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1 RESPONSE TO REVIEWER D5WD

Dear Reviewer D5Wd, we sincerely thank you for your valuable feedback on our submission. Below
is our responses to the concerns you raised. We have incorporated the following contents into the
updated version of our paper, which we believe will help enhance the quality of our submission.

Q1: The framework assumes preference signals (particularly from auto-
mated judges like GPT-4) are consistent with human judgment, a potentially
risky simplification given known limitations in automated preference evalua-
tions.

A1: We understand your concern about the existence of bias between preference signals from mod-
els and humans. In fact, we don’t think the preference signals from LLMs are consistent with human
judgment . We experiment with both LLMs and human as judges for the following two reasons:

• First, high-quality benchmarks that align human supervisory signals at both the sample and
model levels in CBE scenario are relatively limited, so we focus on evaluating the effectiveness
of UNICBE under human preference signals using MT-Bench.

• Second, as an increasing number of studies (e.g., AlpacaEval) begin to adopt LLMs as judges,
it is also important to validate the effectiveness of UNICBE under model preference signals.

Experimental results show that UNICBE demonstrates superior performance when using GPT-4o,
GPT-3.5-turbo, and humans as judges, confirming the robustness of UNICBE to different sources of
preference signals.

Q2:The formulation of multi-dimensional sampling matrices and their inter-
action in optimizing accuracy, convergence, and scalability may be overly
complex for practical implementations and difficult to interpret for further
tuning or adjustment. Could the authors elaborate on how UNICBE would
handle scenarios with dynamic preference priorities, where, for example, ac-
curacy is weighted more heavily than convergence?

A2: In the original manuscript, we integrate sampling matrices targeting different optimization
objectives with equal weights:

P l =
P acc-l ◦ P con-l ◦ P sca-l∑
(P acc-l ◦ P con-l ◦ P sca-l)

(1)

In practice, when faced with varying requirements, it is straightforward to prioritize a specific ob-
jective by adjusting the weights θacc, θcon, and θsca for these matrices, as shown in equation 2.

P l =
(P acc-l)θacc ◦ (P con-l)θcon ◦ (P sca-l)θsca∑
((P acc-l)θacc ◦ (P con-l)θcon ◦ (P sca-l)θsca)

(2)

As demonstrated in Table 1, we set different settings and calculate the degree of achievement level
for each optimization objective β following the calculation procedure described in Appendix-E.
Compared to equal-weight integration, users can easily increase the corresponding β (e.g., βacc)
by assigning a larger weight to a specific optimization objective (θacc), thereby better meeting their
practical needs (accuracy). We also observe that enhancing a specific optimization objective often
comes with a slight decrease in the achievement of other objectives. In Figure 1, we illustrate an
example of improving accuracy, where θacc is increased from 1 to 2. We find that the increased focus
on accuracy objective slightly slows down the convergence speed. As a result, when T is relatively
small, the performance of θacc = 2 lags behind that of θacc = 1. However, in the later stages, after
convergence, the enhanced accuracy objective enables θacc = 2 to outperform θacc = 1, resulting in
greater savings in the preference budget.

Q3:How does UNICBE perform when preference signals are less reliable,
as is often the case with models lower than GPT-4 or inconsistent human
annotations?

1
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Table 1: The measurement results of the achievement of objectives in Section 3 for UNICBE with
varied hyperparameters.

Settings
θacc = 2 θacc = 1 θacc = 1 θacc = 1

θcon = 1 θcon = 2 θcon = 1 θcon = 1

θsca = 1 θsca = 1 θsca = 2 θsca = 1

βacc .7380(+.0016) .7355(-.0009) .7351(-.0013) .7364
βcon .9221(-.0007) .9235(+.0007) .9217(-.0011) .9228
βsca .9996(-.0001) .9997(.0000) .9998(+.0001) .9997
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Figure 1: Results of UNICBE with different θacc.

A3: As shown in Figure 2 (Figure 6 in the original manuscript), in addition to GPT-4o and hu-
mans, we also conduct experiments using GPT-3.5-turbo as the judge, whose preference signals are
less reliable. The experiments (lines 463–466 in the original manuscript) demonstrate a noticeable
decline in the performance of all methods (particularly, the Arena method performs almost on par
with random sampling), which is likely due to the increased noise in the preferences provided by
GPT-3.5-turbo, leading to slower convergence. In comparison, UNICBE still achieves over a 15%
preference budget savings relative to random sampling.
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Figure 2: Results of compared CBE methods with GPT-3.5-turbo as the judge on AlpacaEval.

Q4: To what extent could the uniformity constraints in the sampling matrices
be relaxed while maintaining cost-effectiveness?

A4: Based on our analyses in Section 3, the degree to which uniformity is achieved is positively
correlated with performance in terms of accuracy, convergence, and scalability. To explore the em-
pirical relationship between the degree of uniformity constraints and the final outcomes, we draw
inspiration from the concept of temperature-based control in random sampling. By adjusting the
temperature T in the following formula for sampling f ts

T , we regulate the extent of uniformity con-
straints according to P l in equation 1:

f ts
T (i, j, k) =

(P l
i,j,k)

−T∑
(P l)−T

(3)

As T increases, the uniformity constraints become more relaxed. When T = 0, it corresponds
to greedy sampling f ts

g , which imposes the strictest uniformity constraints. When T = 1, it
corresponds to probabilistic sampling f ts

p , which imposes general uniformity constraints. When
T = +∞, it corresponds to random sampling, where no uniformity constraints are applied. Our
experimental results are shown in Figure 3. As T increases from 0 to +∞, the evaluation results
progressively deteriorate. This indicates that adopting greedy sampling to impose the strictest uni-
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formity constraints yields the optimal evaluation performance. This observation also validates the
correctness of our conclusions in Section 3.
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Figure 3: Results of UNICBE with different sampling temperatures.
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