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A THE FULL PROCEDURE OF BATTLE

The Combined Policy. In order to address the inefficiency caused by the discrepancy between ⇡✓

and ⇡⌫�↵ in the state distribution, we propose a strategy to construct the behavior policy ⇡ for data
collection in our practical implementation. Inspired by Branched rollout (Janner et al., 2019), we
combine the intention policy ⇡✓ with the perturbed policy ⇡⌫�↵. Specifically, we define ⇡

1:h = ⇡
1:h
⌫�↵

and ⇡
h+1:H = ⇡

h+1:H
✓

, where h is sampled from a uniform distribution U(0, H) and H represents
the task horizon. The resulting combined policy ⇡ is responsible for data collection, which is then
stored in the replay buffer during the learning process.

We present the detailed procedures of our proposed method in Algorithm 1. Our method, referred to
as BATTLE, is built upon the well-established preference-based RL algorithm PEBBLE (Lee et al.,
2021a).

Algorithm 1 BATTLE
Input: a fixed victim policy ⇡⌫ , frequency of human feedback K, outer loss updating frequency M ,

task horizon H

1: Initialize parameters of Q�, ⇡✓, br , ⇡↵ and h!

2: Initialize B and ⇡✓ with unsupervised exploration
3: Initialize preference data set D  ;

4: for each iteration do
5: // Construct the combined policy ⇡

6: if episode is done then
7: h ⇠ U(0, H)
8: ⇡

1:h = ⇡
1:h
⌫�↵ and ⇡

h+1:H = ⇡
h+1:H
✓

9: end if
10: Take action at ⇠ ⇡ and collect st+1

11: Store transition into dataset B  B [ {(st, at, br (st), st+1)}
12: // Query preference and Reward learning
13: if iteration % K == 0 then
14: for each query step do
15: Sample pair of trajectories (�0

,�
1)

16: Query preference y from manipulator
17: Store preference data into dataset D  D [ {(�0

,�
1
, y)}

18: end for
19: for each gradient step do
20: Sample batch {(�0

,�
1
, y)i}ni=1 from D

21: Optimize (2) to update br 
22: end for
23: end if
24: // Inner loss optimization
25: for each gradient step do
26: Sample random mini-batch transitions from B
27: Optimize ⇡↵: minimize (6) with respect to ↵

28: end for
29: // Outer loss optimization
30: if iteration % M == 0 then
31: Sample random mini-batch transitions from B
32: Optimize h!: minimize (7) with respect to !

33: end if
34: // Intention policy learning
35: Update Q� and ⇡✓ according to (3) and (4), respectively.
36: end for
Output: adversarial policy ⇡↵
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B DERIVATION OF THE GRADIENT OF THE OUTER-LEVEL LOSS

In this section, we present detailed derivation of the gradient of the outer loss J⇡ with respect to the
parameters of the weighting function !. According to the chain rule, we can derive that
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For brevity of expression, we let:

f(s) =
@J⇡(↵̂(!))

@↵̂(!)

���
>

↵̂t

@DKL (⇡⌫�↵(s) k ⇡✓(s))

@↵̂

���
↵t

. (11)

The gradient of outer-level optimization loss with respect to parameters ! is:

r!J⇡(↵̂(!))|!t
= �⌘t

X

s⇠B
f(s) ·

@h(s;!)

@!

���
!t

. (12)

C CONNECTION BETWEEN RSA-MDP AND MDP
Lemma C.1. Given a RSA-MDP M = (S,A,B, bR,P, �) and a fixed victim policy ⇡⌫ , there exists a

MDP M̂ = (S, Â, bR, bP, �) such that the optimal policy of M̂ is equivalent to the optimal adversary

⇡↵ in RSA-MDP given a fixed victim, where bA = S and

bP(s0|s,a) =
X

a2A
⇡⌫(a|ba)P(s0|s,a) for s, s0 2 S and ba 2 bA.

D THEORETICAL ANALYSIS AND PROOFS

D.1 THEOREM 1: CONVERGENCE RATE OF THE OUTER LOSS

Lemma D.1. (Lemma 1.2.3 in Nesterov (1998)) If function f(x) is Lipschitz smooth on Rn
with

constant L, then 8x, y 2 Rn
, we have

��f(y)� f(x)� f
0(x)>(y � x)

��  L

2
ky � xk

2
. (13)

Proof. 8x, y 2 Rn, we have

f(y) = f(x) +

Z 1

0
f
0(x+ ⌧(y � x))>(y � x)d⌧

= f(x) + f
0(x)>(y � x) +

Z 1

0
[f 0(x+ ⌧(y � x))� f

0(x)]>(y � x)d⌧.

(14)

Then we can derive that
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(15)
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where the first inequality holds for
���
R
b

a
f(x)dx

��� 
R
b

a
|f(x)| dx, the second inequality holds for

Cauchy-Schwarz inequality, and the last inequality holds for the definition of Lipschitz smoothness.

Theorem D.2. Suppose J⇡ is Lipschitz-smooth with constant L, the gradient of J⇡ and Latt is bounded

by ⇢. Let the training iterations be T , the inner-level optimization learning rate ⌘t = min{1, c1
T

} for

some constant c1 > 0 where
c1
T

< 1. Let the outer-level optimization learning rate �t = min{
1
L
,

c2p
T

}

for some constant c2 > 0 where c2 

p
T

L
, and

P1
t=1 �t  1,

P1
t=1 �

2
t
 1. The convergence

rate of J⇡ achieves

min
1tT

E
h
kr!J⇡(↵t+1(!t))k

2
i
 O

✓
1
p
T

◆
. (16)

Proof. First,

J⇡(↵̂t+2(!t+1))� J⇡(↵̂t+1(!t))

= {J⇡(↵̂t+2(!t+1))� J⇡(↵̂t+1(!t+1))} + {J⇡(↵̂t+1(!t+1))� J⇡(↵̂t+1(!t))} .
(17)

Then we separately derive the two terms of (17). For the first term,
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(18)

where ↵̂t+2(!t+1)� ↵̂t+1(!t+1) = �⌘t+1r↵̂Latt(↵̂t+1), the first inequality holds for Lemma D.1,
the second inequality holds for Cauchy-Schwarz inequality, the third inequality holds for
kr↵̂J⇡(↵̂t+1(!t+1))k  ⇢, and the last inequality holds for kr↵̂Latt(↵̂t+1)k  ⇢. It can be
proved that the gradient of ! with respect to J⇡ is Lipschitz continuous and we assume the Lipschitz
constant is L. Therefore, for the second term,
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(19)

where !t+1 � !t = ��tr!J⇡(↵̂t+1(!t)), and the first inequality holds for Lemma D.1. There-
fore, (17) becomes

J⇡(↵̂t+2(!t+1))� J⇡(↵̂t+1(!t))  ⌘t+1⇢
2 +
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2
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(20)
Rearranging the terms of (20), we obtain
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Then, we sum up both sides of (21),
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where the second inequality holds according to (22), the third inequality holds forP
T

t=1

�
2�t � L�

2
t

�
�

P
T

t=1 �t.

D.2 THEOREM 2: CONVERGENCE OF THE INNER LOSS

Lemma D.3. (Lemma A.5 in Mairal (2013)) Let (an)n�1, (bn)n�1 be two non-negative real se-

quences such that the series
P1

n=1 an diverges, the series
P1

n=1 anbn converges, and there exists

C > 0 such that |bn+1 � bn|  Can. Then, the sequence (bn)n�1 converges to 0.

Theorem D.4. Suppose J⇡ is Lipschitz-smooth with constant L, the gradient of J⇡ and Latt is bounded

by ⇢. Let the training iterations be T , the inner-level optimization learning rate ⌘t = min{1, c1
T

} for

some constant c1 > 0 where
c1
T

< 1. Let the outer-level optimization learning rate �t = min{
1
L
,

c2p
T

}

for some constant c2 > 0 where c2 

p
T

L
, and

P1
t=1 �t  1,
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2
t
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E
h
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2
i
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Proof. First,

Latt(↵t+1;!t+1)� Latt(↵t;!t)

= {Latt(↵t+1;!t+1)� Latt(↵t+1;!t)} + {Latt(↵t+1;!t)� Latt(↵t;!t)} .
(25)
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For the first term in (25),
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where !t+1 � !t = ��tr!J⇡(↵t+1(!t)), and the first inequality holds according to Lemma D.1.
For the second term in (25),
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where ↵t+1 � ↵t = �⌘tr↵Latt(↵t;!t), and the first inequality holds according to Lemma (D.1).
Therefore, (25) becomes
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Taking expectation of both sides of (28) and rearranging the terms, we obtain
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Summing up both sides of (29) from t = 1 to1,
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where the second inequality holds for
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2
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Therefore, we have
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Since |(kak+ kbk)(kak � kbk)|  ka+ bkka� bk, we can derive that
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Since

P1
t=1 ⌘t =1, according to Lemma D.3, we have

lim
t!1

E
h
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2
i
= 0. (34)

E DETAILS OF PBRL
In this section, we present details of the scripted teacher and preference collection. It is a crucial part
of the PbRL, and BATTLE follows these settings as Lee et al. (2021a).

Scripted Teacher. To evaluate the performance systemically, a useful way is to consider a scripted
teacher that provides preferences between a pair of agent’s trajectory segments according to the
oracle reward function. Leveraging the preference labels from the human teacher is ideal, while
it is hard to evaluate algorithms quantitatively and quickly. Specifically, the scripted teacher can
immediately provide ground truth rewards based on the state s and action a. It is a function designed
to approximate the human’s intention.

Preference Collection. During training, we need to query human preference labels at regular
intervals. It samples a batch of segment pairs and calculates the cumulative reward of each segment
with rewards provided by the scripted teacher. For a specific segment pair, human prefers the segment
with a larger cumulative reward. The segment with a larger cumulative reward is labelled with 1, and
the smaller one is labelled with 0. As for the computational cost, we assume that M preference labels
are required, the segment length is N in a run, and the time complexity is O(MN). However, it is
negligible compared with adversary training, which involves complex gradient computation.

F EXPERIMENTAL DETAILS

In this section, we provide a concrete description of our experiments and detailed hyper-parameters
of BATTLE. For each run of experiments, we run on a single Nvidia Tesla V100 GPUs and 16 CPU
cores (Intel Xeon Gold 6230 CPU @ 2.10GHz) for training.

F.1 TASKS

In phase one of our experiments, we evaluate our method on eight robotic manipulation tasks
obtained from Meta-world (Yu et al., 2020). These tasks serve as a representative set for testing
the effectiveness of our approach. In phase two, we further assess our method on two locomotion
tasks sourced from Mujoco (Todorov et al., 2012). By including tasks from both domains, we aim
to demonstrate the versatility and generalizability of our approach across different task types. The
specific tasks we utilize in our experiments are as follows:
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Meta-world

• Door Lock: An agent controls a simulated Sawyer arm to lock the door.

• Door Unlock: An agent controls a simulated Sawyer arm to unlock the door.

• Drawer Open: An agent controls a simulated Sawyer arm to open the drawer to a target position.

• Drawer Close: An agent controls a simulated Sawyer arm to close the drawer to a target position.

• Faucet Open: An agent controls a simulated Sawyer arm to open the faucet to a target position.

• Faucet Close: An agent controls a simulated Sawyer arm to close the faucet to a target position.

• Window Open: An agent controls a simulated Sawyer arm to open the window to a target
position.

• Window Close: An agent controls a simulated Sawyer arm to close the window to a target
position.

Mujoco

• Half Cheetah: A 2-dimensional robot with nine links and eight joints aims to learn to run forward
(right) as fast as possible.

• Walker: A 2-dimensional two-legged robot aims to move in the forward (right).

F.2 HYPER-PARAMETERS SETTING

We adopt the PEBBLE algorithm as our baseline approach for SA-RL (Zhang et al., 2021), and
we keep the same parameter settings and neural network structure as described in their work. The
specific hyperparameters for SA-RL are provided in Table 4. Similarly, for PA-AD (Sun et al., 2022),
we use identical hyperparameter values to those of SA-RL, ensuring a fair comparison between the
two methods.

Table 3: Hyper-parameters of BATTLE for adversary training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Hidden units of each layer 256
Learning rate 0.0003 Batch size 1024
Length of segment 50 Number of reward functions 3
Frequency of feedback 5000 Feedback batch size 128
Adversarial budget 0.1 (�1,�2) (0.9, 0.999)

Table 4: Hyper-parameters of SA-RL for adversary training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Hidden units of each layer 256
Learning rate 0.00005 Mini-Batch size 32
Length of segment 50 Number of reward functions 3
Frequency of feedback 5000 Feedback batch size 128
Adversarial budget 0.1 Entropy coefficient 0.0
Clipping parameter 0.2 Discount � 0.99
GAE lambda 0.95 KL divergence target 0.01

F.3 VICTIM SETTING

Our experiment is divided into two phases. In the first phase, we conduct experiments using a variety
of simulated robotic manipulation tasks from the Meta-world environment. In the second phase, we
shift our focus to two continuous control environments from the OpenAI Gym MuJoCo suite.

Meta-world. We train the victim models on the Meta-world tasks using the SAC (Soft Actor-Critic)
algorithm proposed by Haarnoja et al. (2018). We employ a fully connected neural network as the
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policy network for the SAC algorithm. The detailed hyperparameters used in our experiments are
provided in Table 5.

Table 5: Hyper-parameters of SAC for victim training.

Hyper-parameter Value Hyper-parameter Value
Number of layers 3 Initial temperature 0.1
Hidden units of each layer 256 Optimizer Adam
Learning rate 0.0001 Critic target update freq 2
Discount � 0.99 Critic EMA ⌧ 0.005
Batch size 1024 (�1,�2) (0.9, 0.999)
Steps of unsupervised pre-training 9000 Discount � 0.99

Mujoco. We directly utilize the well-trained model for demonstrating the vulnerability of the Decision
Transformer. Specifically, we use the Cheetah agent4 and the Walker agent5 with expert-level.

F.4 SCENARIO DESIGNING

To validate the effectiveness of our approach, we carefully designed two experimental scenarios:
the Manipulation Scenario and the Opposite Behavior Scenario. In the Manipulation Scenario, the
victim policy is a well-trained policy on robotic tasks. The objective of the adversary is to manipulate
the agent’s behavior through targeted adversarial attacks, causing the agent to grasp objects that are
far from the original target location. The successful execution of such grasping actions indicates
the success of the adversarial attack. In the Opposite Behavior Scenario, the victim policy is a
well-trained policy on simulated robotic manipulation tasks. The goal of the attacker is to redirect the
agent’s behavior towards tasks that are opposite in nature to the original objective. For instance, if the
victim policy is designed to open windows, the attacker aims to modify the agent’s behavior to close
the windows instead.

Table 6: Success rate of different methods with varying numbers of preference labels on the Drawer
Open task in the manipulation scenario and the Faucet Close task in the opposite behavior scenario.
The success rate is reported as the mean and standard deviation over 30 episodes.

Environment Feedback BATTLE (ours) PA-AD SA-RL

Drawer Open
(manipulation)

3000 65.7% ± 37.1% 0.0% ± 0.0% 8.3% ± 13.2%

5000 86.7% ± 18.1% 0.0% ± 0.0% 21.3% ± 18.9%

7000 95.7% ± 13.6% 0.0% ± 0.0% 28.0% ± 28.1%

9000 97.0% ± 6.9% 0.0% ± 0.0% 13.0% ± 18.5%

Faucet Close
(opposite behavior)

1000 69.7% ± 35.2% 16.7% ± 9.4% 2.0% ± 6.0%

3000 79.0% ± 16.2% 29.0% ± 14.0% 6.0% ± 11.7%

5000 95.3% ± 9.2% 21.3% ± 12.8% 3.3% ± 12.7%

7000 95.3% ± 7.6% 22.7% ± 12.4% 4.0% ± 7.1%

G EXTENSIVE EXPERIMENTS

Impact of Feedback Amount. We evaluate the performance of BATTLE using different num-
bers of preference labels. Table 6 presents the results of all methods with varying numbers
of labels: 3000, 5000, 7000, 9000 for the Drawer Open task in the manipulation scenario and
1000, 3000, 5000, 7000 for the Faucet Close task in the opposite behavior scenario. Based on the
experimental results shown in Table 6, we conclude that providing an adequate amount of human
feedback improves the performance of our method, leading to a stronger adversary and a more stable
attack success rate. We observe that the performance of BATTLE consistently improves as the number
of preference labels increases, highlighting the crucial impact of the number of preference labels on

4https://huggingface.co/edbeeching/decision-transformer-gym-halfcheetah-expert
5https://huggingface.co/edbeeching/decision-transformer-gym-walker2d-expert
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adversary learning. In contrast, SA-RL and PA-AD exhibit poor performance even with a sufficient
amount of human feedback, with PA-AD failing entirely in the manipulation scenario. This can
be attributed to the limited exploration space of these methods, which is constrained by the fixed
victim policy. In contrast, BATTLE achieves better exploration by incorporating an intention policy,
resulting in improved performance.
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Figure 8: Training curves of success rate with different adversarial budgets on Drawer Open for the
manipulation scenario and Faucet Close for the opposite behavior scenario. The solid line and shaded
area denote the mean and the standard deviation of the success rate across five runs.

(a) Faucet Open (b) Faucet Close

(c) Drawer Open (d) Drawer Close

Figure 9: Time series of the normalized learned reward (blue) and the ground truth reward (orange).
These rewards are obtained from rollouts generated by a policy optimized using BATTLE.
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Impact of Different Attack Budgets. We also investigate the impact of the attack budget on the
performance. To gain further insights, we conduct additional experiments with different attack
budgets: 0.05, 0.075, 0.1, 0.15 for the Drawer Open task and 0.02, 0.05, 0.075, 0.1 for the Faucet
Close task in the respective scenarios. In Figure 8, we present the performance of the baseline
method and BATTLE with different attack budgets. The experimental results demonstrate that the
performance of all methods improves with an increase in the attack budget.

Quality of learned reward functions. We further analyze the quality of the reward functions learned
by BATTLE compared to the true reward function. In Figure 9, we present four time series plots
that depict the normalized learned reward (blue) and the ground truth reward (orange). These plots
represent two scenarios: opposite behaviors and manipulation tasks. The results indicate that the
learned reward function aligns well with the true reward function derived from human feedback. This
alignment is achieved by capturing various human intentions through the preference data.

Robust Agents Training and Evaluating. An intuitive application of BATTLE is in evaluating the
robustness of a given model or enhancing the robustness of an agent through adversarial training.
ATLA (Zhang et al., 2021) is a general training framework for improving robustness, which involves
alternating training between an agent and an adversary. Building upon this concept, we introduce
BATTLE-ATLA, which combines BATTLE with the ATLA framework by training an agent and a
BATTLE attacker alternately. The robustness performance of BATTLE-ATLA for a SAC agent is
presented in Table 7 and compared with state-of-the-art robust training methods. The experimental
results provide two key insights: firstly, BATTLE-ATLA significantly enhances the robustness of
agents, demonstrating its effectiveness in improving agent resilience to adversarial attacks. Sec-
ondly, BATTLE exhibits the capability to launch stronger attacks on robust agents, highlighting its
effectiveness as an adversary in the adversarial training process.

Table 7: Average episode rewards ± standard deviation of robust agents under different attack
methods, and results are averaged across 100 episodes.

Task Model BATTLE PA-AD SA-RL Average Reward

Door Lock
BATTLE-ATLA 874±444 628±486 503±120 668

PAAD-ATLA 491±133 483±15 517±129 497
SARL-ATLA 469±11 629±455 583±173 545

Door Unlock
BATTLE-ATLA 477±203 745±75 623±60 615

PAAD-ATLA 398±12 381±11 398±79 389
SARL-ATLA 393±36 377±8 385±26 385

Faucet Open
BATTLE-ATLA 442±167 451±96 504±55 465

PAAD-ATLA 438±53 588±222 373±32 466
SARL-ATLA 610±293 523±137 495±305 522

Faucet Close
BATTLE-ATLA 1048±343 1223±348 570±453 947

PAAD-ATLA 661±279 371±65 704±239 538
SARL-ATLA 1362±149 688±196 426±120 825
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