1. Model Robustness

Sparsity and noises are common in LiDAR point clouds. To evaluate the robustness of surface representation to sparse and
noisy point clouds during training, we conduct several experiments on ScanObjectNN [7], a real-scene object classification
dataset. We use overall accuracy (%) as the evalution metric. For extreme settings, we use 16, 32, 64, 128, and 256 points
instead. Further, to evaluate model robustness against noises, we add 10% Gaussian noises to each point cloud. That is, we
randomly select 10% the points from each point cloud and replace them with Gaussian noise.

Robustness to sparsity. As shown in Table 1, we observe that RealSurf can greatly improve the robustness of its backbone
PointNet++ [4] by a large margin (~10%). At the same time, our Point Densification Module can further enhance its
robustness by ~1%. We conjecture this is because our Point Densification Module can densify point clouds implicitly,
and thus lead to a more robust model. Overall, Uniform Point Densification Module works better than Gaussian Point
Densification Module in this setting.

Robustness to noises. As shown in Table 1, the surface representation can improve model robustness in the 10% noise set-
ting. Compared to baselines, it introduces a performance gain by 7%~14%. In this challenging case, our Point Densification
Module can still improve the robustness of surface representation by 0.1%~1.5%.

Method w/o noise 10% noise

16 32 64 128 256 16 32 64 128 256
PointNet++ 56.32 58.40 64.19 69.40 74.50 51.91 55.31 58.40 66.79 73.59
baseline 60.96 68.88 74.91 78.83 79.91 59.06 66.11 72.24 76.06 79.08

w/ Gaussian 61.35 69.54 75.05 78.04 79.25 59.61 66.76 71.89 75.68 78.52
w/ Uniform 61.83 69.88 75.64 78.94 81.58 59.30 66.86 73.21 76.79 79.24

Table 1. Robustness of training on extremely sparse point clouds with or without noises from ScanObjectNN to simulate real-world
point clouds. baseline: surface representation without Point Densification Module, Gaussian: our Gaussian Point Densification Module,
Uniform: our Uniform Point Densification Module.

2. Class Balancing

Class imbalance can be vital for the training of point-based methods on LiDAR segmentation. To handle this problem, we
adopt point cloud mixing inspired by [3]. Given two point clouds &; and Sy, the output S¢;y4; of the mixed point cloud is as
follows:

Stinat = [Augment(Sy), Augment(Ss)], (1)

where [-, -] means the operation of concatenation, and Augment means augmentation, i.e., Random Rotation (z-axis aligned,
range: [—%, %]) — Random Flip (prob: 0.5). Different from [3], we do not apply random sub-sampling, random scaling, or
random rotation along the other axes.

3. Positive/Negative Sample Balancing

As mentioned in the paper, point-based method usually requires positive/negative sample balancing. To that end, we adopt
online hard example mining (OHEM) [5] in our pipeline. If the probability of the predicted class is lower than a threshold,
we think we need to keep this sample for learning. In addition, this requires a minimum ratio to keep samples for learning.
That is, if the probabilities of the predicted class for most samples are above the threshold, we need to keep that ratio of
samples for learning. We set the threshold to 0.7. In order to obtain the hyperparameter of minimal kept ratio, we set it as
twice the ratio of foreground points in each dataset. That is, 0.01, 0.005, and 0.001 for SemanticKITTI [1], nuScenes [2], and
Waymo [6], respectively.

4. Efficient FPS

The low efficiency of FPS makes point-based methods less competitive compared to voxel-based methods. To alleviate
this problem, we propose Sectorized FPS to speed up FPS. Sectorized FPS saves 30%~40% training time with almost no
performance loss. A PyTorch-style Pseudocode of the implementation of Sectorized FPS is shown in Algorithm 1. As shown
in Figure 1, we provide an example to show the difference between the results of vanilla FPS and those of Sectorized FPS. To
balance the performance and efficiency, we set the hyperparameter of the number of sectors to 12 in all experiments. Besides,



we perform Sectorized FPS only in the first and second stage. For other stages, we perform vanilla FPS instead. We do not
apply Sectorized FPS during inference.

Algorithm 1 PyTorch-Style Pseudocode of Sectorized FPS

# xyz

dinates of a int set

r number of cors
angle = atan2(xyz[..., 0], xyz[..., 1])
sector_range = linspace(angle.min(), angle.max(), num_sector + 1)

# num

# sectorized fps

new_xyz = []

for idx in range (num_sector):
selected_idx = where((angle >= sector_range[s]) & (angle < sector_range[s + 1]))
new_sector_xyz = farthest_point_sampling(xyz[selected_idx])

new_xyz.append (new_sector_xyz)

out = cat (new_xyz, 0)
return out

5. Visualization

As shown in Figure 2, 3 and 4, we provide additional visualizations of the predictions by RealSurf compared with the
ground-truth labels on the dataset of nuScenes [2], SemanticKITTI [1], and Waymo [6], respectively.



Figure 1. Comparison between vanilla FPS (top) and Sectorized FPS (bottom) in the first stage.
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Figure 2. Visualization of ground-truth label (left) and our LiDAR segmentation results (right) on nuScenes [2].
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Figure 3. Visualization of ground-truth label (left) and our LiDAR segmentation results (right) on SemanticKITTI [1].
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Figure 4. Visualization of ground-truth label (left) and our LiDAR segmentation results (right) on Waymo [6].
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