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APPENDIX

A DERIVATION OF PARSE

As mentioned in Sec. 3 of the main paper, estimating part expression and location leads to two
coupled optimization problems.

zp(µ) = argmin
β

∑
c∈C

∥ϕc,M(µ) −Dp,cβc∥2 + λ∥β∥1. (1)

µp = argmin
µ∈[G]×[G]

[
Lp(µ) ≜

∑
c∈C

∥[ϕc]M(µ) −Dp,czp,c(µ)∥2 + λ∥zp(µ)∥1

]
(2)

For solving the above, we first approximate the solution to Eq. (1) by optimizing the reconstruction
error and subsequently thresholding. As mentioned in the main paper, this is closely related to
thresholding methods employed in LASSO (Hastie et al., 2001). So, first we solve

z′p(µ) = argmin
β

∑
c∈C

∥ϕc,M(µ) −Dp,cβc∥2

As a reminder, the subscript M(µ) refers to the projection of ϕc onto the support of M(µ), which
is an s × s grid centered at µ. The quadratic form of the above optimization problem, gives us an
explicit solution.

z′p,c(µ) =
(Dp,c ∗ δµ) : ϕc

∥Dp,c∥2
=

(Dp,c ∗ ϕc)(µ)

∥Dp,c∥2
(3)

where δµ(v) = δ(µ − v), v ∈ [G] × [G] is a dirac delta centered at µ, ∗ is a convolution1 : Dp,c ∗
δµ(v) =

∑
w Dp,c(w − v)δµ(v) and ‘:’ is the double-dot product or the sum of all elements of an

element-wise/Hadamard product.

For estimating location, we substitute z′p into Eq. (2) resulting in an upper bound for Lp(µ), which
we denote as L′

p(µ).

1Note that following terminology from signal processing this is not actually a convolution but a cross-
correlation. However, the way we use this term has been accepted in literature surrounding convolutional
neural networks.
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Lp(µ) ≤ L′
p(µ) =

∑
c∈[C]

∥[ϕc,M(µ) −Dp,cz
′
p,c(µ)∥2 + λ∥z′p∥1

=
∑
c∈[C]

[
∥ϕc,M(µ)∥2 − 2(ϕc,M(µ) : Dp,c)z

′
p,c + ∥Dp,cz

′
p,c∥2 + λ|z′p,c|

]
(1)
=
∑
c∈[C]

[
∥ϕc,M(µ)∥2 − 2(ϕc,M(µ) : Dp,c)

(Dp,c ∗ ϕc)(µ)

∥Dp,c∥2

+∥Dp,c∥2.
(Dp,c ∗ ϕc)(µ)

2

∥Dp,c∥4
+ λ

(Dp,c ∗ ϕc)(µ)

∥Dp,c∥2

]
(2)
=
∑
c∈[C]

[
∥ϕc,M(µ)∥2 −

(Dp,c ∗ ϕc)(µ)
2

∥Dp,c∥2
+ λ

(Dp,c ∗ ϕc)(µ)

∥Dp,c∥2

]

=
∑
c∈[C]

[
∥ϕc,M(µ)∥2 −

(Dp,c ∗ ϕc)(µ)
2

∥Dp,c∥2
+ λ

(Dp,c ∗ ϕc)(µ)

∥Dp,c∥2

− λ2

4∥Dp,c∥2
+

λ2

4∥Dp,c∥2

]
(4)

For step (1) above, we substitute z′p,c from Eq. (3). For step (2), note that Dp,c : ϕc,M(µ) =
(Dp,c ∗ ϕ)(µ), since M(µ) is an s× s attention map centered at µ.

From Eq. (4), by ignoring the first and the last terms and contracting the binomial squares, we get
the following as our estimate for µp. Note that the last term is ignored because it does not depend
on µ. Also, the first term

∑
c∈[C] ∥ϕc,M(µ)∥2, which is the energy across all channels varies little

for different values of µ.

µp = argmin
µ∈[G]×[G]

L′
p(µ) = argmin

µ∈[G]×[G]

−
∑
c∈C

[
(Dp,c ∗ ϕc)(µ)

∥Dp,c∥
− λ

∥Dp,c∥

]2
= argmax

µ∈[G]×[G]

∑
c∈C

((θp,c ∗ ϕc)(µ)− λc)
2 (5)

θp,c = Dp,c/∥Dp,c∥, and λc = λ/2∥Dp,c∥ becomes a channel dependent constant. The location
estimate in Eq. (5), is thus, in the form of template matching per channel.

Differentiable Estimates. As mentioned in the main paper, the above estimate (Eq. (5)) for µp does
not provide any gradients for the parameters in θp,c or those involved in computing ϕc. We make
the estimate differentiable in its parameters by approximating the argmax as the expectation of a
softmax distribution νp over [G]× [G] with a low temperature T .

νp(µ) = softmax

(
1

T

∑
c∈C

((θp,c ∗ ϕc)(µ)− λc)
2

)
; µp = Eµ∼νp

µ (6)

Substituting back the estimate of µp into Eq. (3) again makes zp unusable to get gradients (since
µp is an index in a non-continuous domain [G] × [G]). One workaround is estimating zp as an
expectation over νp of Eq. (3) (similar to how µp is estimated).

z′p,c = Eµ∼νp

[
(Dp,c ∗ ϕc)(µ)

∥Dp,c∥2

]
; zp,c = Sζ(z

′
p,c) (7)

However, we found a different estimate turns out to be more accurate and performs better in practice.
Using the first expression from Eq. (3)

z′p,c =
(Dp,c ∗ δµp

) : ϕc

∥Dp,c∥2
≈

(Dp,c ∗ δ̂µp
) : ϕc

∥Dp,c∥2
(8)

We make this estimate of zp,c differentiable by using a differentiable approximation of δµp
, δ̂µp

which is a low-radius (σ2 = 0.25) gaussian centered at µp. With the DOP model with 1 part,
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this estimate (Eq. (8)) achieves an accuracy of 90.56% on 5-way 5-shot classification on the CUB
dataset, while the estimate from Eq. (7) achieves an accuracy of 89.46% on the same task.

B MORE ON COMPARED METHODS

We compare DOP to state-of-the-art few-shot learning methods, including RENet (Kang et al.,
2021), FRN (Wertheimer et al., 2021),TDM (Lee et al., 2022) and DeepEMD(Zhang et al., 2020)
and also to methods like FOT (Wang et al., 2021), VFD (Xu et al., 2021), DN4 (Li et al., 2019)
and TDM (Lee et al., 2022), which are dedicated to the fine-grained setting. To highlight the contri-
bution of DOP , we tabulate in Tab. 1 the differences of the model design compared to prior works
(Tokmakov et al., 2019; Hao et al., 2019; Zhang et al., 2020; Wu et al., 2021) in few-shot learning
that also use part composition.

While there are prior works that learn recognition via object parts, and use instance-dependent
reweighting, DOP is unique since it uses reconstruction with templates (RwT) as a criterion, uses a
prior on the geometry of parts using part-locations and uses this geometry for comparing instances.
See Tab. 1 for a tabulated comparison.

Note : There are some prior works where the notion of the term part is overloaded and is unrelated
to our notion. Hence DeepEMD (Zhang et al., 2020) and LCR (Tokmakov et al., 2019) do not
have a ✓under “Parts”. LCR (Tokmakov et al., 2019) attempts to encode parts into image features.
DeepEMD (Zhang et al., 2020) focuses in the image-distance metric based on an earth mover’s
distance between different parts. Here, parts are simply different physical locations in the image and
not a compact collection of salient parts for recognition.

Again, FRN (Wertheimer et al., 2021) does not have a ✓under “RwT”. It uses a reconstruction
objective, but attempts to reconstruct query features from support. While this helps in determining
belongingness to a class based on how well the support features reconstruct query, the method does
not use templates that are shared across all image instances, reconstruction using which allows for
low noise representations.

Table 1: Similarities and differences in high-level use of components by DOP and prior work.
Parts: recognition using parts; RwT: Reconstruction with Templates; Geo: using geometry of parts
for instance comparison, and incorporating prior on geometry.; Reweighting: instance dependent
reweighting of matching scores.

Methods Parts RwT Geo Reweighting

LCR (Tokmakov et al., 2019)
SAML (Hao et al., 2019) ✓ ✓
DeepEMD (Zhang et al., 2020) ✓
FRN (Wertheimer et al., 2021)
TPMS (Wu et al., 2021) ✓ ✓
TDM (Lee et al., 2022) ✓
DOP (ours) ✓ ✓ ✓ ✓

C FULL RESULTS ON CUB

We compare to more existing methods on CUB in Tab. 2.

D VISUALIZING TEMPLATES AND PART EXPRESSIONS

Some templates of the learned dictionary Dp are visualized in Fig. 1. Our model uses each template
to reconstruct the original feature in the corresponding channel. We see diverse visual representa-
tions in different channels, implying that DOP learns diverse visual templates from the training set
to express objects. Fig. 2 shows the activated templates for different objects. The model uses the
same templates to express the same class.
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Table 2: Few-shot accuracy in % on CUB (along with 95% confidence intervals). If not specified,
the results are those reported in the original paper. *: results reported in (Xu et al., 2021). †: results
are obtained by running the public implementation released by authors using ResNet18 backbone.

Methods Backbone 1-shot 5-shot

ProtoNet(Snell et al., 2017) ResNet18 71.88±0.91 87.42±0.48
MTL(Liu et al., 2018)* ResNet12 73.31±0.92 82.29 ±0.51
∆-encoder (Schwartz et al., 2018) ResNet18 69.80±0.46 82.60±0.35
Baseline++ (Chen et al., 2019) ResNet18 67.02±0.90 83.58±0.54
SimpleShot(Wang et al., 2019) ResNet18 62.85±0.20 84.01±0.14
DN4(Li et al., 2019)† ResNet18 70.47±0.72 84.43±0.45
MetaOptNet(Lee et al., 2019)* ResNet12 75.15±0.46 87.09±0.30
AFHN(Li et al., 2020a) ResNet18 70.53±1.01 83.95±0.63
BSNet(Li et al., 2020b) ResNet18 69.61±0.92 83.24±0.60
DeepEMD(Zhang et al., 2020) ResNet12 75.65±0.83 88.69±0.50
FOT(Wang et al., 2021) ResNet18 72.56±0.77 87.22±0.46
VFD (Xu et al., 2021) ResNet12 79.12±0.83 91.48±0.39
FRN(Wertheimer et al., 2021) ResNet12 83.16 92.59
RENet(Kang et al., 2021) ResNet12 79.49±0.44 91.11±0.24
TOAN(Huang et al., 2021) ResNet12 67.17± 0.81 82.09±0.56
RAP(Hong et al., 2021) ResNet18 83.59±0.18 90.77±0.10
LSANet(Yu et al., 2022) Conv-64F 67.75 82.76
TDM(Lee et al., 2022) ResNet12 83.36 92.80
HelixFormer(Zhang et al., 2022) ResNet12 81.66±0.30 91.83±0.17

DOP ResNet18 82.62±0.65 92.61±0.38
DOP ResNet12 83.39±0.82 93.01±0.43

E ADDITIONAL ABLATION ANALYSIS

Instance-dependent reweighting based on goodness-of-fit. We use a parametric reweighting func-
tion α that reweights the distances between part expressions based on the how well the learned
templates fit the part features (see Eq. 7 from the main paper). In Tab. 3, we show the effect of
removing this reweighting, and simply using an average of all pairs of distances between the query
and support. As we see, the reweighting function does help few shot classification accuracy.

Effect of using part-geometry for comparison. In Eq. 7 from the main paper, we use part ge-
ometries besides part expressions for computing distances. Tab. 3 also shows scenarios where we
remove this component in the distance (equivalent to setting γ = 0). We see that using a distance
between part geometries helps final few shot classification performance.

Figure 1: Exemplar templates of learned dictionary Dp. The templates shown are for randomly
sampled channels for scale 3 (top) and 5 (bottom).

4



Under review as a conference paper at ICLR 2023

Staffordshire 
Terrier

Boston
Terrier

Boston
Terrier

Golden 
Retriever

Figure 2: Template coefficients zp of the same part for two Boston Terriers (top 2 rows), a Golden
Retriever (3rd row) and a Staffordshire Terrier (4th row). Template coefficients for images of the
same class are similar. Visually-similar classes (Boston Terrier and Staffordshire Terrier) share some
of the same activated templates, while visually distinct classes (Golden Retriever) differ a lot on their
selection of active templates.

Table 3: 5-way 5-shot accuracy on ablating components in distance computation: re-weighting
function α and using part-geometry (see Eq. 7 from the main paper). Both components help FSL
accuracy independently as well as together.

Part-geometry Re-weighting CUB Dog Car
91.83 82.07 92.78

✓ 92.44 83.90 93.31
✓ 91.95 83.33 93.21

✓ ✓ 92.61 84.75 93.48
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