A Derivations

Model Derivation We write the joint posterior as

60|V, Z o< p(Y|X, B,0%)p(Bl0)p(c) (13)
x (07) M exp(~ 55 (V — 26) diag (T, (2))
) o T no? (14)
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Letting ¢ = (Z7diag(I1,(Z))Z + I)~'2Tdiag(I,(Z))Y, we group terms in the exponentials
according to ¢. The intermediate steps can be found in [67]. Supressing dependence on Y and Z, we
can write down the conditional posterior of ¢ as

lo? o eXp( o — 9" (27 diag(I1.(2))Z + 1)[¢ — 4]) (5)

So, we can see that our estimates for the mean and variance of p(4|o2,Y, Z) are ¢ and
o?(ZTdiag(l1,(Z))Z + I)~*. Next, we derive the conditional posterior for 2. We identify the
form of the scaled inverse-x? distribution in the joint posterior as in [22] and write

noog + Ns?

J2|¢§ ~ InV-X2(N+n0, Y

) (16)
where s is defined as in equation 7.

Derivation of equation 8 We establish the identity [22]:

0% ~ Inv-x*(a,b) and z|o* ~ N (p, A\o?) (17
et D

2 2
We have, ¢ ~ N(0,02), 02 ~ Inv-x*(N + no,%). Then, it’s the case that € ~

2 2
noog+Ns
lf(V:NJrno)(O7 n2+N )

Derivation of Posterior Predictive Note, this derivation takes the priors to be set as in BayesLIME
or BayesSHAP, namely, with values close to zero. We apply the identity from equation 17 to derive

this posterior. We have §j ~ ¢ z + ¢ for some z. Thus, § ~ N (¢7 z, 27V 202) + N(0, 02), where
0% ~ Inv-x?(N, s?). So, we have § ~ t(y—n) (7 z, (27 Vypz + 1)s?).

B Proof of Theorems

In these derivations, the perturbation matrices Z have elements Z;; € {0,1} where each Z;; ~
Bernoulli(0.5). Note, in these proofs, we take take the priors to be set as in BayesLIME and
BayesSHAP, i.e., they have hyperparameter values close to 0.

B.1 Proof of Theorem 3.3

Note that we use N to denote the fotal perturbations Whrle S denotes the perturabtions collected YY)
far. We use three assumptions stated as follows. First, =~ is sufficiently large such at T~ —|— 1is

equivalent to 5*. Second, NV is sufficiently large such that N + 1is equivalent to N and N3 IS

equivalent to 1. Thrrd, the product of Z”diag(I1,(Z))Z within V,, can be taken at its expected Value.
First, we state the marginal distribution over feature importance ¢; where ¢ is an arbitrary feature
importance ¢ € d. This given as

il Z,Y ~ ty_n (s, V,:5°) (18)
where Vy = (27 diag(IL, (Z))Z + I)~1. Recall each Z;; is given ~ Bern(.5) we use the third
assumption to write Vi is T~ N 1 1 for the on diagonal elements and ’TN for the off diagonal elements.
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We can see this is the case considering that each element in Z is a Bern(.5) draw. We drop the 1’s
due to the first assumption.

Letk = % It follows directly from Sherman Morrison that the i-th and j-th entries of V;; are given
as

(Vi)i; = %7k(N2+1) i=J (V)i = 4 (19)
I e HE - B SE T )

We see that the diagonals are the same. Thus, we take the PT'G estimate in terms of a single marginal
¢;. Substituting in the s* estimate s% and using the second assumption, we write the variance of
marginal ¢; as

452 N
V i) = -5 20
() = SN N -2 (20)
4s% 4s%

TExN  7x Var(¢;) @D

Because feature importance uncertainty is in the form of a credible interval, we use the normal
approximation of Var(¢;) and write

2
4s5

2
7 |53

where W is the desired width, « is the desired confidence level, and ®~!(«) is the two-tailed inverse
normal CDF. Finally, we subtract the initial .S samples. O

N = (22)

B.2 Proposition 3.2

Before providing a proof for proposition 3.2, we note to readers that the claims are related to well
known results in bayesian inference (e.g. similar results are proved in [68]). We provide the proofs
here to lend formal clarity to the properties of our explanations.

Convergence of Var(¢) Recall the posterior distribution of ¢ given in equation 5. In equation 19,
we see the on and off-diagonal elements of V; are given as = ]\? ) and —W respectively

(here replacing S with N to stay consistent with equation 5). Because we have N — oo, these values
define V3 due to the law of large numbers. Thus, as N — 0o, V, goes to the null matrix and so does
the uncertainty over ¢.

Consistency of qAS Recall the mean of ¢, denoted qAS given in equation 6. To establish consistency,
we must show that qb converges in probability to the true q“) as N — oo. To avoid confusing true qﬁ

with the distribution over ¢, we denote the true ¢ as ¢*. Thus, we must show qb —p F as N — oo.
We write

¢ = (2T diag([1,(2))Z + I) "' 27 diag(I1,.(2))Y (23)
= (2Tdiag(Il,(2))Z + )" ' 2" diag(I1,(Z))(Z¢* + €) (24)

Considering mean of ¢ is 0 and using law of large numbers,
= (27 diag(I1,(2))Z + I)™' 2" diag(T1,(2)) 26" = ¢" (25)
Convergence of Var(¢) Assume we have N — 0o so qAS converges to ¢*. The uncertainty over the
error term is given as the variance of the distribution in equation 8. The variance of this generalized

student’s t distribution is given as converges to s2 for large IV. Recalling its definition, s* reduces to
the local error of the model as N — oo. which is equivalent to the squared bias of the local model.

C Detailed Results

In this appendix, we provide extended experimental results.
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C.1 Explanation Uncertainty Hyperparameter Sensitivity

In the main paper, we assume the priors are set to be uninformative. Though this is the advised
configuration for BayesLIME and BayesSHAP because prior information about the local surface
is not likely available, we assess the calibration sensitivity of BayesLIME to different choices in
the hyperparameters. In figure 5, we perform a grid search over the uncertainty hyperparameters ng
and o3 for the MNIST digit “4” class. We find the explanation uncertainty is robust to the choice of
hyperparameters.

o2
- Ol le—=5 | le—1 1 10 100

le—5 95.7 95.7 96.4 96.6 96.6

le—1 96.6 96.6 96.9 98.9 100.0
1 96.5 96.9 98.6 100.0 100.0
10 94.2 98.2 100.0 100.0 100.0
100 72.2 99.0 100.0 100.0 100.0

Figure 5: BayesLIME calibration sensitivity to the choice of hyperparameters. Closer to 95.0 is better.
These results indicate BayesLIME calibration is not very sensitive to choices in the hyperparameter
values.

C.2 PTG Estimate Results

In the main paper, we provided PTG results for BayesLIME on MNIST. In this appendix, we show
the number of perturbations estimated by PTG and additional PTG results on the Imagenet “French
bulldog” class.

Number of Perturbations Estimated by PTG In section 4, we assessed if G produces good
estimates of the number of additional samples needed to reach the desired level of feature importance
certainty. In figure 6, we show the desired level of certainty (desired width of credible interval W)
versus the actual G estimate (i.e. the estimated number of perturbations) for figure 2 in the main
paper. We see the estimated number of perturbations is highly variable depending on desired W'.

Further PTG Estimate Results We provide results for the PTG estimate on Imagenet in Figure 8.
We limit the range of uncertainty values compared to MNIST because the Imagenet data is more
complex and consequently the required number of perturbations becomes very high. These results
further indicate the effectiveness of the PTG estimate.

C.3 User Study

Participate Consent We sent out an email to students and researchers with a background in computer
science inviting them to take our user study. At the beginning of the user study, we stated that no

led
15| — 200

1.0

0.5

Estimated Perturbations

0.0, . i . . .
le-2 9e-3 8e-3 7e-3 6e-3 5e-3
Desired Cl,,

Figure 6: Desired C'I,, versus the actual number of perturbations estimated by P7T'G in figure 2 of
the main paper. We plot mean and standard deviation of G.
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personal information would be asked during the study, their answers would be used in a research
project, and whether they consented to take the study.

Image of interface We give an example screen shot from the user study in Figure 7.

5 of 30

Which number do you believe this masked image is?

0 1 2 3 4 5 6 7 8 9

Figure 7: Screen shot from user study (correct answer 4).

BayesLIME Toy Example To show how our bayesian methods capture the uncertainty of local
explanations, we provide an illustrative example in Figure 9. Rerunning LIME explanations on a
toy decision surface (blue lines in the figure), we see LIME has high variance and produces many
different explanations. This behavior is particularly sever in the nonlinear surfaces. With a single

explanation, BayesLIME captures the uncertainty associated with generating local explanations
(black lines in the figure).

C.4 Focused Sampling Results
In this appendix, we provide additional focused sampling results. We include a comparison of focused

sampling to random sampling in terms of wall clock time. We also provide results demonstrating the
focused sampling procedure is not biased.

Wall Clock Time of Focused Sampling 1In figure 10, we plot wall clock time versus P(e = 0).
This experiment is analogous to figure 3 in the main paper, but here we use time instead of number of

BayesLIME, 200 Initial Perturbations BayesSHAP, 200 Initial Perturbations
1l.1le-2 T

. ; [] 1.1e-2 &
; iH . 9e-3 % )

T 31
7e-3 547; res E—% f

7e-3 8e-3 9e-3 le-2 8e-3 9e-3 le-2
Desired W Desired W

Observed W
Observed W

Figure 8: Imagenet PTG results for BayesLIME & BayesSHAP. The blue line indicates ideal calibra-
tion. These results indicate the PTG estimate is well calibrated for BayesLIME and BayesSHAP on
Imagenet, demonstrating the efficacy of the estimate.
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(a) linear, many samples (b) linear, fewer samples (c) nonlinear, many samples (d) nonlinear, fewer samples

Figure 9: Rerunning LIME local explanations 1000 times and BayesLIME once for linear and non-
linear toy surfaces using few (25) and many (250) perturbations. The linear surface is given as p(y)
21 and the non linear surface is defined as p(y) o sin(z1/2) * 10 + cos(10 + (21 * 22)/2) * cos(x1).
We plot each run of LIME in blue and the BayesLIME 95% credible region of the feature importance
¢ in black. We see that LIME variance is higher with fewer samples and a less linear surface.
BayesLIME captures the relative difficulty of explaining each surface through the width the credible
region. For instance, BayesLIME is most uncertain in the nonlinear, few samples case because this
surface is the most difficult to explain.

3.50 —— Uncertainty Sampling
Random Sampling

10° 10
Wall clock time (Seconds)

3.25

Figure 10: Wall clock time needed to converge to a high quality explanation by BayesLIME (analo-
gous to figure 3 in the paper). We use both random sampling and focused sampling over 100 Imagenet
images. We provide the mean and standard error for binned estimates of these values. This result
demonstrates that focused sampling leads to improved convergence over random sampling in terms
of wall clock time.

model queries on the x-axis. We see that uncertainty sampling is more time efficient than random
sampling for BayesLIME.

Bias of Focused Sampling In the main text, we saw that focused sampling converges faster than
random sampling. However, it is possible that focused sampling introduces bias into the process due
to sampling based on uncertainty estimates, leading to convergence to a different/wrong explanation.
To assess whether this occurs in practice, we evaluate the convergence of both focused sampling and
random sampling to the “true” explanation on Imagenet (computed with the number of perturbations
N =10, 000 using random sampling). To measure convergence, we compare the L; distance of the
explanation with the ground truth explanation. The result provided in Figure 11 demonstrates that
focused sampling converges to the ground truth explanation with significantly fewer model queries
than random sampling. Focused sampling reaches a L, distance of 0.1 at 300 queries while it takes
upwards of 450 queries for random sampling, indicating improved query efficiency of 30 — 40%.
Lastly, as the number of model queries increases (~1000), we observe an L; distance of around
0.06 which is extremely small and the explanations are practically the same as the ground truth.
Overall, these results show that focused sampling does not suffer from biases in practice and further
demonstrate that focused sampling can lead to significant speedups.
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Figure 11: Convergence of both focused sampling and random sampling to the ground truth
explanation. We see that uncertainty sampling converges more quickly to the ground truth than
random sampling, demonstrating that there is minimal bias in the focused sampling procedure and
focused sampling converges more efficiently.

C.5 Benchmarking

We also benchmark the efficiency of BayesLIME and BayesSHAP against Guo et al. [63], a related
Bayesian explanation method that uses a Bayesian non parametric mixture regression and MCMC
for parameter inference. Fixing their mixture regression to a single component results in a similar
model to ours and thus is a useful point of comparison. To explain a single instance on ImageNet
using VGG16, their approach takes 139.2 seconds, while BayesLIME and BayesSHAP take 20.3
seconds and 21.1 seconds respectively, under the same conditions, demonstrating that the closed form
solution is very efficient.

D Explaining a Ground Truth Function

We consider a synthetic experiment in which we observe an underlying ground truth function and
verify that lower values of feature importance uncertainty indicate higher proximity between the
feature importance estimates and the underlying ground truth function. To this end, we constructed a
piecewise linear function of two variables, where each quadrant in the x,y-plane corresponds to a
different linear model. We consider the regression coefficients of the quadrant as the ground truth
explanation. The piecewise function is given as:

f(z,y) =03z +0.2yifx >0,y >0 (26)
0.2x —0.1yifx >0,y <0
—z—0.05yifx <0,y <0
—8x+02yifzx<0,y>0
We plot the ¢; distance between the BayesLIME feature importance mean and ground truth explana-
tion versus the maximum credible interval width of the BayesLIME explanation. The results given in
Figure 12 indicate that tighter credible intervals lead to explanations that are closer to the ground

truth, demonstrating that the feature importance uncertainties are meaningful in regards to a ground
truth function.

E Compute Used

In this work, we ran all experiments on a single NVIDIA 2080TI & a single NVIDIA Titan RTX
GPU.

F Dataset licenses

German Credit is in the public domain, COMPAS uses the MIT license, MNIST uses the Creative
Commons Attribution-Share Alike 3.0 license, and Imagenet does not hold copyright of images.
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Figure 12: Assessing whether tighter credible intervals lead to convergence with ground truth, on
an example where the ground truth feature importances are known. Here, we plot The ¢; distance
between the feature importances menas for BayesLIME and ground truth explanation versus the
maximum credible interval width across the explanation.
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