-rank error term that we approximate bounds for.954

G.4 The simple SVD decomposition of QK955

In timeO(dvocabdmodel
2) we can perform SVD on each of the four component matrices E+P [−1], Q,956

K, E+EpP [p] and perform low-rank SVD on the matrix product (E+P [−1])QKT (E+EpP [p])T .957

G.5 The complicated SVD decomposition of QK958

We can decompose E into a part parallel to dq and a part orthogonal to dq , say E+P [−1] = Eq+E⊥
q ,959

and similarly E + EpP [p] = Ek + E⊥
k . Note that Eq and Ek are both rank 1, and hence can be960

multiplied with other matrices of shape dmodel×a in timeO(dmodela) rather than timeO(dvocabdmodela).961

While the “most mechanistic” interpretation would proceed with the analysis in terms of Eq and962

Ek, perhaps decomposing them further, we can get more bang for our buck by extracting out all the963

low-rank structure available E, Q, and K, so as to make our error bounds as tight as possible.964

To this end, we perform SVD on E⊥
q , E⊥

k , Q, and K and peel off the first singular components so as965

to get the decomposition966

E + P [−1] = Eq + Eq,2 + E⊥
q,2

E + EpP [p] = Ek + Ek,2 + E⊥
k,2

Q = Q0 +Q⊥

K = K0 +K⊥

Then EQKE, a product of these four matrices, can be expressed as a sum of 2232 − 1 = 35 rank967

one products and one high-rank error term. We can compute the sum of the rank one products968

in time O(dvocab
2) and express EQKE as, say, EQKE2 + E⊥

q,2Q
⊥(E⊥

k,2K
⊥)T . Call the second969

term EQKE_err. We must now bound for each q and m the quantity maxi≤m−G EQKE_err[q, i]−970

EQKE_err[q,m].971

How big is this?972

7We might be tempted to keep analyzing the SVD, and notice that the query direction is mostly uniform,
while the key direction is monotonic (nearly linear, even). But the proof complexity doesn’t demand this level of
analysis, yet, and so we can’t expect that any automated compact proof discovery system will give it to us.
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973

Even if we relax to maxi,j EQKE_err[q, i] − EQKE_err[q, j], the maximum such value across all974

rows is under 1.85. And the rows don’t have any particular structure to them; the maximum absolute975

element of the entire matrix is just barely over 1, so doubling that doesn’t give too bad an estimate.976

But we somehow need to compute this value without multiplying out the four matrices.977

One option is to try to use singular value decomposition again. Since σ1(M) = supx ∥Mx∥ / ∥x∥,978

considering vectors with one 1, one −1, and zero elsewhere, the maximum difference between979

elements in a row upper bounded by
√
2σ1(M). The largest singular value of EQKE_err is just under980

7.6, giving a row-diff bound of about 10.7, which is large but not unusably so.981
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982

If we perform SVD before multiplying out the matrices, however, their first singular values are about983

4, 1.4, 1.4, and 4, giving a product of about 30, which when multiplied by
√
2 is about 43. This984

works because σ1(AB) ≤ σ1(A)σ1(B), but note that we can do factored SVD without needing to985

use this technique. This bound is still usable, but pretty big.986
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Note that using anything close to this method to drop below dvocabdmodel
2 seems infeasible; the best988

bound we know on the largest singular value that can be verified even in the worst-case in strictly989

less time than it takes to compute the full SVD is the Frobenius norm, which is defined as tr(MMT ),990

can be computed in dmodeldvocab time, and is equal to the square root of the sum of the squares of the991

singular values. While the Frobenius norm of EQKE_err is only about 12 (giving a bound of about992

17 on the row diff), the Frobenius norms of the four multiplicand matrices are a bit over 10, 4, 4, and993

10, giving a product of 1932 and a bound of 2732(!). This is unusably large.994

However, we can get a much better bound on the max row diff of EQKE_err without having to995

multiply out all four matrices. We can use an approach vaguely similar to the mean+diff trick, as996

follows.997

If we want to compute the max row diff of a product of matrices AB, we can compute by Theorem 21998

max
r,i,j

((AB)r,i − (AB)r,j) ≤ max
r

∑
k

|Ar,k|max
i,j

(Bk,i −Bk,j) (3)

or by combining this approximation with Theorem 18 via Theorem 24 we may compute999

xmax
r,i,j

((AB)r,i − (AB)r,j)

≤
(
max
i,j

∑
k

ErAr,k (Bk,i −Bk,j)

)
+max

r

∑
k

|Ar,k − ErAr,k|max
i,j

(Bk,i −Bk,j)

taking whichever bound is better.1000

The first gives us a bound of 7.94 on the maximum row diff, which is better than we can get by1001

doing SVD on the product of the matrices! We can get an even better bound by peeling off the1002

first two singular values of all four matrices before multiplying them; this gives us a bound of 5.67.1003

Combining it with the avg+diff trick wouldn’t give us much (8.05 and 5.66 respectively), as we’ve1004

effectively already done this by peeling off the leading singular contributions; the mean of EQKE_err1005

over dimension zero has norm 0.025.1006

Although this noise bound is no longer the leading asymptotic bottleneck, we can peek ahead to what1007

we get if we want to be linear in parameter count. In this case, we can apply the recursive version of1008

Equation 3 via Theorem 23, giving a bound of 97.06 on the maximum row diff.1009

The mechanistic understanding we get here is roughly “for any given basis vector of the residual1010

stream, the difference between the overlap of any two input tokens with this direction is small once1011

we factor out the first two singular components”, and this is sufficient to drive a low error term overall1012

if we factor out the leading singular components in other places. We don’t mechanistically understand1013

how to combine the EQK (without multiplying them out) in a way that allows getting a good bound,1014

though, which corresponds to our inability to drop below dvocabdmodel
2 here.1015

If we use this trick on QK only, and use the mean+diff trick on final attention handling (without1016

which we lose about 3%), we can achieve a bound of 0.7810.1017

If we use this trick on the skip connection (EU) only, we can achieve a bound of 0.6805.1018

Using this trick on both EU and QK drops us down only to 0.6379.1019

If we use this trick on EU and use the recursive version of this trick on QK, we get a bound of 0.3064.1020

Unfortunately, it’s not clear how this trick would apply to EVOU. A fancier convex hull checking1021

algorithm seems required, and an analysis thereof is in progress.1022

H Justification of pessimization choices1023

In Subsection 4.2 we make a number of choices about which axes of variation are more or less1024

important to track at various points in the bound computation.1025

Here we do some more traditional mechanistic interpretability analysis to justify that the choices that1026

we made could be expected to lead to reasonably good bounds.1027
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Figure 11
The attention computation weighted by the number of sequences with the particular max.

H.1 Justifying the gap1028

We take advantage of the fact that attention is mostly monotonically increasing in input integers and1029

that for most sequences, the attentional contribution of the particular query token matters much more1030

than the particular non-max token in the sequence.1031

We justify this as follows.1032

We can look at the typical diff, when attending to the max token, between the largest non-max logit1033

and the max logit. As shown in Figure 11, the largest difference between an off-diagonal entry of1034

EVOU and the diagonal of that row is typically at most −5.8 The typical worst contribution to the1035

wrong logit from a non-max token (this is typical over non-max tokens, worst over choice of output1036

token-logit index) is around 44:1037

8“Typically” here means about 98% of the time.
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The difference in attention between tokens is approximately linear in the gap between the tokens1039
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The slope of the line, that is, the difference in pre-softmax attention scores divided by the gap between1041

the key token and the max token, is approximately 1.2:1042
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1043

Exponentiating, the post-softmax attention paid to the max is typically about 3× larger than to the1044

token one below the max; here the logit difference between the max and non-max token is significant,1045

typically being around 13 (44/3) for the worst output logit. But by the time the gap is 3, this difference1046

has dropped to about 1.1, and by the time the gap is 4 it is around 0.3.1047

So for sequences where the largest non-max and the max are close together, the particular structure1048

of the non-max EVOU matters a lot; but when the max is separated from the largest non-max by a1049

modest gap, the structure of the non-max EVOU does not matter so much.1050

The upshot is that to handle most sequences, we need only ask an oracle for the minimum gap g > 01051

between the max token tmax and largest non-max tokens t′ ̸= tmax, such that the model outputs the1052

correct answer for all sequences where the non-max, non-query tokens have value at most tmax − g1053

While computing this gap may be expensive (and indeed the naïve computation of the oracle takes1054

longer than the brute force proof—though it should be very easy to optimize), we don’t have to1055

pay the cost of computing the gap in the size of the proof, only the cost of storing the gap table1056

(O(dvocab
2nctx)) and of verifying the gap. Empirically, gaps are typically 1–6:1057
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Figure 12: The distribution of entries of the four residual matrices (after removing two principle components
from E + P and one principle component from Q and K). Distributions look pretty close to normal.

If we rely on the gaps, this results in leaving behind about 7.9% of sequences.1059

We can compute a non-max→ max→ largest logit contribution of non-max to maxes ≤ the max1060

(O(dvocab
2)) (and whether it’s to a token within or outside of window); compute a table of pre-softmax1061

attention diffs between tokens i and i+1 (O(dvocab
2)); then sort the queries by overlap with the query1062

direction; compute for each number of queries handled (where we assume we handle all queries with1063

greater overlap than the current one) and for each max how many of the queries fall strictly below the1064

max (and whether the max being the query makes the cut); compute a table of # queries handled→1065

i→ min more attn paid to i+ 1 than to i (O(dvocab
2)); compute max→ non-max→ upper bound1066

on amount more attention paid to non-max than to max by Oracle-permitted queries (indexed only1067

on max) (O(dvocab
2)); compute per num queries permitted then for each max, non-max, num copies1068

nonmax, compute if the non-max contributes little enough to the bad logit that even with the worst1069

skip connection things are fine.1070

H.2 Stopping after 1–2 principle components of QK1071

Did we miss out on any structure in the noise of EQKE? The distribution of entries of the four1072

matrices looks pretty close to normal as seen in Figure 12.1073

If we sample elements randomly, we get (sample size 100) that the maximum row diff of the product1074

of the matrices is approximately 1.31 ± 0.13 (sampling without replacement from the empirical1075

distribution) or 1.31± 0.14 (sampling from the normal distribution). So in fact our max row diff is1076

unusually high (by about 4σ).91077

I Convex relaxation1078

We construct convex relaxation to perform pessimal ablations in our proofs. The following is a formal1079

description of the argument.1080

9This shows up in the bias towards having larger values (both positive and negative) in the lower-right
corner of the plot, indicating that noise is larger for larger query and key values. We hypothesize that this is
due to the distribution of data: larger values are more likely to have more space between the maximum and
next-most-maximum token, so a bit of noise matters less for larger maxes than for smaller ones.
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For a set of inputs Xi, we define a set of “relaxed" inputs X relaxed
i with an injection Ti : Xi ↪→ X relaxed

i1081

mapping input, and a function hi : X
relaxed
i → R such that for all x ∈ Xi, we have f(x,M(x)) ≥1082

hi(Ti(x)). We proceed by finding a small subset of “boundary” examples Bi ⊂ X relaxed
i , proving1083

that if hi(x
relaxed) ≥ bi for all xrelaxed ∈ Bi then hi(x

relaxed) ≥ bi for all xrelaxed ∈ X relaxed
i . C then1084

validates that that hi(x
relaxed) ≥ bi for some bi for all xrelaxed ∈ X relaxed

i . This allows us to conclude1085

that f(x,M(x)) ≥ bi for all x ∈ Xi.1086

J IEEE 754 vs. R1087

In Section 2 we defined C and Q and glossed over whether we were reasoning over reals or floats.1088

Here we clarify this point that we’ve so far been sweeping under the rug.1089

Let F denote the set of the relevant flavor of IEEE 754 Floating Point numbers (generally 32-bit for1090

our concrete models, but everything would hold just as well for 64-bit). Let F∗ denote F restricted to1091

finite numbers (that is, without NaNs and without ±∞).1092

Parameterize C,M, andD over the real field they operate on, so that, e.g., CF : model weights→ F .1093

Then we have Q establishing that for any modelM′, CR(M′
R) ≤ Ex∼DRfR(x,M′

R(x)), and we1094

have a trace demonstrating that CF(MF) = b.1095

Let i : F∗ → R be any injection such that maps each floating point number to some real number that1096

it is “closest to”. Supposing that b ∈ F∗ and thus b ∈ R, we need two additional components of the1097

proof. We need to find ε, ε′ ∈ R+ prove that1098

|CR(MR)− i (CF(MF))| < ε

and1099

|(Ex∼DRfR(x,MR(x)))− i (Ex∼DFfF(x,MF(x)))| < ε′

Then we can chain these proofs to prove that1100

i (Ex∼DFfF(x,MF(x))) ≥ b− ε− ε′

Such ε-ball robustness proofs should be well within the scope of existing approaches to formal1101

methods on neural nets, see, e.g., [33, 3, 4, 23, 1, 46]. We leave actually dealing with the gap between1102

floating point numbers and real numbers to future work.1103

K Infinite distributions1104

When we described the basic brute-force proof strategy in Appendix D, we talked about running1105

the model on the entirety of D. This is straightforward when X is finite. Perhaps surprisingly, we1106

can do this even if X is infinite as long as the PDF X → R of D is computable and the natural1107

computational topology of X is compact [12, 11, 10], because integration of computable functions1108

on computable reals is computable [37].1109

L Computing effective dimensionality reduction1110

We claim in Figure 5 that we can use unexplained dimensionality as a metric for understanding. Here1111

we describe how we compute the unexplained dimensionality of a proof strategy.1112

As in Figure 1, for any given proof, we can separate our treatment of transformer components into1113

“black-box” (e.g., matrix multiplication) and “white-box” components (e.g., specifying that the QK1114

circuit is approximately rank one; pessimizing over non-max tokens). Considering the performance1115

score as a large white-box component which may reference black-boxes internally, we define the1116

unexplained dimensionality of a single black-box computation as the log-cardinality of it function1117

space (so, e.g, 2 · 64 for a function 64→ R2, whose cardinality is (R2)64, where 64 denotes the finite1118

set on 64 elements). The unexplained dimensionality of the entire proof is the sum of the unexplained1119

dimensions of all black-box components.1120

Intuitively speaking, unexplained dimensionality tries to capture the degrees of freedom that we1121

have to check via brute enumeration over black-box computations. Proofs with less unexplained1122

dimensionality contain more mechanistic understanding, and vice versa.1123
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M Computing approximate FLOPs1124

In Figure 3 and Table 1, we display approximate floating point operations. We instrument our code to1125

execute on phantom tensors that track their shape and accumulate an approximate count of floating1126

point operations. We compute matrix additions and multiplications in the obvious way. We take the1127

instruction count of SVD to be the cost of verifying that the output of SVD is a valid decomposition:1128

that we have a pair of orthonormal bases which when multiplied out give the original basis.1129

46



NeurIPS Paper Checklist1130

1. Claims1131

Question: Do the main claims made in the abstract and introduction accurately reflect the1132

paper’s contributions and scope?1133

Answer: [Yes]1134

Justification: We present the key challenges in the field of formal verification for neural1135

networks, and describe our proposed solution. Then we summarize our experimental setup1136

and results.1137

2. Limitations1138

Question: Does the paper discuss the limitations of the work performed by the authors?1139

Answer: [Yes]1140

Justification: See Section 7.1141

3. Theory Assumptions and Proofs1142

Question: For each theoretical result, does the paper provide the full set of assumptions and1143

a complete (and correct) proof?1144

Answer: [Yes]1145

Justification: We provide intuitions for our proof constructions in the main body of the paper.1146

In the supplemental material, we lay out in full detail theorem statements and proofs. Along1147

with this, we provide algorithms and plots that are useful for understanding how the proofs1148

were constructed.1149

4. Experimental Result Reproducibility1150

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1151

perimental results of the paper to the extent that it affects the main claims and/or conclusions1152

of the paper (regardless of whether the code and data are provided or not)?1153

Answer: [Yes]1154

5. Open access to data and code1155

Question: Does the paper provide open access to the data and code, with sufficient instruc-1156

tions to faithfully reproduce the main experimental results, as described in supplemental1157

material?1158

Answer: [Yes]1159

Justification: We directly link to a codebase with the specific implementation of our case1160

study.1161

6. Experimental Setting/Details1162

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1163

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1164

results?1165

Answer: [Yes]1166

Justification: In supplementary materials, we provide the full details of our model training1167

set up. In the main body of the paper, we describe our experimental setting and provide1168

reasoning for why we chose this experimental setup as a very simple case study of our1169

theoretical work.1170

7. Experiment Statistical Significance1171

Question: Does the paper report error bars suitably and correctly defined or other appropriate1172

information about the statistical significance of the experiments?1173

Answer: [Yes]1174

Justification: We run our experiment on models trained with 151 different hyperparameters.1175

For most reported computations, we provide statistical significance information. We do not1176

need to perform explicit t-tests or such since it is not relevant to our setup.1177

8. Experiments Compute Resources1178

47



Question: For each experiment, does the paper provide sufficient information on the com-1179

puter resources (type of compute workers, memory, time of execution) needed to reproduce1180

the experiments?1181

Answer: [Yes]1182

Justification: See Appendix A.1183

9. Code Of Ethics1184

Question: Does the research conducted in the paper conform, in every respect, with the1185

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1186

Answer: [Yes]1187

Justification: We confirm that we have read the Code of Ethics.1188

Guidelines:1189

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1190

• If the authors answer No, they should explain the special circumstances that require a1191

deviation from the Code of Ethics.1192

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-1193

eration due to laws or regulations in their jurisdiction).1194

10. Broader Impacts1195

Question: Does the paper discuss both potential positive societal impacts and negative1196

societal impacts of the work performed?1197

Answer: [NA]1198

Justification: This paper seeks to advance the fields of mechanistic interpretability and1199

formal verification of machine learning systems. While there are many indirect societal1200

consequences of our work through the impacts on these fields, we feel that none are1201

sufficiently consequential as to be highlighted here.1202

11. Safeguards1203

Question: Does the paper describe safeguards that have been put in place for responsible1204

release of data or models that have a high risk for misuse (e.g., pretrained language models,1205

image generators, or scraped datasets)?1206

Answer: [NA]1207

Justification: This paper does not involve any such assets.1208

Guidelines:1209

12. Licenses for existing assets1210

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1211

the paper, properly credited and are the license and terms of use explicitly mentioned and1212

properly respected?1213

Answer: [Yes]1214

Justification: We list all important Python packages used in the paper in Appendix A.1215

13. New Assets1216

Question: Are new assets introduced in the paper well documented and is the documentation1217

provided alongside the assets?1218

Answer: [Yes]1219

Justification: We introduce no new assets except for the codebase needed to reproduce our1220

experiments, which does contain appropriate documentation.1221

14. Crowdsourcing and Research with Human Subjects1222

Question: For crowdsourcing experiments and research with human subjects, does the paper1223

include the full text of instructions given to participants and screenshots, if applicable, as1224

well as details about compensation (if any)?1225

Answer: [NA]1226

Justification: This paper does not involve crowdsourcing nor research with human subjects.1227

48

https://neurips.cc/public/EthicsGuidelines


15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1228

Subjects1229

Question: Does the paper describe potential risks incurred by study participants, whether1230

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1231

approvals (or an equivalent approval/review based on the requirements of your country or1232

institution) were obtained?1233

Answer: [NA]1234

Justification: This paper does not involve crowdsourcing nor research with human subjects.1235

49


	Introduction
	Mechanistic interpretability for proofs
	Experimental setting
	Mechanistic interpretation of learned models

	Proofs of model performance
	A cubic proof
	Sub-cubic proof
	Removing cubic-time computatations

	Additional subcubic proof strategies

	Results
	Shorter proofs both require and provide mechanistic understanding
	The trade-off between proof length and bound tightness is mediated by faithfulness of interpretation
	Compounding structureless noise poses a serious challenge to compacting proofs of global behavior

	Related Work
	Conclusion and Future Work
	Training details
	Mathematical defintions
	Additional details supporting our mechanistic interpretation of the model.
	Brute-force proof
	Details of cubic proof
	Proof strategy
	Proof outline
	Formal proof

	Details of sub-cubic proof
	Proof of baseline sub-cubic result
	The mean+diff trick

	Details of SVD of QK proof
	Comments on relationship between mechanistic insight and proof size
	The max row diff trick
	Exploring rank 1 approximation via SVD
	The simple SVD decomposition of QK
	The complicated SVD decomposition of QK

	Justification of pessimization choices
	Justifying the gap
	Stopping after 1–2 principle components of QK

	Convex relaxation
	IEEE 754 vs. ℝ
	Infinite distributions
	Computing effective dimensionality reduction
	Computing approximate FLOPs

