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1 RESPONSE TO REVIEWER 8LCX

Dear Reviewer 8LCX, we sincerely thank you for your valuable feedback on our submission. Below
is our responses to the concerns you raised. We have incorporated the following contents into the
updated version of our paper, which we believe will help enhance the quality of our submission.

Q1: The novelty of balancing accuracy, convergence, and scalability needs
further justification, as similar uniform sampling strategies have been dis-
cussed in prior works that highlight the uniformity, such as Vabalas et al.
(2019) for sampling biases, which could diminish its uniqueness.

A1: We agree with your suggestion to discuss related work concerning sampling uniformity in
connection with our work. Here is our discussion:

Previous studies have discussed the risks of introducing sampling bias in incomplete sampling sce-
narios. Specifically, Vabalas et al. (2019) demonstrated through simulation experiments that K-fold
cross-validation (K-fold CV) can produce significant performance estimation bias when dealing with
small sample sizes. This bias persists even when the sample size reaches 1000. In contrast, meth-
ods like nested cross-validation (Nested CV) and train/test split have been shown to provide robust
and unbiased performance estimates regardless of sample size. Kossen et al. (2021) introduced a
weighting scheme, as described in (Farquhar et al., 2021), to mitigate sampling bias in active test-
ing scenarios. Vivek et al. (2024) proposed leveraging information obtained from source models to
select representative samples from the test set, thereby reducing sampling bias. Additionally, Polo
et al. (2024) employed Item Response Theory (Lord & Novick, 2008) to correct sample bias in
addressing this issue.

These studies inspired us to investigate the bias problem in the CBE scenario. Unlike the afore-
mentioned studies, we found that in CBE scenario, not only does sample bias exist, but model bias
also plays a role, and the two are coupled. This coupling poses greater challenges for analyzing and
mitigating these biases. To address this, based on the analyses outlined in Section 3, we propose the
UNICBE method, which effectively alleviates biases in this scenario.

Q2: Although the experiment of MT-Bench is based on human evaluator,
larger portion of the evaluation is relied on AlpacaEval, as larger number
of models and samples are used for the evaluation with AlpacaEval. The
reliance on GPT-4 and GPT-3.5-turbo as evaluators, while useful, could ben-
efit from validation against human judgments or additional LLMs, such as
Claude, to establish greater reliability and generalizability across evaluator
types.
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Figure 1: Results of compared CBE methods with Qwen-Plus as the judge on AlpacaEval.
A2: Yes, in our experiments, we test the performance of UNICBE with humans, GPT-4o, and GPT-
3.5-turbo as judges. We recognize that involving a broader range of evaluators helps enhance the
robustness and generalizability of our experimental conclusions. Therefore, below we additionally
test the compared methods using Qwen-Plus (Yang et al., 2024) as the judge. As shown in Figure 1,
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when Qwen-Plus is used as the judge, the experimental results are similar to those obtained with
other types of judges. UNICBE achieves significant preference budget savings, exceeding 20%.
This experimental result further validates the generalizability of UNICBE to different sources of
preference signals.

Q3: Minor details, but the readability of all figures could be enhanced by
widening the lines in each plot, which would improve clarity and interpreta-
tion for readers.

A3: Thank you for your valuable suggestions. We have increased the width of the lines in the figure
in the revised version to enhance readability. You can refer to the latest version.

Q4: As the UNICBE is based on three matrix , each targeting different goal
of accuracy, convergence, scaliability, can user steer between those by adding
hyperparameter for each matrix? Would it be also possible to quantify it
through experiment?

A4: We agree with your suggestion to add hyperparameters for each matrix to achieve controllability
for different optimization objectives. In the original manuscript, we integrate sampling matrices
targeting different optimization objectives with equal weights:

P l =
P acc-l ◦ P con-l ◦ P sca-l∑
(P acc-l ◦ P con-l ◦ P sca-l)

(1)

In practice, when faced with varying requirements, it is straightforward to prioritize a specific ob-
jective by adjusting the weights θacc, θcon, and θsca for these matrices, as shown in equation 2.

P l =
(P acc-l)θacc ◦ (P con-l)θcon ◦ (P sca-l)θsca∑
((P acc-l)θacc ◦ (P con-l)θcon ◦ (P sca-l)θsca)

(2)

As demonstrated in Table 1, we set different settings and calculate the degree of achievement level
for each optimization objective β following the calculation procedure described in Appendix-E.
Compared to equal-weight integration, users can easily increase the corresponding β (e.g., βacc)
by assigning a larger weight to a specific optimization objective (θacc), thereby better meeting their
practical needs (accuracy). We also observe that enhancing a specific optimization objective often
comes with a slight decrease in the achievement of other objectives. In Figure 2, we illustrate an
example of improving accuracy, where θacc is increased from 1 to 2. We find that the increased focus
on accuracy objective slightly slows down the convergence speed. As a result, when T is relatively
small, the performance of θacc = 2 lags behind that of θacc = 1. However, in the later stages, after
convergence, the enhanced accuracy objective enables θacc = 2 to outperform θacc = 1, resulting in
greater savings in the preference budget.

Table 1: The measurement results of the achievement of objectives in Section 3 for UNICBE with
varied hyperparameters.

Settings
θacc = 2 θacc = 1 θacc = 1 θacc = 1

θcon = 1 θcon = 2 θcon = 1 θcon = 1

θsca = 1 θsca = 1 θsca = 2 θsca = 1

βacc .7380(+.0016) .7355(-.0009) .7351(-.0013) .7364
βcon .9221(-.0007) .9235(+.0007) .9217(-.0011) .9228
βsca .9996(-.0001) .9997(.0000) .9998(+.0001) .9997

Q5: While scalability is addressed by sequentially adding models, the pa-
per could enhance this section by incorporating real-world scenarios, where
models enter and exit dynamically, further proving UNICBE’s robustness in
evolving benchmarks.
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Figure 2: Results of UNICBE with different θacc.
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Figure 3: Results of compared CBE methods in a scenario where models and samples are dynami-
cally added or removed at a random frequency.

A5: We agree with your suggestion that testing UNICBE in a highly dynamic, real-time evaluation
setting can help us more comprehensively assess its performance. To this end, we conduct the
following experiments: Starting with a sample size of N = 600 and model number of M = 12,
we execute a random operation at each time step. The operations included: adding one model to
be evaluated with a probability of 0.01, removing one model with a probability of 0.01, adding one
potential sample with a probability of 0.01, randomly deleting one sample with a probability of 0.01,
and taking no action with a probability of 0.96. Based on the experimental results shown in Figure 3,
we have the following observations:

• The convergence speed of all baseline methods significantly slowed down. None of the baseline
methods achieve a Spearman correlation coefficient of 0.96 or a Pearson correlation coefficient
of 0.97 by T = 2000, highlighting the difficulty of model evaluation in this setting. In contrast,
UNICBE achieve rapid convergence, reaching a Spearman coefficient of approximately 0.97
and a Pearson coefficient exceeding 0.98 by T = 2000.

• Over the long term, as T increases, UNICBE consistently demonstrates over 10% savings in
preference budget across all metrics, even under this challenging setting, showcasing its strong
practicality.

• An interesting observation is that ALPACAEVAL exhibits better convergence in the early stages
compared to RANDOM and ARENA, supporting our previous conclusions in Table 1 (original
manuscript). However, as T increases, ALPACAEVAL’s lack of accuracy optimization objective
leads to its performance being surpassed by RANDOM and ARENA.

Q6: The given choice of greedy sampling over probabilistic sampling and
Bradley-Terry model over Elo rating system appears significant to the frame-
work’s success. Could the authors conduct a small experiment to demon-
strate that UNICBE maintains its effectiveness across different sampling and
aggregation settings?

A6: We appreciate your valuable suggestion. In fact, as shown in Figure 4 (Figure 5 in the original
manuscript), we explore the combination of UNICBE with probability sampling strategy, Elo rating
and average win rate aggregation strategies, comparing these with the default configuration. Our
findings are as follows:
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Figure 4: Ablation studies of UNICBE with GPT-4o as the judge on AlpacaEval benchmark.

1. UNICBE consistently outperforms the baselines when combined with various settings. 2. Under
the default configuration (greedy sampling and BT model), UNICBE achieves optimal performance.
We believe this is because greedy sampling maximizes sampling uniformity, and the BT model better
alleviates sampling bias in cases of misaligned samples.
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